Block Iterative Algorithms for Solving Hermite Bicubic Collocation Equations
In this paper, we present a so-called local elimination technique by which a nonsymmetric system arising in the discretization of the Poisson equation with a Hermite bicubic collocation approximation is reduced to a block tridiagonal and "block symmetric" system. A class of block iterative...
Uloženo v:
| Vydáno v: | SIAM journal on numerical analysis Ročník 33; číslo 2; s. 589 - 601 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.04.1996
|
| Témata: | |
| ISSN: | 0036-1429, 1095-7170 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we present a so-called local elimination technique by which a nonsymmetric system arising in the discretization of the Poisson equation with a Hermite bicubic collocation approximation is reduced to a block tridiagonal and "block symmetric" system. A class of block iterative algorithms is developed for solving the resulting system. The convergence rates of algorithms are discussed. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/0733031 |