Identification of autism spectrum disorder using multi-regional resting-state data through an attention learning approach

•Deriving potential biomarkers of ASD from the multi-regional rsfMRI data.•Data augmentation by segmenting the rsfMRI data with a sliding window strategy.•Identifying ASD with long-short term memory network and autoencoder network.•Heterogeneous data from ABIDE demonstrated classification accuracy o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomedical signal processing and control Ročník 69; s. 102833
Hlavní autoři: Liu, Yaya, Xu, Lingyu, Yu, Jie, Li, Jun, Yu, Xuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2021
Témata:
ISSN:1746-8094, 1746-8108
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Deriving potential biomarkers of ASD from the multi-regional rsfMRI data.•Data augmentation by segmenting the rsfMRI data with a sliding window strategy.•Identifying ASD with long-short term memory network and autoencoder network.•Heterogeneous data from ABIDE demonstrated classification accuracy of 74.7%. Resting-state functional magnetic resonance imaging (rsfMRI) holds the promise to produce objective biomarkers of autism spectrum disorder (ASD). However, recent imaging efforts have focused on the functional connectivity measures and the resting-state data independently at different regions of interest (ROIs). In the present study, we investigated the multi-regional resting-state data for discovering potential biomarkers of ASD. For better understanding of the results, we considered the brain activities at ROIs derived from the CC200 atlas. An attention learning approach, stacking a long short-term memory (LSTM) recurrent neural network and an autoencoder network, was proposed to explore the atypical features of brain activities for ASD. And we demonstrated the feasibility of proposed method with an application to the Autism Brain Imaging Data Exchange (ABIDE) database. Based on the augmented data from 674 subjects, experiments achieved good classification accuracy of 74.7% under the intra-site cross-validation and 71.3% under the inter-site. The results outperform those from traditional machine learning classifiers (including support vector machine and random forest) and previously reported single LSTM network. Analysis on the weights of our optimal model highlighted the brain regions that are known to be implicated in ASD. This study demonstrates that the attention learning with multi-regional resting-state data has the potential for screening autistic patients.
AbstractList •Deriving potential biomarkers of ASD from the multi-regional rsfMRI data.•Data augmentation by segmenting the rsfMRI data with a sliding window strategy.•Identifying ASD with long-short term memory network and autoencoder network.•Heterogeneous data from ABIDE demonstrated classification accuracy of 74.7%. Resting-state functional magnetic resonance imaging (rsfMRI) holds the promise to produce objective biomarkers of autism spectrum disorder (ASD). However, recent imaging efforts have focused on the functional connectivity measures and the resting-state data independently at different regions of interest (ROIs). In the present study, we investigated the multi-regional resting-state data for discovering potential biomarkers of ASD. For better understanding of the results, we considered the brain activities at ROIs derived from the CC200 atlas. An attention learning approach, stacking a long short-term memory (LSTM) recurrent neural network and an autoencoder network, was proposed to explore the atypical features of brain activities for ASD. And we demonstrated the feasibility of proposed method with an application to the Autism Brain Imaging Data Exchange (ABIDE) database. Based on the augmented data from 674 subjects, experiments achieved good classification accuracy of 74.7% under the intra-site cross-validation and 71.3% under the inter-site. The results outperform those from traditional machine learning classifiers (including support vector machine and random forest) and previously reported single LSTM network. Analysis on the weights of our optimal model highlighted the brain regions that are known to be implicated in ASD. This study demonstrates that the attention learning with multi-regional resting-state data has the potential for screening autistic patients.
ArticleNumber 102833
Author Li, Jun
Yu, Xuan
Liu, Yaya
Yu, Jie
Xu, Lingyu
Author_xml – sequence: 1
  givenname: Yaya
  surname: Liu
  fullname: Liu, Yaya
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China
– sequence: 2
  givenname: Lingyu
  surname: Xu
  fullname: Xu, Lingyu
  email: frht_sh@163.com
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China
– sequence: 3
  givenname: Jie
  surname: Yu
  fullname: Yu, Jie
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China
– sequence: 4
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  email: jun.li@coer-scnu.org
  organization: South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
– sequence: 5
  givenname: Xuan
  surname: Yu
  fullname: Yu, Xuan
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China
BookMark eNp9kMtKAzEUhoNUsK2-gKu8wNQkc0vBjRQvhYIbXYdMctKmzCRDkhH69s5Y3bjo6hx-zvfD-RZo5rwDhO4pWVFCq4fjqom9WjHC6BgwnudXaE7roso4JXz2t5N1cYMWMR4JKXhNizk6bTW4ZI1VMlnvsDdYDsnGDsceVApDh7WNPmgIeIjW7XE3tMlmAfbjuWxxgJjGOItJJsBaJonTIfhhf8DSYZnSVD8WtyCDm3jZ98FLdbhF10a2Ee5-5xJ9vjx_bN6y3fvrdvO0y1ROSMrKck1rqhpS1EWjGFGGljlQk-uKK21Ac96UwMqqME0tSU5rZihtdFNJBrrk-RKxc68KPsYARvTBdjKcBCVikieOYpInJnniLG-E-D9I2fRjKAVp28vo4xmF8akvC0FEZcEp0DaMRoX29hL-DSB-kIc
CitedBy_id crossref_primary_10_1016_j_bspc_2022_103887
crossref_primary_10_1016_j_bspc_2024_106364
crossref_primary_10_1016_j_compbiomed_2023_107667
crossref_primary_10_1016_j_neucom_2025_131509
crossref_primary_10_1177_00315125241308345
crossref_primary_10_3390_jpm13020251
crossref_primary_10_1016_j_engappai_2023_107185
crossref_primary_10_1016_j_heliyon_2023_e21530
crossref_primary_10_1016_j_bspc_2023_105245
Cites_doi 10.1002/hbm.21333
10.1016/j.tins.2007.12.005
10.1016/j.neuroimage.2009.12.047
10.1037/0882-7974.17.4.598
10.1016/j.neuroimage.2006.01.021
10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
10.1038/nmeth.1635
10.1016/j.jneumeth.2020.108799
10.1016/j.neuroimage.2004.12.034
10.1016/j.media.2016.08.003
10.1097/00004583-200403000-00018
10.1007/978-3-642-04898-2_177
10.1109/TIE.2017.2752151
10.1016/j.neucom.2018.04.080
10.1016/0010-0277(85)90022-8
10.1007/s10803-004-1035-5
10.1016/j.neuron.2011.04.018
10.3389/fninf.2019.00070
10.1016/j.neuroimage.2007.04.042
10.1016/j.sigpro.2017.10.011
10.1007/BF02211841
10.1007/978-3-030-47358-7_20
10.1016/j.neuroimage.2016.10.045
10.1016/j.csl.2018.11.002
10.3389/conf.fninf.2013.09.00041
10.1007/s11682-016-9604-8
10.1109/TSP.2004.839932
10.1006/nimg.2001.0978
10.1016/j.nicl.2017.08.017
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.102833
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_102833
S1746809421004304
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-559171cb0474bc20cf153e1f3d68cdfed88b5e2564fb7a03172f11bdb6a2ed583
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685642300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Tue Nov 18 20:37:36 EST 2025
Sat Nov 29 02:51:11 EST 2025
Fri Feb 23 02:43:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Autism
rsfMRI
LSTM
Classification
Attention learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-559171cb0474bc20cf153e1f3d68cdfed88b5e2564fb7a03172f11bdb6a2ed583
ParticipantIDs crossref_primary_10_1016_j_bspc_2021_102833
crossref_citationtrail_10_1016_j_bspc_2021_102833
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102833
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lord, Rutter, Goode, Heemsbergen, Jordan, Mawhood, Schopler (b0130) 1989; 19
Akshoomoff, Lord, Lincoln, Courchesne, Carper, Townsend, Courchesne (b0010) 2004
Baron-Cohen, Leslie, Frith (b0020) 1985
Craddock, James, Holtzheimer, Hu, Mayberg (b0055) 2012
Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Killiany (b0060) 2006
Eslami, Mirjalili, Fong, Laird, Saeed (b0080) 2019
Subbaraju, Suresh, Sundaram, Narasimhan (b0160) 2017
Cameron, Yassine, Carlton, Francois, Alan, András, Pierre (b0045) 2013
Popescu, Farid (b0150) 2005
Li, Qiu, Xu, Pedapati, Erickson, Sunar (b0120) 2016
Bilgen, Guvercin, Rekik (b0035) 2020; 343
Stȩpniak (b0155) 2011
Hegarty, Ferguson, Zamzow, Rohowetz, Johnson, Christ, Beversdorf (b0090) 2017
Oh, Jung, Jeon, Youn (b0145) 2018
Burnette, Mundy, Meyer, Sutton, Vaughan, Charak (b0040) 2005
M. Etemad, Z. Etemad, A. Soares, V. Bogorny, S. Matwin, L. Torgo, (2020). Wise Sliding Window Segmentation: A Classification-Aided Approach for Trajectory Segmentation. https://doi.org/10.1007/978-3-030-47358-7_20.
Jiao, Chen, Ke, Chu, Lu, Herskovits (b0100) 2010
MacPherson, Phillips, Della Sala (b0135) 2002
Kong, Gao, Xu, Pan, Wang, Liu (b0110) 2019
Eickhoff, Stephan, Mohlberg, Grefkes, Fink, Amunts, Zilles (b0075) 2005
Dinstein, Pierce, Eyler, Solso, Malach, Behrmann, Courchesne (b0065) 2011
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Joliot (b0165) 2002
Cheng, Yu, Xu, Li (b0050) 2019
Dvornek, Ventola, Pelphrey, Duncan (b0070) 2017
Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (b0005) 2017
Kingma, Ba (b0105) 2015
Behzadi, Restom, Liau, Liu (b0025) 2007
Mohammadian Rad, Kia, Zarbo, van Laarhoven, Jurman, Venuti, Furlanello (b0140) 2018; 144
Bredin (b0030) 2017
Li, Tang, Zeng, Zhou, Zhu, Chen, Zou (b0125) 2019; 56
Yarkoni, Poldrack, Nichols, Van Essen, Wager (b0170) 2011
Lancaster, Woldorff, Parsons, Liotti, Freitas, Rainey, Fox (b0115) 2000
Heinsfeld, Franco, Craddock, Buchweitz, Meneguzzi (b0095) 2018
Amaral, Schumann, Nordahl (b0015) 2008
Amaral (10.1016/j.bspc.2021.102833_b0015) 2008
Cameron (10.1016/j.bspc.2021.102833_b0045) 2013
Bredin (10.1016/j.bspc.2021.102833_b0030) 2017
Lancaster (10.1016/j.bspc.2021.102833_b0115) 2000
MacPherson (10.1016/j.bspc.2021.102833_b0135) 2002
Eickhoff (10.1016/j.bspc.2021.102833_b0075) 2005
Stȩpniak (10.1016/j.bspc.2021.102833_b0155) 2011
Oh (10.1016/j.bspc.2021.102833_b0145) 2018
Bilgen (10.1016/j.bspc.2021.102833_b0035) 2020; 343
10.1016/j.bspc.2021.102833_b0085
Tzourio-Mazoyer (10.1016/j.bspc.2021.102833_b0165) 2002
Eslami (10.1016/j.bspc.2021.102833_b0080) 2019
Dvornek (10.1016/j.bspc.2021.102833_b0070) 2017
Kong (10.1016/j.bspc.2021.102833_b0110) 2019
Mohammadian Rad (10.1016/j.bspc.2021.102833_b0140) 2018; 144
Li (10.1016/j.bspc.2021.102833_b0120) 2016
Cheng (10.1016/j.bspc.2021.102833_b0050) 2019
Yarkoni (10.1016/j.bspc.2021.102833_b0170) 2011
Behzadi (10.1016/j.bspc.2021.102833_b0025) 2007
Hegarty (10.1016/j.bspc.2021.102833_b0090) 2017
Heinsfeld (10.1016/j.bspc.2021.102833_b0095) 2018
Desikan (10.1016/j.bspc.2021.102833_b0060) 2006
Li (10.1016/j.bspc.2021.102833_b0125) 2019; 56
Popescu (10.1016/j.bspc.2021.102833_b0150) 2005
Burnette (10.1016/j.bspc.2021.102833_b0040) 2005
Dinstein (10.1016/j.bspc.2021.102833_b0065) 2011
Jiao (10.1016/j.bspc.2021.102833_b0100) 2010
Subbaraju (10.1016/j.bspc.2021.102833_b0160) 2017
Akshoomoff (10.1016/j.bspc.2021.102833_b0010) 2004
Abraham (10.1016/j.bspc.2021.102833_b0005) 2017
Lord (10.1016/j.bspc.2021.102833_b0130) 1989; 19
Craddock (10.1016/j.bspc.2021.102833_b0055) 2012
Kingma (10.1016/j.bspc.2021.102833_b0105) 2015
Baron-Cohen (10.1016/j.bspc.2021.102833_b0020) 1985
References_xml – year: 1985
  ident: b0020
  article-title: Does the autistic child have a “theory of mind” ?
  publication-title: Cognition
– year: 2011
  ident: b0170
  article-title: Large-scale automated synthesis of human functional neuroimaging data
  publication-title: Nat. Methods
– year: 2004
  ident: b0010
  article-title: Outcome classification of preschool children with autism spectrum disorders using MRI brain measures
  publication-title: J. Am. Acad. Child Adolesc. Psychiatry
– year: 2018
  ident: b0145
  article-title: Scalable and Unsupervised Feature Engineering Using Vibration-Imaging and Deep Learning for Rotor System Diagnosis
  publication-title: IEEE Trans. Ind. Electron.
– year: 2017
  ident: b0090
  article-title: Beta-adrenergic antagonism modulates functional connectivity in the default mode network of individuals with and without autism spectrum disorder
  publication-title: Brain Imaging and Behavior
– year: 2017
  ident: b0070
  article-title: Identifying autism from resting-state fMRI using long short-term memory networks
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– year: 2019
  ident: b0080
  article-title: ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data
  publication-title: Front. Neuroinf.
– year: 2000
  ident: b0115
  article-title: Automated Talairach Atlas labels for functional brain mapping
  publication-title: Hum. Brain Mapp.
– volume: 56
  start-page: 80
  year: 2019
  end-page: 94
  ident: b0125
  article-title: An automated assessment framework for atypical prosody and stereotyped idiosyncratic phrases related to autism spectrum disorder
  publication-title: Comput. Speech Lang.
– year: 2016
  ident: b0120
  article-title: Characterization of autism spectrum disorder with spontaneous hemodynamic activity
  publication-title: Biomed. Opt. Express
– year: 2011
  ident: b0065
  article-title: Disrupted Neural Synchronization in Toddlers with Autism
  publication-title: Neuron
– year: 2017
  ident: b0005
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example
  publication-title: NeuroImage
– reference: M. Etemad, Z. Etemad, A. Soares, V. Bogorny, S. Matwin, L. Torgo, (2020). Wise Sliding Window Segmentation: A Classification-Aided Approach for Trajectory Segmentation. https://doi.org/10.1007/978-3-030-47358-7_20.
– year: 2019
  ident: b0110
  article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier
  publication-title: Neurocomputing
– year: 2005
  ident: b0150
  article-title: Exposing digital forgeries by detecting traces of resampling
  publication-title: IEEE Trans. Signal Process.
– year: 2002
  ident: b0165
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
– year: 2002
  ident: b0135
  article-title: Age, executive function and social decision making: A dorsolateral prefrontal theory of cognitive aging
  publication-title: Psychol. Aging
– year: 2010
  ident: b0100
  article-title: Predictive models of autism spectrum disorder based on brain regional cortical thickness
  publication-title: NeuroImage
– year: 2017
  ident: b0030
  article-title: TristouNet: Triplet loss for speaker turn embedding
  publication-title: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings.
– year: 2005
  ident: b0075
  article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data
  publication-title: NeuroImage
– year: 2018
  ident: b0095
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: NeuroImage: Clinical.
– year: 2008
  ident: b0015
  article-title: Neuroanatomy of autism
  publication-title: Trends Neurosci.
– year: 2011
  ident: b0155
  article-title: Coefficient of Variation
  publication-title: International Encyclopedia of Statistical Science
– volume: 19
  start-page: 185
  year: 1989
  end-page: 212
  ident: b0130
  article-title: Austism diagnostic observation schedule: A standardized observation of communicative and social behavior
  publication-title: J. Autism Dev. Disord.
– volume: 144
  start-page: 180
  year: 2018
  end-page: 191
  ident: b0140
  article-title: Deep learning for automatic stereotypical motor movement detection using wearable sensors in autism spectrum disorders
  publication-title: Signal Process.
– year: 2017
  ident: b0160
  article-title: Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional-magnetic resonance imaging: A spatial filtering approach
  publication-title: Med. Image Anal.
– year: 2012
  ident: b0055
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. Brain Mapp.
– year: 2006
  ident: b0060
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
– volume: 343
  year: 2020
  ident: b0035
  article-title: Machine learning methods for brain network classification: Application to autism diagnosis using cortical morphological networks
  publication-title: J. Neurosci. Methods
– year: 2019
  ident: b0050
  article-title: Power spectrum of spontaneous cerebral homodynamic oscillation shows a distinct pattern in autism spectrum disorder
  publication-title: Biomed. Opt. Express
– year: 2007
  ident: b0025
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: NeuroImage
– year: 2005
  ident: b0040
  article-title: Weak central coherence and its relations to theory of mind and anxiety in autism
  publication-title: J. Autism Dev. Disord.
– year: 2013
  ident: b0045
  article-title: The Neuro Bureau Preprocessing Initiative: open sharing of preprocessed neuroimaging data and derivatives
  publication-title: Front. Neuroinf.
– year: 2015
  ident: b0105
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings
– year: 2012
  ident: 10.1016/j.bspc.2021.102833_b0055
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21333
– year: 2008
  ident: 10.1016/j.bspc.2021.102833_b0015
  article-title: Neuroanatomy of autism
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.12.005
– year: 2010
  ident: 10.1016/j.bspc.2021.102833_b0100
  article-title: Predictive models of autism spectrum disorder based on brain regional cortical thickness
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.047
– year: 2002
  ident: 10.1016/j.bspc.2021.102833_b0135
  article-title: Age, executive function and social decision making: A dorsolateral prefrontal theory of cognitive aging
  publication-title: Psychol. Aging
  doi: 10.1037/0882-7974.17.4.598
– year: 2006
  ident: 10.1016/j.bspc.2021.102833_b0060
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.021
– year: 2000
  ident: 10.1016/j.bspc.2021.102833_b0115
  article-title: Automated Talairach Atlas labels for functional brain mapping
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
– year: 2011
  ident: 10.1016/j.bspc.2021.102833_b0170
  article-title: Large-scale automated synthesis of human functional neuroimaging data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1635
– volume: 343
  year: 2020
  ident: 10.1016/j.bspc.2021.102833_b0035
  article-title: Machine learning methods for brain network classification: Application to autism diagnosis using cortical morphological networks
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108799
– year: 2005
  ident: 10.1016/j.bspc.2021.102833_b0075
  article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.12.034
– year: 2015
  ident: 10.1016/j.bspc.2021.102833_b0105
  article-title: Adam: A method for stochastic optimization
– year: 2017
  ident: 10.1016/j.bspc.2021.102833_b0160
  article-title: Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional-magnetic resonance imaging: A spatial filtering approach
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.08.003
– year: 2004
  ident: 10.1016/j.bspc.2021.102833_b0010
  article-title: Outcome classification of preschool children with autism spectrum disorders using MRI brain measures
  publication-title: J. Am. Acad. Child Adolesc. Psychiatry
  doi: 10.1097/00004583-200403000-00018
– year: 2011
  ident: 10.1016/j.bspc.2021.102833_b0155
  article-title: Coefficient of Variation
  publication-title: International Encyclopedia of Statistical Science
  doi: 10.1007/978-3-642-04898-2_177
– year: 2018
  ident: 10.1016/j.bspc.2021.102833_b0145
  article-title: Scalable and Unsupervised Feature Engineering Using Vibration-Imaging and Deep Learning for Rotor System Diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2752151
– year: 2019
  ident: 10.1016/j.bspc.2021.102833_b0110
  article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.080
– year: 1985
  ident: 10.1016/j.bspc.2021.102833_b0020
  article-title: Does the autistic child have a “theory of mind” ?
  publication-title: Cognition
  doi: 10.1016/0010-0277(85)90022-8
– year: 2017
  ident: 10.1016/j.bspc.2021.102833_b0070
  article-title: Identifying autism from resting-state fMRI using long short-term memory networks
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– year: 2005
  ident: 10.1016/j.bspc.2021.102833_b0040
  article-title: Weak central coherence and its relations to theory of mind and anxiety in autism
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-004-1035-5
– year: 2011
  ident: 10.1016/j.bspc.2021.102833_b0065
  article-title: Disrupted Neural Synchronization in Toddlers with Autism
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.04.018
– year: 2017
  ident: 10.1016/j.bspc.2021.102833_b0030
  article-title: TristouNet: Triplet loss for speaker turn embedding
  publication-title: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings.
– year: 2019
  ident: 10.1016/j.bspc.2021.102833_b0080
  article-title: ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2019.00070
– year: 2007
  ident: 10.1016/j.bspc.2021.102833_b0025
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.04.042
– volume: 144
  start-page: 180
  year: 2018
  ident: 10.1016/j.bspc.2021.102833_b0140
  article-title: Deep learning for automatic stereotypical motor movement detection using wearable sensors in autism spectrum disorders
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2017.10.011
– volume: 19
  start-page: 185
  issue: 2
  year: 1989
  ident: 10.1016/j.bspc.2021.102833_b0130
  article-title: Austism diagnostic observation schedule: A standardized observation of communicative and social behavior
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/BF02211841
– year: 2016
  ident: 10.1016/j.bspc.2021.102833_b0120
  article-title: Characterization of autism spectrum disorder with spontaneous hemodynamic activity
  publication-title: Biomed. Opt. Express
– ident: 10.1016/j.bspc.2021.102833_b0085
  doi: 10.1007/978-3-030-47358-7_20
– year: 2017
  ident: 10.1016/j.bspc.2021.102833_b0005
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.045
– volume: 56
  start-page: 80
  year: 2019
  ident: 10.1016/j.bspc.2021.102833_b0125
  article-title: An automated assessment framework for atypical prosody and stereotyped idiosyncratic phrases related to autism spectrum disorder
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2018.11.002
– year: 2013
  ident: 10.1016/j.bspc.2021.102833_b0045
  article-title: The Neuro Bureau Preprocessing Initiative: open sharing of preprocessed neuroimaging data and derivatives
  publication-title: Front. Neuroinf.
  doi: 10.3389/conf.fninf.2013.09.00041
– year: 2017
  ident: 10.1016/j.bspc.2021.102833_b0090
  article-title: Beta-adrenergic antagonism modulates functional connectivity in the default mode network of individuals with and without autism spectrum disorder
  publication-title: Brain Imaging and Behavior
  doi: 10.1007/s11682-016-9604-8
– year: 2005
  ident: 10.1016/j.bspc.2021.102833_b0150
  article-title: Exposing digital forgeries by detecting traces of resampling
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.839932
– year: 2002
  ident: 10.1016/j.bspc.2021.102833_b0165
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0978
– year: 2019
  ident: 10.1016/j.bspc.2021.102833_b0050
  article-title: Power spectrum of spontaneous cerebral homodynamic oscillation shows a distinct pattern in autism spectrum disorder
  publication-title: Biomed. Opt. Express
– year: 2018
  ident: 10.1016/j.bspc.2021.102833_b0095
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: NeuroImage: Clinical.
  doi: 10.1016/j.nicl.2017.08.017
SSID ssj0048714
Score 2.3132186
Snippet •Deriving potential biomarkers of ASD from the multi-regional rsfMRI data.•Data augmentation by segmenting the rsfMRI data with a sliding window...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102833
SubjectTerms Attention learning
Autism
Classification
LSTM
rsfMRI
Title Identification of autism spectrum disorder using multi-regional resting-state data through an attention learning approach
URI https://dx.doi.org/10.1016/j.bspc.2021.102833
Volume 69
WOSCitedRecordID wos000685642300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa2wKE9VKWASqGVD72tjOI4u3aOCFFRDogDSHuLHMdGi5awggaxP6P_uOPnbhCgcugliax4EmW-zIzH80Dox1hQwxphiGY8IwXPNalpo0imxbiUihW5lK7ZBD87E5NJeT4Y_Im5MA8z3rbi8bGc_1dWwxgw26bOvoHdiSgMwDUwHY7Adjj-E-N96q0Jvji3zw9Pu78ZuqTKu-7Gbsq4ipvDzjkKXEwhsR0anFfQNuuAYeJSjYY2gjQ18wFZYMtx-gDJWXSqxLLkvf1hl9XvUy6nV5bs3GckxJzIECKf4oGmnVMGcpHUxKQLPoOrRZdkkxs7nerlPJ9a0q56L3KaYueiwOWFLYjsGx1HieybtwSR6iwg9qy0946H64P6fm6rUeb0YHlzv7T2E5WXAhFjjNt1ZWlUlkblabxD6zkflSAo1w9_HU9Oo3qHBZ4rGJ9ePGRi-aDBp2_yvLWzYsFcfEIfw9IDH3rIbKKBbj-jDysFKbfQog8efGuwBw-O4MERPNiBB_fBg3vgwRY8OIAHyxYn8OAIHhzBs40ufx5fHJ2Q0JyDKJZlvwmsRCmnqs4KXtQqz5QB3antjz8WqjG6EaIeaTCoC1NzCaqD54bSuqnHMtfNSLAdtNbetvoLwkw3UijBWVmAPZ9JOFFVFkCSGbClzC6i8SNWKlSutw1UZtXL7NtFwzRn7uu2vHr3KPKmCpantygrgNor876-6Sl76P3yF9hHa8A1_Q1tqAfg4933gLO_EzKqrg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+autism+spectrum+disorder+using+multi-regional+resting-state+data+through+an+attention+learning+approach&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Liu%2C+Yaya&rft.au=Xu%2C+Lingyu&rft.au=Yu%2C+Jie&rft.au=Li%2C+Jun&rft.date=2021-08-01&rft.issn=1746-8094&rft.volume=69&rft.spage=102833&rft_id=info:doi/10.1016%2Fj.bspc.2021.102833&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon