A two-archive model based evolutionary algorithm for multimodal multi-objective optimization problems

Multimodal multi-objective optimization (MMO) can offer more elegant solutions and provide diverse decisions to decision-makers in real world optimization problems. Many multimodal evolutionary mechanisms have been proposed to explore and exploit two solution spaces (i.e. decision space and objectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 119; S. 108606
Hauptverfasser: Hu, Yi, Wang, Jie, Liang, Jing, Wang, Yanli, Ashraf, Usman, Yue, Caitong, Yu, Kunjie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.04.2022
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multimodal multi-objective optimization (MMO) can offer more elegant solutions and provide diverse decisions to decision-makers in real world optimization problems. Many multimodal evolutionary mechanisms have been proposed to explore and exploit two solution spaces (i.e. decision space and objective space) in recent years. However, most existing methods only use single evolutionary operator to generate offsprings and ignore the advantage of using hybrid evolutionary algorithm. Moreover, it is still a great challenge to balance the effectiveness and efficiency simultaneously in the evolutionary process of MMO. In view of this, an efficient Two-Archive model based multimodal evolutionary algorithm is proposed in this paper. Two parallel offspring generation mechanisms based on competitive particle swarm optimizer and differential evolution are applied to expand two solution spaces with different evolutionary requirements. Moreover, niching local search scheme and reverse vector mutation strategy play roles in achieving better convergence and diversity. Finally, 22 MMO test problems are used to validate the superiority of the proposed method by comparing it with 5 state-of-the-art MMO algorithms. The proposed method is also expanded to solve 9 feature selection problems for validating the effectiveness of the proposed method on real world applications. •Two offspring generation mechanisms based on competitive PSO and DE are proposed.•Two diversity maintenance strategies named niching local search scheme and reverse vector mutation strategy are designed.•This paper proposes a novel multimodal multi-objective optimization algorithm with a new Two-Archive model.•Experiments validate that the proposed method can solve MMOPs effectively and efficiently with a relatively smaller population size.•The proposed algorithm is expanded to deal with 9 real world feature selection problems.
AbstractList Multimodal multi-objective optimization (MMO) can offer more elegant solutions and provide diverse decisions to decision-makers in real world optimization problems. Many multimodal evolutionary mechanisms have been proposed to explore and exploit two solution spaces (i.e. decision space and objective space) in recent years. However, most existing methods only use single evolutionary operator to generate offsprings and ignore the advantage of using hybrid evolutionary algorithm. Moreover, it is still a great challenge to balance the effectiveness and efficiency simultaneously in the evolutionary process of MMO. In view of this, an efficient Two-Archive model based multimodal evolutionary algorithm is proposed in this paper. Two parallel offspring generation mechanisms based on competitive particle swarm optimizer and differential evolution are applied to expand two solution spaces with different evolutionary requirements. Moreover, niching local search scheme and reverse vector mutation strategy play roles in achieving better convergence and diversity. Finally, 22 MMO test problems are used to validate the superiority of the proposed method by comparing it with 5 state-of-the-art MMO algorithms. The proposed method is also expanded to solve 9 feature selection problems for validating the effectiveness of the proposed method on real world applications. •Two offspring generation mechanisms based on competitive PSO and DE are proposed.•Two diversity maintenance strategies named niching local search scheme and reverse vector mutation strategy are designed.•This paper proposes a novel multimodal multi-objective optimization algorithm with a new Two-Archive model.•Experiments validate that the proposed method can solve MMOPs effectively and efficiently with a relatively smaller population size.•The proposed algorithm is expanded to deal with 9 real world feature selection problems.
ArticleNumber 108606
Author Wang, Yanli
Ashraf, Usman
Yue, Caitong
Hu, Yi
Liang, Jing
Yu, Kunjie
Wang, Jie
Author_xml – sequence: 1
  givenname: Yi
  surname: Hu
  fullname: Hu, Yi
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
– sequence: 2
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
– sequence: 3
  givenname: Jing
  surname: Liang
  fullname: Liang, Jing
  email: liangjing@zzu.edu.cn
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
– sequence: 4
  givenname: Yanli
  surname: Wang
  fullname: Wang, Yanli
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
– sequence: 5
  givenname: Usman
  orcidid: 0000-0002-4423-0815
  surname: Ashraf
  fullname: Ashraf, Usman
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
– sequence: 6
  givenname: Caitong
  orcidid: 0000-0002-3362-0703
  surname: Yue
  fullname: Yue, Caitong
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
– sequence: 7
  givenname: Kunjie
  surname: Yu
  fullname: Yu, Kunjie
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
BookMark eNp9kM1OwzAMgCM0JLbBC3DKC3QkaZu2Epdp4k-axAXOUZo4LFXbTEk2BE9Pyjhx2MmW7c-yvwWajW4EhG4pWVFC-V23ksGpFSOMpULNCb9Ac1pXLGt4TWcpL3mdFU3Br9AihI4kqGH1HMEax0-XSa929gh4cBp63MoAGsPR9Ydo3Sj9F5b9h_M27gZsnMfDoY82zcr-lGau7UDFaYPbp479lhOI9961PQzhGl0a2Qe4-YtL9P748LZ5zravTy-b9TZTOSExK0udGwmqYm0FjJesqGShOOXGtLySDUilTd1CrlleNnWVl1IbykjR8rIqFM2XiJ32Ku9C8GDE3tsh3S8oEZMo0YlJlJhEiZOoBNX_IGXj7_3RS9ufR-9PKKSnjha8CMrCqEBbn3wI7ew5_AeRbYk2
CitedBy_id crossref_primary_10_1007_s11227_023_05624_2
crossref_primary_10_1088_2631_8695_ad22be
crossref_primary_10_1016_j_jobe_2025_113707
crossref_primary_10_1016_j_swevo_2024_101682
crossref_primary_10_32604_cmc_2024_050430
crossref_primary_10_3390_aerospace11100793
crossref_primary_10_1007_s00158_023_03568_y
crossref_primary_10_1109_JIOT_2023_3326567
crossref_primary_10_1007_s12293_024_00410_w
crossref_primary_10_1007_s11227_025_07517_y
crossref_primary_10_3390_a16070350
crossref_primary_10_1007_s13042_025_02768_w
crossref_primary_10_1016_j_swevo_2023_101319
crossref_primary_10_1016_j_asoc_2023_110232
crossref_primary_10_1016_j_asoc_2024_111541
crossref_primary_10_1016_j_eswa_2022_119438
crossref_primary_10_1016_j_ins_2025_122443
crossref_primary_10_1016_j_asoc_2023_111226
crossref_primary_10_1016_j_eswa_2023_122307
crossref_primary_10_1016_j_swevo_2024_101738
crossref_primary_10_1109_TEVC_2023_3292527
crossref_primary_10_1016_j_ins_2024_120301
crossref_primary_10_1016_j_swevo_2023_101232
crossref_primary_10_1016_j_swevo_2025_101952
crossref_primary_10_1016_j_swevo_2023_101253
crossref_primary_10_1007_s10489_024_05612_w
crossref_primary_10_1016_j_eswa_2025_128913
crossref_primary_10_1016_j_eswa_2025_127644
crossref_primary_10_1007_s10489_024_05714_5
crossref_primary_10_1016_j_swevo_2024_101724
crossref_primary_10_1016_j_swevo_2022_101209
crossref_primary_10_1016_j_swevo_2024_101500
crossref_primary_10_1016_j_asoc_2023_110724
crossref_primary_10_1007_s00521_023_09018_6
crossref_primary_10_1016_j_eswa_2025_129264
crossref_primary_10_1016_j_swevo_2024_101661
crossref_primary_10_1016_j_eswa_2025_129540
crossref_primary_10_1016_j_ins_2024_120832
crossref_primary_10_1016_j_ins_2024_121106
crossref_primary_10_1016_j_engappai_2024_108040
crossref_primary_10_1016_j_swevo_2023_101423
Cites_doi 10.1109/MCI.2017.2742868
10.1016/j.asoc.2019.105490
10.1016/j.asoc.2019.105886
10.1016/j.swevo.2019.03.011
10.1109/TSMC.2019.2956288
10.1109/TEVC.2017.2754271
10.1016/j.ins.2020.09.075
10.1109/MCI.2019.2919398
10.1109/TCYB.2016.2638902
10.1109/TEVC.2014.2350987
10.1109/JAS.2021.1004027
10.1016/j.ins.2013.01.020
10.1023/A:1008202821328
10.1007/s11432-018-9754-6
10.1109/TCYB.2014.2322602
10.1016/j.swevo.2021.100843
10.1016/j.asoc.2019.02.040
10.1109/TSMC.2019.2944338
10.1109/TEVC.2020.3008822
10.1016/j.apenergy.2020.116415
10.1016/j.ins.2012.02.011
10.1109/TEVC.2012.2203138
10.1162/106365600568202
10.1109/TCYB.2018.2842158
10.1109/TEVC.2009.2021467
10.1109/TEVC.2016.2519378
10.1007/s12293-021-00325-w
10.1109/TEVC.2014.2308305
10.1109/TEVC.2005.851275
10.1145/1830483.1830568
10.1016/j.ins.2015.09.025
10.1145/3300148
10.1109/TEVC.2019.2909744
10.1145/3205651.3208224
10.1016/j.swevo.2018.10.016
10.1109/TEVC.2018.2879406
10.1109/TEVC.2007.894202
10.1145/2739480.2754792
10.1016/j.ins.2017.10.037
10.1109/TEVC.2011.2161873
10.1109/TEVC.2014.2378512
10.1016/j.asoc.2016.11.014
10.1109/TCSS.2021.3061439
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2022.108606
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2022_108606
S1568494622001090
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-55d3faec72b7e265247a4c616ffb67a9eacdf8be3d23598735adf1204b6574c13
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000791330600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 06:59:56 EST 2025
Tue Nov 18 21:40:51 EST 2025
Fri Feb 23 02:40:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
Two-Archive
Particle swarm optimizer
Evolutionary algorithm
Multimodal multi-objective optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-55d3faec72b7e265247a4c616ffb67a9eacdf8be3d23598735adf1204b6574c13
ORCID 0000-0002-3362-0703
0000-0002-4423-0815
ParticipantIDs crossref_primary_10_1016_j_asoc_2022_108606
crossref_citationtrail_10_1016_j_asoc_2022_108606
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108606
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References C. Hu, H. Ishibuchi, Incorporation of a decision space diversity maintenance mechanism into MOEA/D for multi-modal multi-objective optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2018, pp. 1898–1901.
