A hypervolume-based cuckoo search algorithm with enhanced diversity and adaptive scaling factor
Existing multi-objective cuckoo search (MOCS) algorithms are based on either Pareto dominance or decomposition. However, when dealing with complex multi-objective problems (MOPs), the Pareto dominance-based algorithms face a decrease in selection pressure, and the decomposition-based algorithms easi...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 151; s. 111073 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2024
|
| Témata: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Existing multi-objective cuckoo search (MOCS) algorithms are based on either Pareto dominance or decomposition. However, when dealing with complex multi-objective problems (MOPs), the Pareto dominance-based algorithms face a decrease in selection pressure, and the decomposition-based algorithms easily gain poor distributions. The objective of this paper is to repurpose an indicator-based MOCS by combining improved diversity enhancement (IDE) and adaptive scaling factor (ASF) for MOPs. In the proposed algorithm, hypervolume is used as the indicator to guarantee better convergence and enough spread of the population. IDE chooses the large hypervolume to rebuild the parent population to compensate for the lack of population diversity. Additionally, ASF makes full use of individuals information to enhance the search ability of Lévy component in cuckoo search. Comprehensive experiments on 31 benchmark functions including two classical suites ZDT, WFG, and one challenged suite proposed in CEC2019, as well as 8 real-world problems were conducted to test the proposed algorithm. Compared with several state-of-the-art multi-objective evolutionary algorithms, the effectiveness and efficiency of our proposed method were demonstrated by the results.
•We extend the cuckoo search to multi-objective problems by combining hypervolume.•An adaptive scaling factor is used to speed up convergence and improve efficiency.•An improved diversity enhancement strategy is used to ensure population diversity.•Our algorithm outperforms the competitors on many functions and real-world problems. |
|---|---|
| AbstractList | Existing multi-objective cuckoo search (MOCS) algorithms are based on either Pareto dominance or decomposition. However, when dealing with complex multi-objective problems (MOPs), the Pareto dominance-based algorithms face a decrease in selection pressure, and the decomposition-based algorithms easily gain poor distributions. The objective of this paper is to repurpose an indicator-based MOCS by combining improved diversity enhancement (IDE) and adaptive scaling factor (ASF) for MOPs. In the proposed algorithm, hypervolume is used as the indicator to guarantee better convergence and enough spread of the population. IDE chooses the large hypervolume to rebuild the parent population to compensate for the lack of population diversity. Additionally, ASF makes full use of individuals information to enhance the search ability of Lévy component in cuckoo search. Comprehensive experiments on 31 benchmark functions including two classical suites ZDT, WFG, and one challenged suite proposed in CEC2019, as well as 8 real-world problems were conducted to test the proposed algorithm. Compared with several state-of-the-art multi-objective evolutionary algorithms, the effectiveness and efficiency of our proposed method were demonstrated by the results.
•We extend the cuckoo search to multi-objective problems by combining hypervolume.•An adaptive scaling factor is used to speed up convergence and improve efficiency.•An improved diversity enhancement strategy is used to ensure population diversity.•Our algorithm outperforms the competitors on many functions and real-world problems. |
| ArticleNumber | 111073 |
| Author | Wang, Liangying Zhong, Yiwen Wang, Lijin Liang, Maomao |
| Author_xml | – sequence: 1 givenname: Maomao surname: Liang fullname: Liang, Maomao organization: Fujian Agriculture and Forestry University, Fuzhou 350002, China – sequence: 2 givenname: Liangying surname: Wang fullname: Wang, Liangying organization: Fujian Agriculture and Forestry University, Fuzhou 350002, China – sequence: 3 givenname: Lijin surname: Wang fullname: Wang, Lijin email: lijinwang@fafu.edu.cn organization: Fujian Agriculture and Forestry University, Fuzhou 350002, China – sequence: 4 givenname: Yiwen surname: Zhong fullname: Zhong, Yiwen organization: Fujian Agriculture and Forestry University, Fuzhou 350002, China |
| BookMark | eNp9kM9qAjEQh0NpoWr7Aj3lBdYmG90k0ItI_4HQS3sOY3bixq4bSaLFt-8u9tSDl5nhx3wD843JdRc6JOSBsylnvHrcTiEFOy1ZKaaccybFFRlxJctCV4pf9_O8UsVMz6pbMk5py3pIl2pEzII2pz3GY2gPOyzWkLCm9mC_Q6AJIdqGQrsJ0edmR3_6SrFroLP9Vu2PGJPPJwpdTaGGfe4Tmiy0vttQBzaHeEduHLQJ7__6hHy9PH8u34rVx-v7crEqrGAsF3PhSuU0agZcV64uQaC02q0roaS0SoPgTpdCrkVtERVIJ6WwolKsdsCcmBB1vmtjSCmiM9ZnyD50OYJvDWdmEGW2ZhBlBlHmLKpHy3_oPvodxNNl6OkMYf_U0WM0yXocvPiINps6-Ev4Lw2ohig |
| CitedBy_id | crossref_primary_10_1007_s42417_025_01949_9 crossref_primary_10_1016_j_conengprac_2024_106097 crossref_primary_10_1016_j_swevo_2025_101890 crossref_primary_10_1177_01423312251353252 crossref_primary_10_1371_journal_pone_0316836 crossref_primary_10_1002_cpe_70116 crossref_primary_10_1016_j_jprocont_2024_103313 crossref_primary_10_1142_S1793962325500205 crossref_primary_10_1002_nag_3838 |
| Cites_doi | 10.1007/s00500-021-06665-6 10.1162/evco_a_00235 10.1109/TEVC.2007.892759 10.1109/4235.797969 10.1109/TEVC.2012.2204403 10.1145/3205455.3205530 10.1016/j.cor.2011.09.026 10.1007/s00500-022-07605-8 10.1007/s00186-020-00702-0 10.1007/s11704-015-4178-y 10.1109/TEVC.2017.2754271 10.1162/evco.1994.2.3.221 10.1007/s11081-020-09586-9 10.3390/electronics11050704 10.1109/TEVC.2015.2424921 10.1007/s10489-020-01816-y 10.1162/EVCO_a_00009 10.1109/TEVC.2008.925798 10.1007/s00158-005-0527-z 10.1109/TCYB.2021.3081357 10.1016/j.phycom.2018.06.003 10.1016/j.swevo.2011.02.002 10.1109/TEVC.2018.2879406 10.1162/106365600568202 10.1007/s10845-017-1298-2 10.1016/j.asoc.2018.02.048 10.1016/j.asoc.2019.105886 10.1007/s40747-021-00368-z 10.1186/s13638-021-01951-1 10.1016/j.swevo.2019.03.011 10.1145/3321707.3321730 10.1109/TEVC.2005.861417 10.1080/03052150210915 10.1109/MCI.2017.2742868 10.1109/TEVC.2016.2519378 10.1145/2739480.2754776 10.1016/j.swevo.2021.100849 10.1145/1527125.1527138 10.1109/TEVC.2019.2896967 10.1145/3376916 10.1007/BF01743536 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2023.111073 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2023_111073 S1568494623010918 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-53f28f9e90a196fd2a3e7c9fb63877c89a31f9237b3dcee8a7f773c3680dfa0f3 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001135519500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 22:14:30 EST 2025 Sat Nov 29 03:05:59 EST 2025 Sat Aug 03 15:33:34 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Diversity enhancement Cuckoo search Multi-objective optimization Indicator-based Hypervolume |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-53f28f9e90a196fd2a3e7c9fb63877c89a31f9237b3dcee8a7f773c3680dfa0f3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2023_111073 crossref_primary_10_1016_j_asoc_2023_111073 elsevier_sciencedirect_doi_10_1016_j_asoc_2023_111073 |
| PublicationCentury | 2000 |
| PublicationDate | January 2024 2024-01-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Zhong (b34) 2015; 2015 Deb, Thiele, Laumanns, Zitzler (b32) 2002 Liang, Yue, Qu (b50) 2016 S. Jaber, Y. Ali, N. Ibrahim, An Automated Task Scheduling Model Using a Multi-objective Improved Cuckoo Optimization Algorithm, Int. J. Intell. Eng. Syst. 15 (1) 295–304. Zitzler, Laumanns, Thiele (b48) 2001 Cheng, Yen, Zhang (b59) 2015; 19 Thu Bui, Alam (b1) 2008 Wang, Wang, Zhu, Liu, Zhao (b19) 2021; 2021 Yang, Hao, Yang, Li, Zhang, Wang (b20) 2023; 27 Coello, Lamont, Van Veldhuizen (b31) 2007 Sindhya, Miettinen, Deb (b17) 2012; 17 Li, Cheng, Liu, Jin (b25) 2018; 67 Chen, Gan, Li, Cheng, Pan, Chen, Zhang (b12) 2021; 51 Zitzler, Thiele (b15) 1999; 3 Chen, Ishibuchi, Shang (b26) 2020 R. Hernández Gómez, C.A. Coello Coello, Improved metaheuristic based on the R2 indicator for many-objective optimization, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 679–686. Abed-alguni, Paul (b23) 2022; 26 Yang, Deb (b10) 2013; 40 Chen, Gan, Li, Xu, Cao, Feng (b18) 2019 Deb, Agrawal, Pratap, Meyarivan (b3) 2000 Cheng, Jin, Olhofer, Sendhoff (b58) 2016; 20 Derrac, García, Molina, Herrera (b44) 2011; 1 Ma, Wang (b55) 2019; 23 Takahama, Sakai (b56) 2005 J.E. Fieldsend, Efficient real-time hypervolume estimation with monotonically reducing error, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2019, pp. 532–540. Gu, Liu, Cheung, Zheng (b2) 2022; 52 Qu, Li, Liang, Yan, Yu, Zhu (b53) 2020; 86 Yue, Suganthan, Liang, Qu, Yu, Zhu, Yan (b51) 2021; 62 Schultes, Stiglmayr, Klamroth, Hahn (b30) 2021; 22 Osyczka, Kundu (b41) 1995; 10 Dutta, Das (b5) 2019 E.M. Lopez, C.A.C. Coello, An improved version of a reference-based multi-objective evolutionary algorithm based on IGD+, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2018, pp. 713–720. Schulze, Stiglmayr, Paquete, Fonseca, Willems, Ruzika (b29) 2020; 92 Oesterle, Amodeo, Yalaoui (b13) 2019; 30 Ye, Zhou, Zhang, Mohd Zain, Ou (b21) 2022; 11 Yue, Qu, Yu, Liang, Li (b37) 2019; 48 Ramzanpoor, Hosseini Shirvani, Golsorkhtabaramiri (b14) 2022; 8 Ray, Liew (b40) 2002; 34 Wang, Yin, Zhong (b33) 2015; 9 Coello Coello, Pulido (b42) 2005; 30 Yang, Deb (b9) 2009 Bader, Zitzler (b7) 2011; 19 Srinivas, Deb (b4) 1994; 2 Li, Zhang (b49) 2008; 13 T.T. Binh, U. Korn, MOBES: A multiobjective evolution strategy for constrained optimization problems, in: The Third International Conference on Genetic Algorithms, Vol. 25, Mendel 97, 1997, pp. 27–34. Zhang, Li (b6) 2007; 11 Justesen (b39) 2009 Takahama, Sakai (b57) 2010 A. Auger, J. Bader, D. Brockhoff, E. Zitzler, Theory of the hypervolume indicator: Optimal Tian, Zhang, Cheng, Jin (b47) 2016 Tian, Cheng, Zhang, Jin (b45) 2017; 12 Tanaka, Watanabe, Furukawa, Tanino (b43) 1995 Groz, Maniu (b27) 2019; 27 Zhang, Jiang, Li (b11) 2019; 34 Zitzler, Deb, Thiele (b35) 2000; 8 Yue, Qu, Liang (b52) 2017; 22 Liu, Yen, Gong (b54) 2018; 23 distributions and the choice of the reference point, in: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, 2009, pp. 87–102. Falcón-Cardona, Coello (b8) 2020; 53 Huband, Hingston, Barone, While (b36) 2006; 10 10.1016/j.asoc.2023.111073_b16 Srinivas (10.1016/j.asoc.2023.111073_b4) 1994; 2 Schulze (10.1016/j.asoc.2023.111073_b29) 2020; 92 Yue (10.1016/j.asoc.2023.111073_b51) 2021; 62 Groz (10.1016/j.asoc.2023.111073_b27) 2019; 27 Justesen (10.1016/j.asoc.2023.111073_b39) 2009 Takahama (10.1016/j.asoc.2023.111073_b57) 2010 Coello Coello (10.1016/j.asoc.2023.111073_b42) 2005; 30 Takahama (10.1016/j.asoc.2023.111073_b56) 2005 Thu Bui (10.1016/j.asoc.2023.111073_b1) 2008 Wang (10.1016/j.asoc.2023.111073_b34) 2015; 2015 Qu (10.1016/j.asoc.2023.111073_b53) 2020; 86 Wang (10.1016/j.asoc.2023.111073_b19) 2021; 2021 Abed-alguni (10.1016/j.asoc.2023.111073_b23) 2022; 26 Zhang (10.1016/j.asoc.2023.111073_b11) 2019; 34 10.1016/j.asoc.2023.111073_b46 Gu (10.1016/j.asoc.2023.111073_b2) 2022; 52 Zitzler (10.1016/j.asoc.2023.111073_b35) 2000; 8 Huband (10.1016/j.asoc.2023.111073_b36) 2006; 10 Li (10.1016/j.asoc.2023.111073_b49) 2008; 13 Tanaka (10.1016/j.asoc.2023.111073_b43) 1995 Zhang (10.1016/j.asoc.2023.111073_b6) 2007; 11 Yang (10.1016/j.asoc.2023.111073_b9) 2009 Oesterle (10.1016/j.asoc.2023.111073_b13) 2019; 30 Coello (10.1016/j.asoc.2023.111073_b31) 2007 Liu (10.1016/j.asoc.2023.111073_b54) 2018; 23 Wang (10.1016/j.asoc.2023.111073_b33) 2015; 9 Ramzanpoor (10.1016/j.asoc.2023.111073_b14) 2022; 8 Falcón-Cardona (10.1016/j.asoc.2023.111073_b8) 2020; 53 Derrac (10.1016/j.asoc.2023.111073_b44) 2011; 1 Sindhya (10.1016/j.asoc.2023.111073_b17) 2012; 17 10.1016/j.asoc.2023.111073_b38 Schultes (10.1016/j.asoc.2023.111073_b30) 2021; 22 Liang (10.1016/j.asoc.2023.111073_b50) 2016 Yang (10.1016/j.asoc.2023.111073_b10) 2013; 40 Dutta (10.1016/j.asoc.2023.111073_b5) 2019 Chen (10.1016/j.asoc.2023.111073_b26) 2020 Osyczka (10.1016/j.asoc.2023.111073_b41) 1995; 10 Bader (10.1016/j.asoc.2023.111073_b7) 2011; 19 Chen (10.1016/j.asoc.2023.111073_b12) 2021; 51 Chen (10.1016/j.asoc.2023.111073_b18) 2019 Ye (10.1016/j.asoc.2023.111073_b21) 2022; 11 Zitzler (10.1016/j.asoc.2023.111073_b48) 2001 Cheng (10.1016/j.asoc.2023.111073_b59) 2015; 19 Yang (10.1016/j.asoc.2023.111073_b20) 2023; 27 Tian (10.1016/j.asoc.2023.111073_b47) 2016 10.1016/j.asoc.2023.111073_b28 Deb (10.1016/j.asoc.2023.111073_b3) 2000 Ray (10.1016/j.asoc.2023.111073_b40) 2002; 34 10.1016/j.asoc.2023.111073_b24 10.1016/j.asoc.2023.111073_b22 Zitzler (10.1016/j.asoc.2023.111073_b15) 1999; 3 Li (10.1016/j.asoc.2023.111073_b25) 2018; 67 Tian (10.1016/j.asoc.2023.111073_b45) 2017; 12 Cheng (10.1016/j.asoc.2023.111073_b58) 2016; 20 Ma (10.1016/j.asoc.2023.111073_b55) 2019; 23 Yue (10.1016/j.asoc.2023.111073_b52) 2017; 22 Deb (10.1016/j.asoc.2023.111073_b32) 2002 Yue (10.1016/j.asoc.2023.111073_b37) 2019; 48 |
| References_xml | – year: 2007 ident: b31 article-title: Evolutionary Algorithms for Solving Multi-Objective Problems, Vol. 5 – volume: 51 start-page: 143 year: 2021 end-page: 160 ident: b12 article-title: Solving multi-objective optimization problem using Cuckoo search algorithm based on decomposition publication-title: Appl. Intell. – volume: 2015 year: 2015 ident: b34 article-title: Cuckoo search algorithm with chaotic maps publication-title: Math. Probl. Eng. – volume: 22 start-page: 1203 year: 2021 end-page: 1231 ident: b30 article-title: Hypervolume scalarization for shape optimization to improve reliability and cost of ceramic components publication-title: Opt. Eng. – volume: 20 start-page: 773 year: 2016 end-page: 791 ident: b58 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 9 start-page: 623 year: 2015 end-page: 635 ident: b33 article-title: Cuckoo search with varied scaling factor publication-title: Front. Comput. Sci. – year: 2009 ident: b39 article-title: Multi-Objective Optimization Using Evolutionary Algorithms, Vol. 33 – start-page: 1 year: 2020 end-page: 8 ident: b26 article-title: Lazy greedy hypervolume subset selection from large candidate solution sets publication-title: 2020 IEEE Congress on Evolutionary Computation – volume: 34 start-page: 301 year: 2019 end-page: 309 ident: b11 article-title: Improved decomposition-based multi-objective Cuckoo search algorithm for spectrum allocation in cognitive vehicular network publication-title: Phys. Commun. – start-page: 229 year: 2019 end-page: 233 ident: b18 article-title: A multi-objective Cuckoo search algorithm based on decomposition publication-title: 2019 Eleventh International Conference on Advanced Computational Intelligence – volume: 53 start-page: 1 year: 2020 end-page: 35 ident: b8 article-title: Indicator-based multi-objective evolutionary algorithms: A comprehensive survey publication-title: ACM Comput. Surv. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b6 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – reference: S. Jaber, Y. Ali, N. Ibrahim, An Automated Task Scheduling Model Using a Multi-objective Improved Cuckoo Optimization Algorithm, Int. J. Intell. Eng. Syst. 15 (1) 295–304. – volume: 23 start-page: 660 year: 2018 end-page: 674 ident: b54 article-title: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies publication-title: IEEE Trans. Evol. Comput. – volume: 10 start-page: 477 year: 2006 end-page: 506 ident: b36 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans. Evol. Comput. – volume: 92 start-page: 107 year: 2020 end-page: 132 ident: b29 article-title: On the rectangular Knapsack problem: approximation of a specific quadratic Knapsack problem publication-title: Math. Methods Oper. Res. – reference: T.T. Binh, U. Korn, MOBES: A multiobjective evolution strategy for constrained optimization problems, in: The Third International Conference on Genetic Algorithms, Vol. 25, Mendel 97, 1997, pp. 27–34. – start-page: 210 year: 2009 end-page: 214 ident: b9 article-title: Cuckoo search via Lévy flights publication-title: 2009 World Congress on Nature & Biologically Inspired Computing – volume: 30 start-page: 388 year: 2005 end-page: 403 ident: b42 article-title: Multiobjective structural optimization using a microgenetic algorithm publication-title: Struct. Multidiscip. Optim. – start-page: 1556 year: 1995 end-page: 1561 ident: b43 article-title: GA-based decision support system for multicriteria optimization publication-title: 1995 IEEE International Conference on Systems, Man and Cbernetics. Intelligent Systems for the 21st Century, Vol. 2 – volume: 22 start-page: 805 year: 2017 end-page: 817 ident: b52 article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems publication-title: IEEE Trans. Evol. Comput. – reference: E.M. Lopez, C.A.C. Coello, An improved version of a reference-based multi-objective evolutionary algorithm based on IGD+, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2018, pp. 713–720. – start-page: 2454 year: 2016 end-page: 2461 ident: b50 article-title: Multimodal multi-objective optimization: A preliminary study publication-title: 2016 IEEE Congress on Evolutionary Computation – year: 2008 ident: b1 article-title: Multi-Objective Optimization in Computational Intelligence: Theory and Practice: Theory and Practice – volume: 11 start-page: 704 year: 2022 ident: b21 article-title: An improved multi-objective Cuckoo search approach by exploring the balance between development and exploration publication-title: Electronics – volume: 52 start-page: 13472 year: 2022 end-page: 13485 ident: b2 article-title: A rough-to-fine evolutionary multiobjective optimization algorithm publication-title: IEEE Trans. Cybern. – volume: 34 start-page: 141 year: 2002 end-page: 153 ident: b40 article-title: A swarm metaphor for multiobjective design optimization publication-title: Eng. Optim. – volume: 19 start-page: 592 year: 2015 end-page: 605 ident: b59 article-title: A many-objective evolutionary algorithm with enhanced mating and environmental selections publication-title: IEEE Trans. Evol. Comput. – volume: 27 start-page: 4761 year: 2023 end-page: 4778 ident: b20 article-title: Elite-guided multi-objective Cuckoo search algorithm based on crossover operation and information enhancement publication-title: Soft Comput. – volume: 62 year: 2021 ident: b51 article-title: Differential evolution using improved crowding distance for multimodal multiobjective optimization publication-title: Swarm Evol. Comput. – volume: 86 year: 2020 ident: b53 article-title: A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems publication-title: Appl. Soft Comput. – volume: 17 start-page: 495 year: 2012 end-page: 511 ident: b17 article-title: A hybrid framework for evolutionary multi-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 48 start-page: 62 year: 2019 end-page: 71 ident: b37 article-title: A novel scalable test problem suite for multimodal multiobjective optimization publication-title: Swarm Evol. Comput. – volume: 2021 start-page: 1 year: 2021 end-page: 18 ident: b19 article-title: Optimization strategy of wireless charger node deployment based on improved Cuckoo search algorithm publication-title: EURASIP J. Wireless Commun. Networking – start-page: 849 year: 2000 end-page: 858 ident: b3 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II publication-title: International Conference on Parallel Problem Solving from Nature – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: b45 article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Comput. Intell. Mag. – volume: 10 start-page: 94 year: 1995 end-page: 99 ident: b41 article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm publication-title: Struct. Optim. – volume: 40 start-page: 1616 year: 2013 end-page: 1624 ident: b10 article-title: Multiobjective Cuckoo search for design optimization publication-title: Comput. Oper. Res. – volume: 13 start-page: 284 year: 2008 end-page: 302 ident: b49 article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. – start-page: 807 year: 2019 end-page: 820 ident: b5 article-title: A survey on Pareto-based EAs to solve multi-objective optimization problems publication-title: Soft Computing for Problem Solving – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b44 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 19 start-page: 45 year: 2011 end-page: 76 ident: b7 article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization publication-title: Evol. Comput. – volume: 8 start-page: 361 year: 2022 end-page: 392 ident: b14 article-title: Multi-objective fault-tolerant optimization algorithm for deployment of IoT applications on fog computing infrastructure publication-title: Complex Intell. Syst. – volume: 26 start-page: 3293 year: 2022 end-page: 3312 ident: b23 article-title: Island-based Cuckoo search with elite opposition-based learning and multiple mutation methods for solving optimization problems publication-title: Soft Comput. – reference: J.E. Fieldsend, Efficient real-time hypervolume estimation with monotonically reducing error, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2019, pp. 532–540. – start-page: 1019 year: 2005 end-page: 1029 ident: b56 article-title: Constrained optimization by publication-title: Soft Computing As Transdisciplinary Science and Technology – volume: 2 start-page: 221 year: 1994 end-page: 248 ident: b4 article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evol. Comput. – volume: 67 start-page: 245 year: 2018 end-page: 260 ident: b25 article-title: A two-stage R2 indicator based evolutionary algorithm for many-objective optimization publication-title: Appl. Soft Comput. – volume: 8 start-page: 173 year: 2000 end-page: 195 ident: b35 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evol. Comput. – reference: A. Auger, J. Bader, D. Brockhoff, E. Zitzler, Theory of the hypervolume indicator: Optimal – year: 2001 ident: b48 article-title: SPEA2: Improving the Strength Pareto Evolutionary Algorithm – start-page: 1 year: 2010 end-page: 9 ident: b57 article-title: Constrained optimization by the publication-title: IEEE Congress on Evolutionary Computation – start-page: 5222 year: 2016 end-page: 5229 ident: b47 article-title: A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric publication-title: 2016 IEEE Congress on Evolutionary Computation – volume: 23 start-page: 972 year: 2019 end-page: 986 ident: b55 article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons publication-title: IEEE Trans. Evol. Comput. – start-page: 825 year: 2002 end-page: 830 ident: b32 article-title: Scalable multi-objective optimization test problems publication-title: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), Vol. 1 – volume: 30 start-page: 1021 year: 2019 end-page: 1046 ident: b13 article-title: A comparative study of multi-objective algorithms for the assembly line balancing and equipment selection problem under consideration of product design alternatives publication-title: J. Intell. Manuf. – reference: -distributions and the choice of the reference point, in: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, 2009, pp. 87–102. – volume: 27 start-page: 611 year: 2019 end-page: 637 ident: b27 article-title: Hypervolume subset selection with small subsets publication-title: Evol. Comput. – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: b15 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. – reference: R. Hernández Gómez, C.A. Coello Coello, Improved metaheuristic based on the R2 indicator for many-objective optimization, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 679–686. – volume: 26 start-page: 3293 issue: 7 year: 2022 ident: 10.1016/j.asoc.2023.111073_b23 article-title: Island-based Cuckoo search with elite opposition-based learning and multiple mutation methods for solving optimization problems publication-title: Soft Comput. doi: 10.1007/s00500-021-06665-6 – volume: 27 start-page: 611 issue: 4 year: 2019 ident: 10.1016/j.asoc.2023.111073_b27 article-title: Hypervolume subset selection with small subsets publication-title: Evol. Comput. doi: 10.1162/evco_a_00235 – start-page: 1019 year: 2005 ident: 10.1016/j.asoc.2023.111073_b56 article-title: Constrained optimization by ɛ constrained particle swarm optimizer with ɛ-level control – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.asoc.2023.111073_b6 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.asoc.2023.111073_b15 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.797969 – volume: 17 start-page: 495 issue: 4 year: 2012 ident: 10.1016/j.asoc.2023.111073_b17 article-title: A hybrid framework for evolutionary multi-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2204403 – ident: 10.1016/j.asoc.2023.111073_b24 doi: 10.1145/3205455.3205530 – volume: 40 start-page: 1616 issue: 6 year: 2013 ident: 10.1016/j.asoc.2023.111073_b10 article-title: Multiobjective Cuckoo search for design optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.09.026 – volume: 27 start-page: 4761 issue: 8 year: 2023 ident: 10.1016/j.asoc.2023.111073_b20 article-title: Elite-guided multi-objective Cuckoo search algorithm based on crossover operation and information enhancement publication-title: Soft Comput. doi: 10.1007/s00500-022-07605-8 – start-page: 5222 year: 2016 ident: 10.1016/j.asoc.2023.111073_b47 article-title: A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric – year: 2008 ident: 10.1016/j.asoc.2023.111073_b1 – volume: 92 start-page: 107 issue: 1 year: 2020 ident: 10.1016/j.asoc.2023.111073_b29 article-title: On the rectangular Knapsack problem: approximation of a specific quadratic Knapsack problem publication-title: Math. Methods Oper. Res. doi: 10.1007/s00186-020-00702-0 – volume: 9 start-page: 623 issue: 4 year: 2015 ident: 10.1016/j.asoc.2023.111073_b33 article-title: Cuckoo search with varied scaling factor publication-title: Front. Comput. Sci. doi: 10.1007/s11704-015-4178-y – volume: 2015 year: 2015 ident: 10.1016/j.asoc.2023.111073_b34 article-title: Cuckoo search algorithm with chaotic maps publication-title: Math. Probl. Eng. – volume: 22 start-page: 805 issue: 5 year: 2017 ident: 10.1016/j.asoc.2023.111073_b52 article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2754271 – start-page: 849 year: 2000 ident: 10.1016/j.asoc.2023.111073_b3 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II – start-page: 210 year: 2009 ident: 10.1016/j.asoc.2023.111073_b9 article-title: Cuckoo search via Lévy flights – volume: 2 start-page: 221 issue: 3 year: 1994 ident: 10.1016/j.asoc.2023.111073_b4 article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evol. Comput. doi: 10.1162/evco.1994.2.3.221 – volume: 22 start-page: 1203 issue: 2 year: 2021 ident: 10.1016/j.asoc.2023.111073_b30 article-title: Hypervolume scalarization for shape optimization to improve reliability and cost of ceramic components publication-title: Opt. Eng. doi: 10.1007/s11081-020-09586-9 – volume: 11 start-page: 704 issue: 5 year: 2022 ident: 10.1016/j.asoc.2023.111073_b21 article-title: An improved multi-objective Cuckoo search approach by exploring the balance between development and exploration publication-title: Electronics doi: 10.3390/electronics11050704 – year: 2007 ident: 10.1016/j.asoc.2023.111073_b31 – year: 2001 ident: 10.1016/j.asoc.2023.111073_b48 – start-page: 2454 year: 2016 ident: 10.1016/j.asoc.2023.111073_b50 article-title: Multimodal multi-objective optimization: A preliminary study – volume: 19 start-page: 592 issue: 4 year: 2015 ident: 10.1016/j.asoc.2023.111073_b59 article-title: A many-objective evolutionary algorithm with enhanced mating and environmental selections publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2424921 – volume: 51 start-page: 143 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.111073_b12 article-title: Solving multi-objective optimization problem using Cuckoo search algorithm based on decomposition publication-title: Appl. Intell. doi: 10.1007/s10489-020-01816-y – volume: 19 start-page: 45 issue: 1 year: 2011 ident: 10.1016/j.asoc.2023.111073_b7 article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00009 – volume: 13 start-page: 284 issue: 2 year: 2008 ident: 10.1016/j.asoc.2023.111073_b49 article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.925798 – start-page: 229 year: 2019 ident: 10.1016/j.asoc.2023.111073_b18 article-title: A multi-objective Cuckoo search algorithm based on decomposition – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2023.111073_b26 article-title: Lazy greedy hypervolume subset selection from large candidate solution sets – volume: 30 start-page: 388 issue: 5 year: 2005 ident: 10.1016/j.asoc.2023.111073_b42 article-title: Multiobjective structural optimization using a microgenetic algorithm publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-005-0527-z – volume: 52 start-page: 13472 issue: 12 year: 2022 ident: 10.1016/j.asoc.2023.111073_b2 article-title: A rough-to-fine evolutionary multiobjective optimization algorithm publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3081357 – volume: 34 start-page: 301 year: 2019 ident: 10.1016/j.asoc.2023.111073_b11 article-title: Improved decomposition-based multi-objective Cuckoo search algorithm for spectrum allocation in cognitive vehicular network publication-title: Phys. Commun. doi: 10.1016/j.phycom.2018.06.003 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.asoc.2023.111073_b44 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 23 start-page: 660 issue: 4 year: 2018 ident: 10.1016/j.asoc.2023.111073_b54 article-title: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2879406 – volume: 8 start-page: 173 issue: 2 year: 2000 ident: 10.1016/j.asoc.2023.111073_b35 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evol. Comput. doi: 10.1162/106365600568202 – ident: 10.1016/j.asoc.2023.111073_b38 – volume: 30 start-page: 1021 issue: 3 year: 2019 ident: 10.1016/j.asoc.2023.111073_b13 article-title: A comparative study of multi-objective algorithms for the assembly line balancing and equipment selection problem under consideration of product design alternatives publication-title: J. Intell. Manuf. doi: 10.1007/s10845-017-1298-2 – volume: 67 start-page: 245 year: 2018 ident: 10.1016/j.asoc.2023.111073_b25 article-title: A two-stage R2 indicator based evolutionary algorithm for many-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.048 – volume: 86 year: 2020 ident: 10.1016/j.asoc.2023.111073_b53 article-title: A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105886 – year: 2009 ident: 10.1016/j.asoc.2023.111073_b39 – volume: 8 start-page: 361 issue: 1 year: 2022 ident: 10.1016/j.asoc.2023.111073_b14 article-title: Multi-objective fault-tolerant optimization algorithm for deployment of IoT applications on fog computing infrastructure publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00368-z – volume: 2021 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.111073_b19 article-title: Optimization strategy of wireless charger node deployment based on improved Cuckoo search algorithm publication-title: EURASIP J. Wireless Commun. Networking doi: 10.1186/s13638-021-01951-1 – volume: 48 start-page: 62 year: 2019 ident: 10.1016/j.asoc.2023.111073_b37 article-title: A novel scalable test problem suite for multimodal multiobjective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.03.011 – ident: 10.1016/j.asoc.2023.111073_b28 doi: 10.1145/3321707.3321730 – volume: 10 start-page: 477 issue: 5 year: 2006 ident: 10.1016/j.asoc.2023.111073_b36 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.861417 – volume: 34 start-page: 141 issue: 2 year: 2002 ident: 10.1016/j.asoc.2023.111073_b40 article-title: A swarm metaphor for multiobjective design optimization publication-title: Eng. Optim. doi: 10.1080/03052150210915 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 10.1016/j.asoc.2023.111073_b45 article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – start-page: 1 year: 2010 ident: 10.1016/j.asoc.2023.111073_b57 article-title: Constrained optimization by the ɛ constrained differential evolution with an archive and gradient-based mutation – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 10.1016/j.asoc.2023.111073_b58 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2519378 – ident: 10.1016/j.asoc.2023.111073_b46 doi: 10.1145/2739480.2754776 – volume: 62 year: 2021 ident: 10.1016/j.asoc.2023.111073_b51 article-title: Differential evolution using improved crowding distance for multimodal multiobjective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100849 – start-page: 825 year: 2002 ident: 10.1016/j.asoc.2023.111073_b32 article-title: Scalable multi-objective optimization test problems – start-page: 1556 year: 1995 ident: 10.1016/j.asoc.2023.111073_b43 article-title: GA-based decision support system for multicriteria optimization – start-page: 807 year: 2019 ident: 10.1016/j.asoc.2023.111073_b5 article-title: A survey on Pareto-based EAs to solve multi-objective optimization problems – ident: 10.1016/j.asoc.2023.111073_b16 doi: 10.1145/1527125.1527138 – volume: 23 start-page: 972 issue: 6 year: 2019 ident: 10.1016/j.asoc.2023.111073_b55 article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2896967 – volume: 53 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.asoc.2023.111073_b8 article-title: Indicator-based multi-objective evolutionary algorithms: A comprehensive survey publication-title: ACM Comput. Surv. doi: 10.1145/3376916 – volume: 10 start-page: 94 issue: 2 year: 1995 ident: 10.1016/j.asoc.2023.111073_b41 article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm publication-title: Struct. Optim. doi: 10.1007/BF01743536 – ident: 10.1016/j.asoc.2023.111073_b22 |
| SSID | ssj0016928 |
| Score | 2.4518163 |
| Snippet | Existing multi-objective cuckoo search (MOCS) algorithms are based on either Pareto dominance or decomposition. However, when dealing with complex... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 111073 |
| SubjectTerms | Cuckoo search Diversity enhancement Hypervolume Indicator-based Multi-objective optimization |
| Title | A hypervolume-based cuckoo search algorithm with enhanced diversity and adaptive scaling factor |
| URI | https://dx.doi.org/10.1016/j.asoc.2023.111073 |
| Volume | 151 |
| WOSCitedRecordID | wos001135519500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKx4ELjC8xGMgHblWqNM7i-FihoTHBxGFIhUvk-IOm65KqTUf573mOP1rGmNiBS5Q6jhvl_fq--vN7CL2lmYrTNJERY1JFYI9FVGYsi8D28FKluVZlV13_Iz07yycT9rnX2_i9MFdzWtf5ZsMW_1XUMAbCNltn7yDusCgMwDkIHY4gdjj-k-DHgynElkurdiJjpeRArMVF0wxcioPPvzfLqp1e2iysqqeWBiADR6Or4Cr5ouMVrUCMHd-ya82z6816F3YFurwjp69bbwkNx6dyuehPvLnkzTZ1b0e7yz935m8vzKoA2W9Txxn-Wv1wu9ZcjiJJd3IUTq1meZQyl2z0etdVmrWac2QCUXKjUrf5hdmQA16Hpt37cDv59wra1yxb4Bt6KtusMGsUZo3CrnEP7SUQMsV9tDf-cDw5Df9AZazryxue3G24stzA609ys1Oz46ic76OHLsLAY4uMx6in6ifoke_egZ0yf4qKMf4DKNgCBVug4AAUbICCPVBwAAoGoGAPFOyAgi1QnqEv74_P351Ert1GJEgct9ER0UmumYJfKahlLRNOFBVMl6CiKRU542SkIR6gJZHgWuWcakqJIFkeS81jTZ6jft3U6gXCCZUjQoz3SdK0NCWAKEyKJSGCKfh0gEb-fRXC1aI3LVHmxd8ldYAG4Z6FrcRy6-wjL4bC-ZLWRywAVbfc9_JO3_IKPdjC_RD12-VavUb3xVVbrZZvHKR-AfQUlvA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hypervolume-based+cuckoo+search+algorithm+with+enhanced+diversity+and+adaptive+scaling+factor&rft.jtitle=Applied+soft+computing&rft.au=Liang%2C+Maomao&rft.au=Wang%2C+Liangying&rft.au=Wang%2C+Lijin&rft.au=Zhong%2C+Yiwen&rft.date=2024-01-01&rft.issn=1568-4946&rft.volume=151&rft.spage=111073&rft_id=info:doi/10.1016%2Fj.asoc.2023.111073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2023_111073 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |