Block Iterative Algorithms for Solving Hermite Bicubic Collocation Equations

In this paper, we present a so-called local elimination technique by which a nonsymmetric system arising in the discretization of the Poisson equation with a Hermite bicubic collocation approximation is reduced to a block tridiagonal and "block symmetric" system. A class of block iterative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis Jg. 33; H. 2; S. 589 - 601
1. Verfasser: Sun, W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 01.04.1996
Schlagworte:
ISSN:0036-1429, 1095-7170
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a so-called local elimination technique by which a nonsymmetric system arising in the discretization of the Poisson equation with a Hermite bicubic collocation approximation is reduced to a block tridiagonal and "block symmetric" system. A class of block iterative algorithms is developed for solving the resulting system. The convergence rates of algorithms are discussed.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1429
1095-7170
DOI:10.1137/0733031