Zhang, Tian, Jin (b6) 2014; 19
Gong, Sun, Ji (b5) 2013; 233
Liu, Yen, Gong (b40) 2018; 23
Liang, Yue, Qu (b1) 2016
Chan, Ray (b12) 2005
Liang, Xu, Yue, Yu, Song, Crisalle, Qu (b14) 2019; 44
Lin, Lin, Zhu, Gong, Li, Coello (b21) 2020; 25
Zhang, Tian, Cheng, Jin (b41) 2014; 19
Tanabe, Ishibuchi (b28) 2019; 24
Liang, Qu, Gong, Yue (b57) 2019
K. Deb, A. Saha, Finding multiple solutions for multimodal optimization problems using a multi-objective evolutionary approach, in: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, 2010, pp. 447–454.
H. Ishibuchi, H. Masuda, Y. Nojima, A study on performance evaluation ability of a modified inverted generational distance indicator, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 695–702.
Han, Zhu, Zhou, Cai (b51) 2021; 8
Praditwong, Yao (b38) 2006
Liu, Gong, Sun, Jin (b11) 2017; 47
Fan, Ersoy (b50) 2021; 8
Yue, Qu, Yu, Liang, Li (b46) 2019; 48
Ishibuchi, Yamane, Akedo, Nojima (b34) 2012
While, Hingston, Barone, Huband (b55) 2006; 10
Luo, Liu, Yang, Li, Chen, Cao (b9) 2017; 50
Qu, Liang, Suganthan (b18) 2012; 197
Hu, Wang, Liang, Yu, Song, Guo, Yue, Wang (b24) 2019; 62
Rudolph, Naujoks, Preuss (b29) 2007
Yue, Qu, Liang (b15) 2017; 22
Ulrich, Bader, Thiele (b33) 2010
Tanabe, Ishibuchi (b31) 2018
Rong, Gong, Zhang, Jin, Pedrycz (b7) 2018; 49
Tian, Cheng, Zhang, Jin (b59) 2017; 12
Qu, Suganthan, Das (b17) 2012; 17
Zhang, Suganthan (b60) 2016; 367
Cheng, Jin (b36) 2014; 45
Yue, Liang, Qu, Yu, Song (b3) 2019
Vesterstrom, Thomsen (b44) 2004
Qu, Suganthan, Liang (b19) 2012; 16
Wang, Jiao, Yao (b39) 2014; 19
Wang, Ma, Tan, Wu, Wang, Gong, Xiong (b47) 2021; 546
Li, Wang, Zhang, Wang, Tu, You (b48) 2021; 62
Li (b16) 2009; 14
Lin, Li, Luo (b22) 2020
Zhang, Zheng, Cheng, Qiu, Jin (b37) 2018; 427
Cheng, Jin, Olhofer, Sendhoff (b4) 2016; 20
Hu, Qu, Wang, Liang, Wang, Yu, Li, Qiao (b25) 2021; 285
Rudolph, Preuss (b35) 2009
Storn, Price (b43) 1997; 11
Ding, Dong, He, Li (b45) 2019; 78
Liang, Guo, Yue, Qu, Yu (b20) 2018
Tian, Cheng, Zhang, Li, Jin (b56) 2019; 14
Zhang, Zhou, Jin (b52) 2008; 12
Qu, Li, Liang, Yan, Yu, Zhu (b26) 2020; 86
Fan, Yan (b27) 2019; 51
Yang, Wang, Luo, He (b32) 2021; 13
Tahernezhad, Lari, Hamzeh, Hashemi (b10) 2012
Zhou, Zhang, Jin (b13) 2009; 13
Tian, He, Cheng, Zhang (b42) 2019; 51
Li, Lin, Liu, Gong, Coello, Ming (b8) 2019; 81
Deb, Tiwari (b23) 2005
Zitzler, Deb, Thiele (b53) 2000; 8
Li, Yao (b58) 2019; 52
Zhou, Hu, Zhou, Yuan (b49) 2021; 100
Wang (10.1016/j.asoc.2022.108606_b47) 2021; 546
Tian (10.1016/j.asoc.2022.108606_b42) 2019; 51
Rudolph (10.1016/j.asoc.2022.108606_b35) 2009
10.1016/j.asoc.2022.108606_b2
Tanabe (10.1016/j.asoc.2022.108606_b28) 2019; 24
Praditwong (10.1016/j.asoc.2022.108606_b38) 2006
Zhang (10.1016/j.asoc.2022.108606_b6) 2014; 19
Zhang (10.1016/j.asoc.2022.108606_b60) 2016; 367
Rudolph (10.1016/j.asoc.2022.108606_b29) 2007
Han (10.1016/j.asoc.2022.108606_b51) 2021; 8
Li (10.1016/j.asoc.2022.108606_b8) 2019; 81
Liang (10.1016/j.asoc.2022.108606_b20) 2018
Wang (10.1016/j.asoc.2022.108606_b39) 2014; 19
Zitzler (10.1016/j.asoc.2022.108606_b53) 2000; 8
Li (10.1016/j.asoc.2022.108606_b58) 2019; 52
Cheng (10.1016/j.asoc.2022.108606_b36) 2014; 45
Liu (10.1016/j.asoc.2022.108606_b11) 2017; 47
Tahernezhad (10.1016/j.asoc.2022.108606_b10) 2012
Tian (10.1016/j.asoc.2022.108606_b56) 2019; 14
Hu (10.1016/j.asoc.2022.108606_b25) 2021; 285
While (10.1016/j.asoc.2022.108606_b55) 2006; 10
Tanabe (10.1016/j.asoc.2022.108606_b31) 2018
Liang (10.1016/j.asoc.2022.108606_b14) 2019; 44
Qu (10.1016/j.asoc.2022.108606_b18) 2012; 197
10.1016/j.asoc.2022.108606_b30
Yue (10.1016/j.asoc.2022.108606_b15) 2017; 22
Qu (10.1016/j.asoc.2022.108606_b19) 2012; 16
Rong (10.1016/j.asoc.2022.108606_b7) 2018; 49
Li (10.1016/j.asoc.2022.108606_b16) 2009; 14
Fan (10.1016/j.asoc.2022.108606_b27) 2019; 51
Storn (10.1016/j.asoc.2022.108606_b43) 1997; 11
Cheng (10.1016/j.asoc.2022.108606_b4) 2016; 20
Lin (10.1016/j.asoc.2022.108606_b22) 2020
Ulrich (10.1016/j.asoc.2022.108606_b33) 2010
Zhou (10.1016/j.asoc.2022.108606_b13) 2009; 13
Ishibuchi (10.1016/j.asoc.2022.108606_b34) 2012
Gong (10.1016/j.asoc.2022.108606_b5) 2013; 233
Qu (10.1016/j.asoc.2022.108606_b26) 2020; 86
Zhang (10.1016/j.asoc.2022.108606_b41) 2014; 19
Ding (10.1016/j.asoc.2022.108606_b45) 2019; 78
Fan (10.1016/j.asoc.2022.108606_b50) 2021; 8
Deb (10.1016/j.asoc.2022.108606_b23) 2005
Liu (10.1016/j.asoc.2022.108606_b40) 2018; 23
Tian (10.1016/j.asoc.2022.108606_b59) 2017; 12
Chan (10.1016/j.asoc.2022.108606_b12) 2005
Vesterstrom (10.1016/j.asoc.2022.108606_b44) 2004
Zhang (10.1016/j.asoc.2022.108606_b52) 2008; 12
Yang (10.1016/j.asoc.2022.108606_b32) 2021; 13
Luo (10.1016/j.asoc.2022.108606_b9) 2017; 50
Hu (10.1016/j.asoc.2022.108606_b24) 2019; 62
Qu (10.1016/j.asoc.2022.108606_b17) 2012; 17
Yue (10.1016/j.asoc.2022.108606_b46) 2019; 48
Zhou (10.1016/j.asoc.2022.108606_b49) 2021; 100
Li (10.1016/j.asoc.2022.108606_b48) 2021; 62
Liang (10.1016/j.asoc.2022.108606_b1) 2016
Lin (10.1016/j.asoc.2022.108606_b21) 2020; 25
10.1016/j.asoc.2022.108606_b54
Zhang (10.1016/j.asoc.2022.108606_b37) 2018; 427
Yue (10.1016/j.asoc.2022.108606_b3) 2019
Liang (10.1016/j.asoc.2022.108606_b57) 2019
References_xml – volume: 233
  start-page: 141
  year: 2013
  end-page: 161
  ident: b5
  article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems
  publication-title: Inform. Sci.
– start-page: 1980
  year: 2004
  end-page: 1987
  ident: b44
  article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems
  publication-title: IEEE Congress on Evolutionary Computation
– start-page: 550
  year: 2018
  end-page: 560
  ident: b20
  article-title: A self-organizing multi-objective particle swarm optimization algorithm for multimodal multi-objective problems
  publication-title: International Conference on Swarm Intelligence
– volume: 23
  start-page: 660
  year: 2018
  end-page: 674
  ident: b40
  article-title: A multi-modal multi-objective evolutionary algorithm using two-archive and recombination strategies
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 201
  year: 2014
  end-page: 213
  ident: b41
  article-title: An efficient approach to nondominated sorting for evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 197
  start-page: 131
  year: 2012
  end-page: 143
  ident: b18
  article-title: Niching particle swarm optimization with local search for multi-modal optimization
  publication-title: Inform. Sci.
– volume: 24
  start-page: 193
  year: 2019
  end-page: 200
  ident: b28
  article-title: A review of evolutionary multi-modal multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 14
  start-page: 61
  year: 2019
  end-page: 74
  ident: b56
  article-title: Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems
  publication-title: IEEE Comput. Intell. M
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b4
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans Evol. Comput.
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b53
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evol. Comput.
– volume: 367
  start-page: 1094
  year: 2016
  end-page: 1105
  ident: b60
  article-title: A comprehensive evaluation of random vector functional link networks
  publication-title: Inform. Sci.
– volume: 78
  start-page: 447
  year: 2019
  end-page: 464
  ident: b45
  article-title: A novel two-archive strategy for evolutionary many-objective optimization algorithm based on reference points
  publication-title: Appl. Soft. Comput.
– start-page: 1871
  year: 2012
  end-page: 1876
  ident: b34
  article-title: Two-objective solution set optimization to maximize hypervolume and decision space diversity in multiobjective optimization
  publication-title: The 6th International Conference on Soft Computing and Intelligent Systems, and the 13th International Symposium on Advanced Intelligence Systems
– volume: 16
  start-page: 601
  year: 2012
  end-page: 614
  ident: b19
  article-title: Differential evolution with neighborhood mutation for multimodal optimization
  publication-title: IEEE Trans Evol. Comput.
– year: 2019
  ident: b57
  article-title: Problem definitions and evaluation criteria for the CEC 2019 special session on multimodal multiobjective optimization
– volume: 546
  start-page: 1148
  year: 2021
  end-page: 1165
  ident: b47
  article-title: Preference-inspired coevolutionary algorithm with active diversity strategy for multi-objective multi-modal optimization
  publication-title: Inform. Sci.
– volume: 49
  start-page: 3362
  year: 2018
  end-page: 3374
  ident: b7
  article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
– volume: 8
  start-page: 1
  year: 2021
  end-page: 14
  ident: b51
  article-title: Information-utilization-method-assisted multimodal multiobjective optimization and application to credit card fraud detection
  publication-title: IEEE Trans. Comput. Soc. Syst.
– start-page: 707
  year: 2010
  end-page: 717
  ident: b33
  article-title: Defining and optimizing indicator-based diversity measures in multiobjective search
  publication-title: International Conference on Parallel Problem Solving from Nature
– volume: 19
  start-page: 524
  year: 2014
  end-page: 541
  ident: b39
  article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 74
  year: 2009
  end-page: 79
  ident: b35
  article-title: A multiobjective approach for finding equivalent inverse images of Pareto-optimal objective vectors
  publication-title: IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making
– reference: K. Deb, A. Saha, Finding multiple solutions for multimodal optimization problems using a multi-objective evolutionary approach, in: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, 2010, pp. 447–454.
– start-page: 47
  year: 2005
  end-page: 61
  ident: b23
  article-title: Omni-optimizer: A procedure for single and multi-objective optimization
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 13
  start-page: 31
  year: 2021
  end-page: 47
  ident: b32
  article-title: Balancing performance between the decision space and the objective space in multimodal multiobjective optimization
  publication-title: Memetic. Comput.
– start-page: 571
  year: 2020
  end-page: 582
  ident: b22
  article-title: A novel decomposition-based multimodal multi-objective evolutionary algorithm
  publication-title: International Conference on Intelligent Computing
– volume: 50
  start-page: 235
  year: 2017
  end-page: 251
  ident: b9
  article-title: An artificial bee colony algorithm for multi-objective optimisation
  publication-title: Appl. Soft Comput.
– volume: 62
  start-page: 1
  year: 2019
  end-page: 17
  ident: b24
  article-title: A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm
  publication-title: Sci. China. Inf. Sci.
– start-page: 36
  year: 2007
  end-page: 50
  ident: b29
  article-title: Capabilities of EMOA to detect and preserve equivalent Pareto subsets
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 10
  start-page: 29
  year: 2006
  end-page: 38
  ident: b55
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Trans. Evol. Comput.
– volume: 44
  start-page: 1028
  year: 2019
  end-page: 1059
  ident: b14
  article-title: Multimodal multiobjective optimization with differential evolution
  publication-title: Swarm. Evol. Comput.
– volume: 22
  start-page: 805
  year: 2017
  end-page: 817
  ident: b15
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Trans Evol. Comput.
– start-page: 2454
  year: 2016
  end-page: 2461
  ident: b1
  article-title: Multimodal multi-objective optimization: A preliminary study
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 427
  start-page: 63
  year: 2018
  end-page: 76
  ident: b37
  article-title: A competitive mechanism based multi-objective particle swarm optimizer with fast convergence
  publication-title: Inform. Sci.
– volume: 285
  start-page: 1
  year: 2021
  end-page: 21
  ident: b25
  article-title: Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning
  publication-title: Appl. Energ.
– start-page: 302
  year: 2019
  end-page: 309
  ident: b3
  article-title: Multimodal multiobjective optimization in feature selection
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 47
  start-page: 2689
  year: 2017
  end-page: 2702
  ident: b11
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
– reference: H. Ishibuchi, H. Masuda, Y. Nojima, A study on performance evaluation ability of a modified inverted generational distance indicator, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 695–702.
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b59
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization
  publication-title: IEEE Comput. Intell. M
– volume: 25
  start-page: 130
  year: 2020
  end-page: 144
  ident: b21
  article-title: Multimodal multi-objective evolutionary optimization with dual clustering in decision and objective spaces
  publication-title: IEEE Trans Evol. Comput.
– volume: 62
  start-page: 1
  year: 2021
  end-page: 18
  ident: b48
  article-title: Grid search based multi-population particle swarm optimization algorithm for multimodal multi-objective optimization
  publication-title: Swarm. Evol. Comput.
– volume: 51
  start-page: 5880
  year: 2019
  end-page: 5894
  ident: b42
  article-title: A multistage evolutionary algorithm for better diversity preservation in multiobjective optimization
  publication-title: IEEE Trans. Syst. Man. Cybern.
– volume: 17
  start-page: 387
  year: 2012
  end-page: 402
  ident: b17
  article-title: A distance-based locally informed particle swarm model for multimodal optimization
  publication-title: IEEE Trans Evol. Comput.
– start-page: 128
  year: 2012
  end-page: 133
  ident: b10
  article-title: A multi-objective evolutionary algorithm based on complete-linkage clustering to enhance the solution space diversity
  publication-title: The 16th CSI International Symposium on Artificial Intelligence and Signal Processing
– start-page: 249
  year: 2018
  end-page: 261
  ident: b31
  article-title: A decomposition-based evolutionary algorithm for multi-modal multi-objective optimization
  publication-title: International Conference on Parallel Problem Solving from Nature
– volume: 48
  start-page: 62
  year: 2019
  end-page: 71
  ident: b46
  article-title: A novel scalable test problem suite for multimodal multiobjective optimization
  publication-title: Swarm. Evol. Comput.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b43
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global. Optim.
– volume: 51
  start-page: 4836
  year: 2019
  end-page: 4847
  ident: b27
  article-title: Solving multimodal multiobjective problems through zoning search
  publication-title: IEEE Trans. Syst. Man. Cybern.
– volume: 45
  start-page: 191
  year: 2014
  end-page: 204
  ident: b36
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Trans. Cybern.
– start-page: 13
  year: 2005
  end-page: 16
  ident: b12
  article-title: An evolutionary algorithm to maintain diversity in the parametric and the objective space
  publication-title: International Conference on Computational Robotics and Autonomous Systems
– reference: C. Hu, H. Ishibuchi, Incorporation of a decision space diversity maintenance mechanism into MOEA/D for multi-modal multi-objective optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2018, pp. 1898–1901.
– volume: 19
  start-page: 761
  year: 2014
  end-page: 776
  ident: b6
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans Evol. Comput.
– volume: 14
  start-page: 150
  year: 2009
  end-page: 169
  ident: b16
  article-title: Niching without niching parameters: Particle swarm optimization using a ring topology
  publication-title: IEEE Trans Evol. Comput.
– volume: 100
  start-page: 1
  year: 2021
  end-page: 13
  ident: b49
  article-title: A novel grey prediction evolution algorithm for multimodal multiobjective optimization
  publication-title: Een. Appl. Artif. Intel.
– volume: 12
  start-page: 41
  year: 2008
  end-page: 63
  ident: b52
  article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
– volume: 86
  start-page: 1
  year: 2020
  end-page: 13
  ident: b26
  article-title: A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems
  publication-title: Appl. Soft Comput.
– start-page: 286
  year: 2006
  end-page: 291
  ident: b38
  article-title: A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm
  publication-title: International Conference on Computational Intelligence and Security
– volume: 81
  start-page: 1
  year: 2019
  end-page: 14
  ident: b8
  article-title: A novel multi-objective immune algorithm with a decomposition-based clonal selection
  publication-title: Appl. Soft Comput.
– volume: 8
  start-page: 1163
  year: 2021
  end-page: 1176
  ident: b50
  article-title: Zoning search with adaptive resource allocating method for balanced and imbalanced multimodal multi-objective optimization
  publication-title: IEEE/CAA J. Autom.
– volume: 52
  start-page: 1
  year: 2019
  end-page: 38
  ident: b58
  article-title: Quality evaluation of solution sets in multiobjective optimisation: A survey
  publication-title: ACM Comput. Surv.
– volume: 13
  start-page: 1167
  year: 2009
  end-page: 1189
  ident: b13
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Trans Evol. Comput.
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2022.108606_b59
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization
  publication-title: IEEE Comput. Intell. M
  doi: 10.1109/MCI.2017.2742868
– start-page: 2454
  year: 2016
  ident: 10.1016/j.asoc.2022.108606_b1
  article-title: Multimodal multi-objective optimization: A preliminary study
– start-page: 47
  year: 2005
  ident: 10.1016/j.asoc.2022.108606_b23
  article-title: Omni-optimizer: A procedure for single and multi-objective optimization
– volume: 81
  start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.108606_b8
  article-title: A novel multi-objective immune algorithm with a decomposition-based clonal selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105490
– volume: 86
  start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108606_b26
  article-title: A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105886
– start-page: 1871
  year: 2012
  ident: 10.1016/j.asoc.2022.108606_b34
  article-title: Two-objective solution set optimization to maximize hypervolume and decision space diversity in multiobjective optimization
– volume: 48
  start-page: 62
  issue: 8
  year: 2019
  ident: 10.1016/j.asoc.2022.108606_b46
  article-title: A novel scalable test problem suite for multimodal multiobjective optimization
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2019.03.011
– volume: 51
  start-page: 5880
  issue: 9
  year: 2019
  ident: 10.1016/j.asoc.2022.108606_b42
  article-title: A multistage evolutionary algorithm for better diversity preservation in multiobjective optimization
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/TSMC.2019.2956288
– volume: 22
  start-page: 805
  issue: 5
  year: 2017
  ident: 10.1016/j.asoc.2022.108606_b15
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Trans Evol. Comput.
  doi: 10.1109/TEVC.2017.2754271
– volume: 546
  start-page: 1148
  year: 2021
  ident: 10.1016/j.asoc.2022.108606_b47
  article-title: Preference-inspired coevolutionary algorithm with active diversity strategy for multi-objective multi-modal optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.09.075
– volume: 14
  start-page: 61
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2022.108606_b56
  article-title: Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems
  publication-title: IEEE Comput. Intell. M
  doi: 10.1109/MCI.2019.2919398
– volume: 47
  start-page: 2689
  issue: 9
  year: 2017
  ident: 10.1016/j.asoc.2022.108606_b11
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2638902
– start-page: 36
  year: 2007
  ident: 10.1016/j.asoc.2022.108606_b29
  article-title: Capabilities of EMOA to detect and preserve equivalent Pareto subsets
– volume: 19
  start-page: 524
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2022.108606_b39
  article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2350987
– volume: 8
  start-page: 1163
  issue: 6
  year: 2021
  ident: 10.1016/j.asoc.2022.108606_b50
  article-title: Zoning search with adaptive resource allocating method for balanced and imbalanced multimodal multi-objective optimization
  publication-title: IEEE/CAA J. Autom.
  doi: 10.1109/JAS.2021.1004027
– volume: 233
  start-page: 141
  year: 2013
  ident: 10.1016/j.asoc.2022.108606_b5
  article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.01.020
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.asoc.2022.108606_b43
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global. Optim.
  doi: 10.1023/A:1008202821328
– volume: 62
  start-page: 1
  issue: 7
  year: 2019
  ident: 10.1016/j.asoc.2022.108606_b24
  article-title: A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm
  publication-title: Sci. China. Inf. Sci.
  doi: 10.1007/s11432-018-9754-6
– start-page: 571
  year: 2020
  ident: 10.1016/j.asoc.2022.108606_b22
  article-title: A novel decomposition-based multimodal multi-objective evolutionary algorithm
– volume: 45
  start-page: 191
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2022.108606_b36
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2322602
– volume: 62
  start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2022.108606_b48
  article-title: Grid search based multi-population particle swarm optimization algorithm for multimodal multi-objective optimization
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2021.100843
– volume: 78
  start-page: 447
  year: 2019
  ident: 10.1016/j.asoc.2022.108606_b45
  article-title: A novel two-archive strategy for evolutionary many-objective optimization algorithm based on reference points
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2019.02.040
– volume: 14
  start-page: 150
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2022.108606_b16
  article-title: Niching without niching parameters: Particle swarm optimization using a ring topology
  publication-title: IEEE Trans Evol. Comput.
– volume: 51
  start-page: 4836
  issue: 8
  year: 2019
  ident: 10.1016/j.asoc.2022.108606_b27
  article-title: Solving multimodal multiobjective problems through zoning search
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/TSMC.2019.2944338
– volume: 25
  start-page: 130
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108606_b21
  article-title: Multimodal multi-objective evolutionary optimization with dual clustering in decision and objective spaces
  publication-title: IEEE Trans Evol. Comput.
  doi: 10.1109/TEVC.2020.3008822
– volume: 285
  start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2022.108606_b25
  article-title: Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2020.116415
– volume: 197
  start-page: 131
  year: 2012
  ident: 10.1016/j.asoc.2022.108606_b18
  article-title: Niching particle swarm optimization with local search for multi-modal optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2012.02.011
– start-page: 128
  year: 2012
  ident: 10.1016/j.asoc.2022.108606_b10
  article-title: A multi-objective evolutionary algorithm based on complete-linkage clustering to enhance the solution space diversity
– volume: 17
  start-page: 387
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2022.108606_b17
  article-title: A distance-based locally informed particle swarm model for multimodal optimization
  publication-title: IEEE Trans Evol. Comput.
  doi: 10.1109/TEVC.2012.2203138
– start-page: 550
  year: 2018
  ident: 10.1016/j.asoc.2022.108606_b20
  article-title: A self-organizing multi-objective particle swarm optimization algorithm for multimodal multi-objective problems
– start-page: 74
  year: 2009
  ident: 10.1016/j.asoc.2022.108606_b35
  article-title: A multiobjective approach for finding equivalent inverse images of Pareto-optimal objective vectors
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 10.1016/j.asoc.2022.108606_b53
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
– volume: 49
  start-page: 3362
  issue: 9
  year: 2018
  ident: 10.1016/j.asoc.2022.108606_b7
  article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2842158
– start-page: 13
  year: 2005
  ident: 10.1016/j.asoc.2022.108606_b12
  article-title: An evolutionary algorithm to maintain diversity in the parametric and the objective space
– volume: 13
  start-page: 1167
  issue: 5
  year: 2009
  ident: 10.1016/j.asoc.2022.108606_b13
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Trans Evol. Comput.
  doi: 10.1109/TEVC.2009.2021467
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.asoc.2022.108606_b4
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– start-page: 249
  year: 2018
  ident: 10.1016/j.asoc.2022.108606_b31
  article-title: A decomposition-based evolutionary algorithm for multi-modal multi-objective optimization
– volume: 13
  start-page: 31
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2022.108606_b32
  article-title: Balancing performance between the decision space and the objective space in multimodal multiobjective optimization
  publication-title: Memetic. Comput.
  doi: 10.1007/s12293-021-00325-w
– volume: 19
  start-page: 201
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2022.108606_b41
  article-title: An efficient approach to nondominated sorting for evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2308305
– volume: 10
  start-page: 29
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2022.108606_b55
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851275
– ident: 10.1016/j.asoc.2022.108606_b2
  doi: 10.1145/1830483.1830568
– volume: 367
  start-page: 1094
  year: 2016
  ident: 10.1016/j.asoc.2022.108606_b60
  article-title: A comprehensive evaluation of random vector functional link networks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.09.025
– volume: 52
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2022.108606_b58
  article-title: Quality evaluation of solution sets in multiobjective optimisation: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3300148
– volume: 24
  start-page: 193
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.108606_b28
  article-title: A review of evolutionary multi-modal multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2909744
– ident: 10.1016/j.asoc.2022.108606_b30
  doi: 10.1145/3205651.3208224
– volume: 44
  start-page: 1028
  year: 2019
  ident: 10.1016/j.asoc.2022.108606_b14
  article-title: Multimodal multiobjective optimization with differential evolution
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2018.10.016
– volume: 23
  start-page: 660
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2022.108606_b40
  article-title: A multi-modal multi-objective evolutionary algorithm using two-archive and recombination strategies
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2879406
– volume: 12
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2022.108606_b52
  article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.894202
– year: 2019
  ident: 10.1016/j.asoc.2022.108606_b57
– ident: 10.1016/j.asoc.2022.108606_b54
  doi: 10.1145/2739480.2754792
– volume: 427
  start-page: 63
  year: 2018
  ident: 10.1016/j.asoc.2022.108606_b37
  article-title: A competitive mechanism based multi-objective particle swarm optimizer with fast convergence
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.10.037
– start-page: 302
  year: 2019
  ident: 10.1016/j.asoc.2022.108606_b3
  article-title: Multimodal multiobjective optimization in feature selection
– volume: 16
  start-page: 601
  issue: 5
  year: 2012
  ident: 10.1016/j.asoc.2022.108606_b19
  article-title: Differential evolution with neighborhood mutation for multimodal optimization
  publication-title: IEEE Trans Evol. Comput.
  doi: 10.1109/TEVC.2011.2161873
– volume: 100
  start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2022.108606_b49
  article-title: A novel grey prediction evolution algorithm for multimodal multiobjective optimization
  publication-title: Een. Appl. Artif. Intel.
– volume: 19
  start-page: 761
  issue: 6
  year: 2014
  ident: 10.1016/j.asoc.2022.108606_b6
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans Evol. Comput.
  doi: 10.1109/TEVC.2014.2378512
– volume: 50
  start-page: 235
  year: 2017
  ident: 10.1016/j.asoc.2022.108606_b9
  article-title: An artificial bee colony algorithm for multi-objective optimisation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.11.014
– start-page: 1980
  year: 2004
  ident: 10.1016/j.asoc.2022.108606_b44
  article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems
– start-page: 286
  year: 2006
  ident: 10.1016/j.asoc.2022.108606_b38
  article-title: A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm
– start-page: 707
  year: 2010
  ident: 10.1016/j.asoc.2022.108606_b33
  article-title: Defining and optimizing indicator-based diversity measures in multiobjective search
– volume: 8
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.asoc.2022.108606_b51
  article-title: Information-utilization-method-assisted multimodal multiobjective optimization and application to credit card fraud detection
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2021.3061439
SSID ssj0016928
Score 2.5351312
Snippet Multimodal multi-objective optimization (MMO) can offer more elegant solutions and provide diverse decisions to decision-makers in real world optimization...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108606
SubjectTerms Differential evolution
Evolutionary algorithm
Multimodal multi-objective optimization
Particle swarm optimizer
Two-Archive
Title A two-archive model based evolutionary algorithm for multimodal multi-objective optimization problems
URI https://dx.doi.org/10.1016/j.asoc.2022.108606
Volume 119
WOSCitedRecordID wos000791330600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlAMXdtSWRXPgZjnykpmxjxEqAoQqDkUKJ2sWGxyldpS4oT-_bzbbBKjogYtlTWbGVt6X7715eQtCb9OYxwxIMKREu24ikYS8IlnIIyIkVRHPuTLNJtj5ebZc5l8mk43PhdmvWdNk19f55r-KGsZA2Dp19g7i7jeFAbgHocMVxA7XfxL8Iuh-tiG3FWVtp5tA6yoVlHv3YB0px9ff223d_bg0gYYmrhDm6lwSfRu2YmWpMGiBVC5dtmbg-s_sxjatN2R3wOgmRP2q8_rQ4MWwfD147l0McN1D6nPdjw3r_LxvvFnXY98EHGuHkBZHpxQAkDsno-dbx5GWMXWnJ1Nz4Hcyt36F1YwDTmd6-9kw-dfK2QcarY8z9CFsq0LvUeg9CrvHPXSUMJJnU3S0-Hi2_NT_80Rz04-3f3OXaGVjAg_f5M_GzMhAuXiMHrqTBV5YRDxBk7J5ih75rh3YkfgzVC7wCCDYAAQbgOAxQHAPEAwAwQNA8AFA8Bgg2APkOfr6_uzi3YfQNdsIZRpFXUiISiteSpYIVibwy50zPpc0plUlKOM5KGhVZaJMVaKLPrKUcFXFSTQXlLC5jNMXaNq0TXmMMJEsFbyiksPHiinBZC4iApoCTq9SpCco9t9aIV0let0QZV38XV4nKOjXbGwdlltnEy-MwlmS1kIsAFu3rDu901NeogcD6F-habe9Kl-j-3Lf1bvtGwesGy01mDE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-archive+model+based+evolutionary+algorithm+for+multimodal+multi-objective+optimization+problems&rft.jtitle=Applied+soft+computing&rft.au=Hu%2C+Yi&rft.au=Wang%2C+Jie&rft.au=Liang%2C+Jing&rft.au=Wang%2C+Yanli&rft.date=2022-04-01&rft.issn=1568-4946&rft.volume=119&rft.spage=108606&rft_id=info:doi/10.1016%2Fj.asoc.2022.108606&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_108606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon