A hypervolume-based cuckoo search algorithm with enhanced diversity and adaptive scaling factor

Existing multi-objective cuckoo search (MOCS) algorithms are based on either Pareto dominance or decomposition. However, when dealing with complex multi-objective problems (MOPs), the Pareto dominance-based algorithms face a decrease in selection pressure, and the decomposition-based algorithms easi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 151; s. 111073
Hlavní autoři: Liang, Maomao, Wang, Liangying, Wang, Lijin, Zhong, Yiwen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2024
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Existing multi-objective cuckoo search (MOCS) algorithms are based on either Pareto dominance or decomposition. However, when dealing with complex multi-objective problems (MOPs), the Pareto dominance-based algorithms face a decrease in selection pressure, and the decomposition-based algorithms easily gain poor distributions. The objective of this paper is to repurpose an indicator-based MOCS by combining improved diversity enhancement (IDE) and adaptive scaling factor (ASF) for MOPs. In the proposed algorithm, hypervolume is used as the indicator to guarantee better convergence and enough spread of the population. IDE chooses the large hypervolume to rebuild the parent population to compensate for the lack of population diversity. Additionally, ASF makes full use of individuals information to enhance the search ability of Lévy component in cuckoo search. Comprehensive experiments on 31 benchmark functions including two classical suites ZDT, WFG, and one challenged suite proposed in CEC2019, as well as 8 real-world problems were conducted to test the proposed algorithm. Compared with several state-of-the-art multi-objective evolutionary algorithms, the effectiveness and efficiency of our proposed method were demonstrated by the results. •We extend the cuckoo search to multi-objective problems by combining hypervolume.•An adaptive scaling factor is used to speed up convergence and improve efficiency.•An improved diversity enhancement strategy is used to ensure population diversity.•Our algorithm outperforms the competitors on many functions and real-world problems.
AbstractList Existing multi-objective cuckoo search (MOCS) algorithms are based on either Pareto dominance or decomposition. However, when dealing with complex multi-objective problems (MOPs), the Pareto dominance-based algorithms face a decrease in selection pressure, and the decomposition-based algorithms easily gain poor distributions. The objective of this paper is to repurpose an indicator-based MOCS by combining improved diversity enhancement (IDE) and adaptive scaling factor (ASF) for MOPs. In the proposed algorithm, hypervolume is used as the indicator to guarantee better convergence and enough spread of the population. IDE chooses the large hypervolume to rebuild the parent population to compensate for the lack of population diversity. Additionally, ASF makes full use of individuals information to enhance the search ability of Lévy component in cuckoo search. Comprehensive experiments on 31 benchmark functions including two classical suites ZDT, WFG, and one challenged suite proposed in CEC2019, as well as 8 real-world problems were conducted to test the proposed algorithm. Compared with several state-of-the-art multi-objective evolutionary algorithms, the effectiveness and efficiency of our proposed method were demonstrated by the results. •We extend the cuckoo search to multi-objective problems by combining hypervolume.•An adaptive scaling factor is used to speed up convergence and improve efficiency.•An improved diversity enhancement strategy is used to ensure population diversity.•Our algorithm outperforms the competitors on many functions and real-world problems.
ArticleNumber 111073
Author Wang, Liangying
Zhong, Yiwen
Wang, Lijin
Liang, Maomao
Author_xml – sequence: 1
  givenname: Maomao
  surname: Liang
  fullname: Liang, Maomao
  organization: Fujian Agriculture and Forestry University, Fuzhou 350002, China
– sequence: 2
  givenname: Liangying
  surname: Wang
  fullname: Wang, Liangying
  organization: Fujian Agriculture and Forestry University, Fuzhou 350002, China
– sequence: 3
  givenname: Lijin
  surname: Wang
  fullname: Wang, Lijin
  email: lijinwang@fafu.edu.cn
  organization: Fujian Agriculture and Forestry University, Fuzhou 350002, China
– sequence: 4
  givenname: Yiwen
  surname: Zhong
  fullname: Zhong, Yiwen
  organization: Fujian Agriculture and Forestry University, Fuzhou 350002, China
BookMark eNp9kM9qAjEQh0NpoWr7Aj3lBdYmG90k0ItI_4HQS3sOY3bixq4bSaLFt-8u9tSDl5nhx3wD843JdRc6JOSBsylnvHrcTiEFOy1ZKaaccybFFRlxJctCV4pf9_O8UsVMz6pbMk5py3pIl2pEzII2pz3GY2gPOyzWkLCm9mC_Q6AJIdqGQrsJ0edmR3_6SrFroLP9Vu2PGJPPJwpdTaGGfe4Tmiy0vttQBzaHeEduHLQJ7__6hHy9PH8u34rVx-v7crEqrGAsF3PhSuU0agZcV64uQaC02q0roaS0SoPgTpdCrkVtERVIJ6WwolKsdsCcmBB1vmtjSCmiM9ZnyD50OYJvDWdmEGW2ZhBlBlHmLKpHy3_oPvodxNNl6OkMYf_U0WM0yXocvPiINps6-Ev4Lw2ohig
CitedBy_id crossref_primary_10_1007_s42417_025_01949_9
crossref_primary_10_1016_j_conengprac_2024_106097
crossref_primary_10_1016_j_swevo_2025_101890
crossref_primary_10_1177_01423312251353252
crossref_primary_10_1371_journal_pone_0316836
crossref_primary_10_1002_cpe_70116
crossref_primary_10_1016_j_jprocont_2024_103313
crossref_primary_10_1142_S1793962325500205
crossref_primary_10_1002_nag_3838
Cites_doi 10.1007/s00500-021-06665-6
10.1162/evco_a_00235
10.1109/TEVC.2007.892759
10.1109/4235.797969
10.1109/TEVC.2012.2204403
10.1145/3205455.3205530
10.1016/j.cor.2011.09.026
10.1007/s00500-022-07605-8
10.1007/s00186-020-00702-0
10.1007/s11704-015-4178-y
10.1109/TEVC.2017.2754271
10.1162/evco.1994.2.3.221
10.1007/s11081-020-09586-9
10.3390/electronics11050704
10.1109/TEVC.2015.2424921
10.1007/s10489-020-01816-y
10.1162/EVCO_a_00009
10.1109/TEVC.2008.925798
10.1007/s00158-005-0527-z
10.1109/TCYB.2021.3081357
10.1016/j.phycom.2018.06.003
10.1016/j.swevo.2011.02.002
10.1109/TEVC.2018.2879406
10.1162/106365600568202
10.1007/s10845-017-1298-2
10.1016/j.asoc.2018.02.048
10.1016/j.asoc.2019.105886
10.1007/s40747-021-00368-z
10.1186/s13638-021-01951-1
10.1016/j.swevo.2019.03.011
10.1145/3321707.3321730
10.1109/TEVC.2005.861417
10.1080/03052150210915
10.1109/MCI.2017.2742868
10.1109/TEVC.2016.2519378
10.1145/2739480.2754776
10.1016/j.swevo.2021.100849
10.1145/1527125.1527138
10.1109/TEVC.2019.2896967
10.1145/3376916
10.1007/BF01743536
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2023.111073
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2023_111073
S1568494623010918
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-53f28f9e90a196fd2a3e7c9fb63877c89a31f9237b3dcee8a7f773c3680dfa0f3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001135519500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:14:30 EST 2025
Sat Nov 29 03:05:59 EST 2025
Sat Aug 03 15:33:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Diversity enhancement
Cuckoo search
Multi-objective optimization
Indicator-based
Hypervolume
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-53f28f9e90a196fd2a3e7c9fb63877c89a31f9237b3dcee8a7f773c3680dfa0f3
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2023_111073
crossref_primary_10_1016_j_asoc_2023_111073
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_111073
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Zhong (b34) 2015; 2015
Deb, Thiele, Laumanns, Zitzler (b32) 2002
Liang, Yue, Qu (b50) 2016
S. Jaber, Y. Ali, N. Ibrahim, An Automated Task Scheduling Model Using a Multi-objective Improved Cuckoo Optimization Algorithm, Int. J. Intell. Eng. Syst. 15 (1) 295–304.
Zitzler, Laumanns, Thiele (b48) 2001
Cheng, Yen, Zhang (b59) 2015; 19
Thu Bui, Alam (b1) 2008
Wang, Wang, Zhu, Liu, Zhao (b19) 2021; 2021
Yang, Hao, Yang, Li, Zhang, Wang (b20) 2023; 27
Coello, Lamont, Van Veldhuizen (b31) 2007
Sindhya, Miettinen, Deb (b17) 2012; 17
Li, Cheng, Liu, Jin (b25) 2018; 67
Chen, Gan, Li, Cheng, Pan, Chen, Zhang (b12) 2021; 51
Zitzler, Thiele (b15) 1999; 3
Chen, Ishibuchi, Shang (b26) 2020
R. Hernández Gómez, C.A. Coello Coello, Improved metaheuristic based on the R2 indicator for many-objective optimization, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 679–686.
Abed-alguni, Paul (b23) 2022; 26
Yang, Deb (b10) 2013; 40
Chen, Gan, Li, Xu, Cao, Feng (b18) 2019
Deb, Agrawal, Pratap, Meyarivan (b3) 2000
Cheng, Jin, Olhofer, Sendhoff (b58) 2016; 20
Derrac, García, Molina, Herrera (b44) 2011; 1
Ma, Wang (b55) 2019; 23
Takahama, Sakai (b56) 2005
J.E. Fieldsend, Efficient real-time hypervolume estimation with monotonically reducing error, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2019, pp. 532–540.
Gu, Liu, Cheung, Zheng (b2) 2022; 52
Qu, Li, Liang, Yan, Yu, Zhu (b53) 2020; 86
Yue, Suganthan, Liang, Qu, Yu, Zhu, Yan (b51) 2021; 62
Schultes, Stiglmayr, Klamroth, Hahn (b30) 2021; 22
Osyczka, Kundu (b41) 1995; 10
Dutta, Das (b5) 2019
E.M. Lopez, C.A.C. Coello, An improved version of a reference-based multi-objective evolutionary algorithm based on IGD+, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2018, pp. 713–720.
Schulze, Stiglmayr, Paquete, Fonseca, Willems, Ruzika (b29) 2020; 92
Oesterle, Amodeo, Yalaoui (b13) 2019; 30
Ye, Zhou, Zhang, Mohd Zain, Ou (b21) 2022; 11
Yue, Qu, Yu, Liang, Li (b37) 2019; 48
Ramzanpoor, Hosseini Shirvani, Golsorkhtabaramiri (b14) 2022; 8
Ray, Liew (b40) 2002; 34
Wang, Yin, Zhong (b33) 2015; 9
Coello Coello, Pulido (b42) 2005; 30
Yang, Deb (b9) 2009
Bader, Zitzler (b7) 2011; 19
Srinivas, Deb (b4) 1994; 2
Li, Zhang (b49) 2008; 13
T.T. Binh, U. Korn, MOBES: A multiobjective evolution strategy for constrained optimization problems, in: The Third International Conference on Genetic Algorithms, Vol. 25, Mendel 97, 1997, pp. 27–34.
Zhang, Li (b6) 2007; 11
Justesen (b39) 2009
Takahama, Sakai (b57) 2010
A. Auger, J. Bader, D. Brockhoff, E. Zitzler, Theory of the hypervolume indicator: Optimal
Tian, Zhang, Cheng, Jin (b47) 2016
Tian, Cheng, Zhang, Jin (b45) 2017; 12
Tanaka, Watanabe, Furukawa, Tanino (b43) 1995
Groz, Maniu (b27) 2019; 27
Zhang, Jiang, Li (b11) 2019; 34
Zitzler, Deb, Thiele (b35) 2000; 8
Yue, Qu, Liang (b52) 2017; 22
Liu, Yen, Gong (b54) 2018; 23
distributions and the choice of the reference point, in: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, 2009, pp. 87–102.
Falcón-Cardona, Coello (b8) 2020; 53
Huband, Hingston, Barone, While (b36) 2006; 10
10.1016/j.asoc.2023.111073_b16
Srinivas (10.1016/j.asoc.2023.111073_b4) 1994; 2
Schulze (10.1016/j.asoc.2023.111073_b29) 2020; 92
Yue (10.1016/j.asoc.2023.111073_b51) 2021; 62
Groz (10.1016/j.asoc.2023.111073_b27) 2019; 27
Justesen (10.1016/j.asoc.2023.111073_b39) 2009
Takahama (10.1016/j.asoc.2023.111073_b57) 2010
Coello Coello (10.1016/j.asoc.2023.111073_b42) 2005; 30
Takahama (10.1016/j.asoc.2023.111073_b56) 2005
Thu Bui (10.1016/j.asoc.2023.111073_b1) 2008
Wang (10.1016/j.asoc.2023.111073_b34) 2015; 2015
Qu (10.1016/j.asoc.2023.111073_b53) 2020; 86
Wang (10.1016/j.asoc.2023.111073_b19) 2021; 2021
Abed-alguni (10.1016/j.asoc.2023.111073_b23) 2022; 26
Zhang (10.1016/j.asoc.2023.111073_b11) 2019; 34
10.1016/j.asoc.2023.111073_b46
Gu (10.1016/j.asoc.2023.111073_b2) 2022; 52
Zitzler (10.1016/j.asoc.2023.111073_b35) 2000; 8
Huband (10.1016/j.asoc.2023.111073_b36) 2006; 10
Li (10.1016/j.asoc.2023.111073_b49) 2008; 13
Tanaka (10.1016/j.asoc.2023.111073_b43) 1995
Zhang (10.1016/j.asoc.2023.111073_b6) 2007; 11
Yang (10.1016/j.asoc.2023.111073_b9) 2009
Oesterle (10.1016/j.asoc.2023.111073_b13) 2019; 30
Coello (10.1016/j.asoc.2023.111073_b31) 2007
Liu (10.1016/j.asoc.2023.111073_b54) 2018; 23
Wang (10.1016/j.asoc.2023.111073_b33) 2015; 9
Ramzanpoor (10.1016/j.asoc.2023.111073_b14) 2022; 8
Falcón-Cardona (10.1016/j.asoc.2023.111073_b8) 2020; 53
Derrac (10.1016/j.asoc.2023.111073_b44) 2011; 1
Sindhya (10.1016/j.asoc.2023.111073_b17) 2012; 17
10.1016/j.asoc.2023.111073_b38
Schultes (10.1016/j.asoc.2023.111073_b30) 2021; 22
Liang (10.1016/j.asoc.2023.111073_b50) 2016
Yang (10.1016/j.asoc.2023.111073_b10) 2013; 40
Dutta (10.1016/j.asoc.2023.111073_b5) 2019
Chen (10.1016/j.asoc.2023.111073_b26) 2020
Osyczka (10.1016/j.asoc.2023.111073_b41) 1995; 10
Bader (10.1016/j.asoc.2023.111073_b7) 2011; 19
Chen (10.1016/j.asoc.2023.111073_b12) 2021; 51
Chen (10.1016/j.asoc.2023.111073_b18) 2019
Ye (10.1016/j.asoc.2023.111073_b21) 2022; 11
Zitzler (10.1016/j.asoc.2023.111073_b48) 2001
Cheng (10.1016/j.asoc.2023.111073_b59) 2015; 19
Yang (10.1016/j.asoc.2023.111073_b20) 2023; 27
Tian (10.1016/j.asoc.2023.111073_b47) 2016
10.1016/j.asoc.2023.111073_b28
Deb (10.1016/j.asoc.2023.111073_b3) 2000
Ray (10.1016/j.asoc.2023.111073_b40) 2002; 34
10.1016/j.asoc.2023.111073_b24
10.1016/j.asoc.2023.111073_b22
Zitzler (10.1016/j.asoc.2023.111073_b15) 1999; 3
Li (10.1016/j.asoc.2023.111073_b25) 2018; 67
Tian (10.1016/j.asoc.2023.111073_b45) 2017; 12
Cheng (10.1016/j.asoc.2023.111073_b58) 2016; 20
Ma (10.1016/j.asoc.2023.111073_b55) 2019; 23
Yue (10.1016/j.asoc.2023.111073_b52) 2017; 22
Deb (10.1016/j.asoc.2023.111073_b32) 2002
Yue (10.1016/j.asoc.2023.111073_b37) 2019; 48
References_xml – year: 2007
  ident: b31
  article-title: Evolutionary Algorithms for Solving Multi-Objective Problems, Vol. 5
– volume: 51
  start-page: 143
  year: 2021
  end-page: 160
  ident: b12
  article-title: Solving multi-objective optimization problem using Cuckoo search algorithm based on decomposition
  publication-title: Appl. Intell.
– volume: 2015
  year: 2015
  ident: b34
  article-title: Cuckoo search algorithm with chaotic maps
  publication-title: Math. Probl. Eng.
– volume: 22
  start-page: 1203
  year: 2021
  end-page: 1231
  ident: b30
  article-title: Hypervolume scalarization for shape optimization to improve reliability and cost of ceramic components
  publication-title: Opt. Eng.
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b58
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 9
  start-page: 623
  year: 2015
  end-page: 635
  ident: b33
  article-title: Cuckoo search with varied scaling factor
  publication-title: Front. Comput. Sci.
– year: 2009
  ident: b39
  article-title: Multi-Objective Optimization Using Evolutionary Algorithms, Vol. 33
– start-page: 1
  year: 2020
  end-page: 8
  ident: b26
  article-title: Lazy greedy hypervolume subset selection from large candidate solution sets
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– volume: 34
  start-page: 301
  year: 2019
  end-page: 309
  ident: b11
  article-title: Improved decomposition-based multi-objective Cuckoo search algorithm for spectrum allocation in cognitive vehicular network
  publication-title: Phys. Commun.
– start-page: 229
  year: 2019
  end-page: 233
  ident: b18
  article-title: A multi-objective Cuckoo search algorithm based on decomposition
  publication-title: 2019 Eleventh International Conference on Advanced Computational Intelligence
– volume: 53
  start-page: 1
  year: 2020
  end-page: 35
  ident: b8
  article-title: Indicator-based multi-objective evolutionary algorithms: A comprehensive survey
  publication-title: ACM Comput. Surv.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b6
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– reference: S. Jaber, Y. Ali, N. Ibrahim, An Automated Task Scheduling Model Using a Multi-objective Improved Cuckoo Optimization Algorithm, Int. J. Intell. Eng. Syst. 15 (1) 295–304.
– volume: 23
  start-page: 660
  year: 2018
  end-page: 674
  ident: b54
  article-title: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: b36
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
– volume: 92
  start-page: 107
  year: 2020
  end-page: 132
  ident: b29
  article-title: On the rectangular Knapsack problem: approximation of a specific quadratic Knapsack problem
  publication-title: Math. Methods Oper. Res.
– reference: T.T. Binh, U. Korn, MOBES: A multiobjective evolution strategy for constrained optimization problems, in: The Third International Conference on Genetic Algorithms, Vol. 25, Mendel 97, 1997, pp. 27–34.
– start-page: 210
  year: 2009
  end-page: 214
  ident: b9
  article-title: Cuckoo search via Lévy flights
  publication-title: 2009 World Congress on Nature & Biologically Inspired Computing
– volume: 30
  start-page: 388
  year: 2005
  end-page: 403
  ident: b42
  article-title: Multiobjective structural optimization using a microgenetic algorithm
  publication-title: Struct. Multidiscip. Optim.
– start-page: 1556
  year: 1995
  end-page: 1561
  ident: b43
  article-title: GA-based decision support system for multicriteria optimization
  publication-title: 1995 IEEE International Conference on Systems, Man and Cbernetics. Intelligent Systems for the 21st Century, Vol. 2
– volume: 22
  start-page: 805
  year: 2017
  end-page: 817
  ident: b52
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Trans. Evol. Comput.
– reference: E.M. Lopez, C.A.C. Coello, An improved version of a reference-based multi-objective evolutionary algorithm based on IGD+, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2018, pp. 713–720.
– start-page: 2454
  year: 2016
  end-page: 2461
  ident: b50
  article-title: Multimodal multi-objective optimization: A preliminary study
  publication-title: 2016 IEEE Congress on Evolutionary Computation
– year: 2008
  ident: b1
  article-title: Multi-Objective Optimization in Computational Intelligence: Theory and Practice: Theory and Practice
– volume: 11
  start-page: 704
  year: 2022
  ident: b21
  article-title: An improved multi-objective Cuckoo search approach by exploring the balance between development and exploration
  publication-title: Electronics
– volume: 52
  start-page: 13472
  year: 2022
  end-page: 13485
  ident: b2
  article-title: A rough-to-fine evolutionary multiobjective optimization algorithm
  publication-title: IEEE Trans. Cybern.
– volume: 34
  start-page: 141
  year: 2002
  end-page: 153
  ident: b40
  article-title: A swarm metaphor for multiobjective design optimization
  publication-title: Eng. Optim.
– volume: 19
  start-page: 592
  year: 2015
  end-page: 605
  ident: b59
  article-title: A many-objective evolutionary algorithm with enhanced mating and environmental selections
  publication-title: IEEE Trans. Evol. Comput.
– volume: 27
  start-page: 4761
  year: 2023
  end-page: 4778
  ident: b20
  article-title: Elite-guided multi-objective Cuckoo search algorithm based on crossover operation and information enhancement
  publication-title: Soft Comput.
– volume: 62
  year: 2021
  ident: b51
  article-title: Differential evolution using improved crowding distance for multimodal multiobjective optimization
  publication-title: Swarm Evol. Comput.
– volume: 86
  year: 2020
  ident: b53
  article-title: A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems
  publication-title: Appl. Soft Comput.
– volume: 17
  start-page: 495
  year: 2012
  end-page: 511
  ident: b17
  article-title: A hybrid framework for evolutionary multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 48
  start-page: 62
  year: 2019
  end-page: 71
  ident: b37
  article-title: A novel scalable test problem suite for multimodal multiobjective optimization
  publication-title: Swarm Evol. Comput.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 18
  ident: b19
  article-title: Optimization strategy of wireless charger node deployment based on improved Cuckoo search algorithm
  publication-title: EURASIP J. Wireless Commun. Networking
– start-page: 849
  year: 2000
  end-page: 858
  ident: b3
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: International Conference on Parallel Problem Solving from Nature
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b45
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 10
  start-page: 94
  year: 1995
  end-page: 99
  ident: b41
  article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm
  publication-title: Struct. Optim.
– volume: 40
  start-page: 1616
  year: 2013
  end-page: 1624
  ident: b10
  article-title: Multiobjective Cuckoo search for design optimization
  publication-title: Comput. Oper. Res.
– volume: 13
  start-page: 284
  year: 2008
  end-page: 302
  ident: b49
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 807
  year: 2019
  end-page: 820
  ident: b5
  article-title: A survey on Pareto-based EAs to solve multi-objective optimization problems
  publication-title: Soft Computing for Problem Solving
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b44
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: b7
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
– volume: 8
  start-page: 361
  year: 2022
  end-page: 392
  ident: b14
  article-title: Multi-objective fault-tolerant optimization algorithm for deployment of IoT applications on fog computing infrastructure
  publication-title: Complex Intell. Syst.
– volume: 26
  start-page: 3293
  year: 2022
  end-page: 3312
  ident: b23
  article-title: Island-based Cuckoo search with elite opposition-based learning and multiple mutation methods for solving optimization problems
  publication-title: Soft Comput.
– reference: J.E. Fieldsend, Efficient real-time hypervolume estimation with monotonically reducing error, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2019, pp. 532–540.
– start-page: 1019
  year: 2005
  end-page: 1029
  ident: b56
  article-title: Constrained optimization by
  publication-title: Soft Computing As Transdisciplinary Science and Technology
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: b4
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evol. Comput.
– volume: 67
  start-page: 245
  year: 2018
  end-page: 260
  ident: b25
  article-title: A two-stage R2 indicator based evolutionary algorithm for many-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b35
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evol. Comput.
– reference: A. Auger, J. Bader, D. Brockhoff, E. Zitzler, Theory of the hypervolume indicator: Optimal
– year: 2001
  ident: b48
  article-title: SPEA2: Improving the Strength Pareto Evolutionary Algorithm
– start-page: 1
  year: 2010
  end-page: 9
  ident: b57
  article-title: Constrained optimization by the
  publication-title: IEEE Congress on Evolutionary Computation
– start-page: 5222
  year: 2016
  end-page: 5229
  ident: b47
  article-title: A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric
  publication-title: 2016 IEEE Congress on Evolutionary Computation
– volume: 23
  start-page: 972
  year: 2019
  end-page: 986
  ident: b55
  article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 825
  year: 2002
  end-page: 830
  ident: b32
  article-title: Scalable multi-objective optimization test problems
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), Vol. 1
– volume: 30
  start-page: 1021
  year: 2019
  end-page: 1046
  ident: b13
  article-title: A comparative study of multi-objective algorithms for the assembly line balancing and equipment selection problem under consideration of product design alternatives
  publication-title: J. Intell. Manuf.
– reference: -distributions and the choice of the reference point, in: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, 2009, pp. 87–102.
– volume: 27
  start-page: 611
  year: 2019
  end-page: 637
  ident: b27
  article-title: Hypervolume subset selection with small subsets
  publication-title: Evol. Comput.
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b15
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
– reference: R. Hernández Gómez, C.A. Coello Coello, Improved metaheuristic based on the R2 indicator for many-objective optimization, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 679–686.
– volume: 26
  start-page: 3293
  issue: 7
  year: 2022
  ident: 10.1016/j.asoc.2023.111073_b23
  article-title: Island-based Cuckoo search with elite opposition-based learning and multiple mutation methods for solving optimization problems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-06665-6
– volume: 27
  start-page: 611
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2023.111073_b27
  article-title: Hypervolume subset selection with small subsets
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00235
– start-page: 1019
  year: 2005
  ident: 10.1016/j.asoc.2023.111073_b56
  article-title: Constrained optimization by ɛ constrained particle swarm optimizer with ɛ-level control
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.asoc.2023.111073_b6
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.asoc.2023.111073_b15
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– volume: 17
  start-page: 495
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2023.111073_b17
  article-title: A hybrid framework for evolutionary multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2204403
– ident: 10.1016/j.asoc.2023.111073_b24
  doi: 10.1145/3205455.3205530
– volume: 40
  start-page: 1616
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2023.111073_b10
  article-title: Multiobjective Cuckoo search for design optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.09.026
– volume: 27
  start-page: 4761
  issue: 8
  year: 2023
  ident: 10.1016/j.asoc.2023.111073_b20
  article-title: Elite-guided multi-objective Cuckoo search algorithm based on crossover operation and information enhancement
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-07605-8
– start-page: 5222
  year: 2016
  ident: 10.1016/j.asoc.2023.111073_b47
  article-title: A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric
– year: 2008
  ident: 10.1016/j.asoc.2023.111073_b1
– volume: 92
  start-page: 107
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2023.111073_b29
  article-title: On the rectangular Knapsack problem: approximation of a specific quadratic Knapsack problem
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-020-00702-0
– volume: 9
  start-page: 623
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2023.111073_b33
  article-title: Cuckoo search with varied scaling factor
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-015-4178-y
– volume: 2015
  year: 2015
  ident: 10.1016/j.asoc.2023.111073_b34
  article-title: Cuckoo search algorithm with chaotic maps
  publication-title: Math. Probl. Eng.
– volume: 22
  start-page: 805
  issue: 5
  year: 2017
  ident: 10.1016/j.asoc.2023.111073_b52
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2754271
– start-page: 849
  year: 2000
  ident: 10.1016/j.asoc.2023.111073_b3
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
– start-page: 210
  year: 2009
  ident: 10.1016/j.asoc.2023.111073_b9
  article-title: Cuckoo search via Lévy flights
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 10.1016/j.asoc.2023.111073_b4
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1994.2.3.221
– volume: 22
  start-page: 1203
  issue: 2
  year: 2021
  ident: 10.1016/j.asoc.2023.111073_b30
  article-title: Hypervolume scalarization for shape optimization to improve reliability and cost of ceramic components
  publication-title: Opt. Eng.
  doi: 10.1007/s11081-020-09586-9
– volume: 11
  start-page: 704
  issue: 5
  year: 2022
  ident: 10.1016/j.asoc.2023.111073_b21
  article-title: An improved multi-objective Cuckoo search approach by exploring the balance between development and exploration
  publication-title: Electronics
  doi: 10.3390/electronics11050704
– year: 2007
  ident: 10.1016/j.asoc.2023.111073_b31
– year: 2001
  ident: 10.1016/j.asoc.2023.111073_b48
– start-page: 2454
  year: 2016
  ident: 10.1016/j.asoc.2023.111073_b50
  article-title: Multimodal multi-objective optimization: A preliminary study
– volume: 19
  start-page: 592
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2023.111073_b59
  article-title: A many-objective evolutionary algorithm with enhanced mating and environmental selections
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2424921
– volume: 51
  start-page: 143
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.111073_b12
  article-title: Solving multi-objective optimization problem using Cuckoo search algorithm based on decomposition
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01816-y
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2023.111073_b7
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00009
– volume: 13
  start-page: 284
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2023.111073_b49
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.925798
– start-page: 229
  year: 2019
  ident: 10.1016/j.asoc.2023.111073_b18
  article-title: A multi-objective Cuckoo search algorithm based on decomposition
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2023.111073_b26
  article-title: Lazy greedy hypervolume subset selection from large candidate solution sets
– volume: 30
  start-page: 388
  issue: 5
  year: 2005
  ident: 10.1016/j.asoc.2023.111073_b42
  article-title: Multiobjective structural optimization using a microgenetic algorithm
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-005-0527-z
– volume: 52
  start-page: 13472
  issue: 12
  year: 2022
  ident: 10.1016/j.asoc.2023.111073_b2
  article-title: A rough-to-fine evolutionary multiobjective optimization algorithm
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3081357
– volume: 34
  start-page: 301
  year: 2019
  ident: 10.1016/j.asoc.2023.111073_b11
  article-title: Improved decomposition-based multi-objective Cuckoo search algorithm for spectrum allocation in cognitive vehicular network
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2018.06.003
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2023.111073_b44
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 23
  start-page: 660
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2023.111073_b54
  article-title: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2879406
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 10.1016/j.asoc.2023.111073_b35
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
– ident: 10.1016/j.asoc.2023.111073_b38
– volume: 30
  start-page: 1021
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2023.111073_b13
  article-title: A comparative study of multi-objective algorithms for the assembly line balancing and equipment selection problem under consideration of product design alternatives
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-017-1298-2
– volume: 67
  start-page: 245
  year: 2018
  ident: 10.1016/j.asoc.2023.111073_b25
  article-title: A two-stage R2 indicator based evolutionary algorithm for many-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.048
– volume: 86
  year: 2020
  ident: 10.1016/j.asoc.2023.111073_b53
  article-title: A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105886
– year: 2009
  ident: 10.1016/j.asoc.2023.111073_b39
– volume: 8
  start-page: 361
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.111073_b14
  article-title: Multi-objective fault-tolerant optimization algorithm for deployment of IoT applications on fog computing infrastructure
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00368-z
– volume: 2021
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.111073_b19
  article-title: Optimization strategy of wireless charger node deployment based on improved Cuckoo search algorithm
  publication-title: EURASIP J. Wireless Commun. Networking
  doi: 10.1186/s13638-021-01951-1
– volume: 48
  start-page: 62
  year: 2019
  ident: 10.1016/j.asoc.2023.111073_b37
  article-title: A novel scalable test problem suite for multimodal multiobjective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.03.011
– ident: 10.1016/j.asoc.2023.111073_b28
  doi: 10.1145/3321707.3321730
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.asoc.2023.111073_b36
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.861417
– volume: 34
  start-page: 141
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2023.111073_b40
  article-title: A swarm metaphor for multiobjective design optimization
  publication-title: Eng. Optim.
  doi: 10.1080/03052150210915
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2023.111073_b45
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– start-page: 1
  year: 2010
  ident: 10.1016/j.asoc.2023.111073_b57
  article-title: Constrained optimization by the ɛ constrained differential evolution with an archive and gradient-based mutation
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.asoc.2023.111073_b58
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– ident: 10.1016/j.asoc.2023.111073_b46
  doi: 10.1145/2739480.2754776
– volume: 62
  year: 2021
  ident: 10.1016/j.asoc.2023.111073_b51
  article-title: Differential evolution using improved crowding distance for multimodal multiobjective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100849
– start-page: 825
  year: 2002
  ident: 10.1016/j.asoc.2023.111073_b32
  article-title: Scalable multi-objective optimization test problems
– start-page: 1556
  year: 1995
  ident: 10.1016/j.asoc.2023.111073_b43
  article-title: GA-based decision support system for multicriteria optimization
– start-page: 807
  year: 2019
  ident: 10.1016/j.asoc.2023.111073_b5
  article-title: A survey on Pareto-based EAs to solve multi-objective optimization problems
– ident: 10.1016/j.asoc.2023.111073_b16
  doi: 10.1145/1527125.1527138
– volume: 23
  start-page: 972
  issue: 6
  year: 2019
  ident: 10.1016/j.asoc.2023.111073_b55
  article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2896967
– volume: 53
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2023.111073_b8
  article-title: Indicator-based multi-objective evolutionary algorithms: A comprehensive survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3376916
– volume: 10
  start-page: 94
  issue: 2
  year: 1995
  ident: 10.1016/j.asoc.2023.111073_b41
  article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm
  publication-title: Struct. Optim.
  doi: 10.1007/BF01743536
– ident: 10.1016/j.asoc.2023.111073_b22
SSID ssj0016928
Score 2.4518163
Snippet Existing multi-objective cuckoo search (MOCS) algorithms are based on either Pareto dominance or decomposition. However, when dealing with complex...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111073
SubjectTerms Cuckoo search
Diversity enhancement
Hypervolume
Indicator-based
Multi-objective optimization
Title A hypervolume-based cuckoo search algorithm with enhanced diversity and adaptive scaling factor
URI https://dx.doi.org/10.1016/j.asoc.2023.111073
Volume 151
WOSCitedRecordID wos001135519500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKx4ELjC8xGMgHblWqNM7i-FihoTHBxGFIhUvk-IOm65KqTUf573mOP1rGmNiBS5Q6jhvl_fq--vN7CL2lmYrTNJERY1JFYI9FVGYsi8D28FKluVZlV13_Iz07yycT9rnX2_i9MFdzWtf5ZsMW_1XUMAbCNltn7yDusCgMwDkIHY4gdjj-k-DHgynElkurdiJjpeRArMVF0wxcioPPvzfLqp1e2iysqqeWBiADR6Or4Cr5ouMVrUCMHd-ya82z6816F3YFurwjp69bbwkNx6dyuehPvLnkzTZ1b0e7yz935m8vzKoA2W9Txxn-Wv1wu9ZcjiJJd3IUTq1meZQyl2z0etdVmrWac2QCUXKjUrf5hdmQA16Hpt37cDv59wra1yxb4Bt6KtusMGsUZo3CrnEP7SUQMsV9tDf-cDw5Df9AZazryxue3G24stzA609ys1Oz46ic76OHLsLAY4uMx6in6ifoke_egZ0yf4qKMf4DKNgCBVug4AAUbICCPVBwAAoGoGAPFOyAgi1QnqEv74_P351Ert1GJEgct9ER0UmumYJfKahlLRNOFBVMl6CiKRU542SkIR6gJZHgWuWcakqJIFkeS81jTZ6jft3U6gXCCZUjQoz3SdK0NCWAKEyKJSGCKfh0gEb-fRXC1aI3LVHmxd8ldYAG4Z6FrcRy6-wjL4bC-ZLWRywAVbfc9_JO3_IKPdjC_RD12-VavUb3xVVbrZZvHKR-AfQUlvA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hypervolume-based+cuckoo+search+algorithm+with+enhanced+diversity+and+adaptive+scaling+factor&rft.jtitle=Applied+soft+computing&rft.au=Liang%2C+Maomao&rft.au=Wang%2C+Liangying&rft.au=Wang%2C+Lijin&rft.au=Zhong%2C+Yiwen&rft.date=2024-01-01&rft.issn=1568-4946&rft.volume=151&rft.spage=111073&rft_id=info:doi/10.1016%2Fj.asoc.2023.111073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2023_111073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon