Genetic algorithms as classical optimizer for the Quantum Approximate Optimization Algorithm

Optimization is one of the research areas where quantum computing could bring significant benefits. In this scenario, a hybrid quantum–classical variational algorithm, the Quantum Approximate Optimization Algorithm (QAOA), is receiving much attention for its potential to efficiently solve combinator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 142; S. 110296
Hauptverfasser: Acampora, Giovanni, Chiatto, Angela, Vitiello, Autilia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2023
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Optimization is one of the research areas where quantum computing could bring significant benefits. In this scenario, a hybrid quantum–classical variational algorithm, the Quantum Approximate Optimization Algorithm (QAOA), is receiving much attention for its potential to efficiently solve combinatorial optimization problems. This approach works by using a classical optimizer to identify appropriate parameters of a problem-dependent quantum circuit, which ultimately performs the optimization process. Unfortunately, learning the most appropriate QAOA circuit parameters is a complex task that is affected by several issues, such as search landscapes characterized by many local optima. Moreover, gradient-based optimizers, which have been pioneered in this context, tend to waste quantum computing resources. Therefore, gradient-free approaches are emerging as promising methods to address this parameter-setting task. Following this trend, this paper proposes, for the first time, the use of genetic algorithms as gradient-free methods for optimizing the QAOA circuit. The proposed evolutionary approach has been evaluated in solving the MaxCut problem for graphs with 5 to 9 nodes on a noisy quantum device. As the results show, the proposed genetic algorithm statistically outperforms the state-of-the-art gradient-free optimizers by achieving solutions with a better approximation ratio. •A genetic algorithm is proposed to optimize the gate parameters of QAOA.•The QAOA optimized by a genetic algorithm is applied to solve the MaxCut problem.•The proposed genetic algorithm outperforms state-of-the-art gradientfree methods.
AbstractList Optimization is one of the research areas where quantum computing could bring significant benefits. In this scenario, a hybrid quantum–classical variational algorithm, the Quantum Approximate Optimization Algorithm (QAOA), is receiving much attention for its potential to efficiently solve combinatorial optimization problems. This approach works by using a classical optimizer to identify appropriate parameters of a problem-dependent quantum circuit, which ultimately performs the optimization process. Unfortunately, learning the most appropriate QAOA circuit parameters is a complex task that is affected by several issues, such as search landscapes characterized by many local optima. Moreover, gradient-based optimizers, which have been pioneered in this context, tend to waste quantum computing resources. Therefore, gradient-free approaches are emerging as promising methods to address this parameter-setting task. Following this trend, this paper proposes, for the first time, the use of genetic algorithms as gradient-free methods for optimizing the QAOA circuit. The proposed evolutionary approach has been evaluated in solving the MaxCut problem for graphs with 5 to 9 nodes on a noisy quantum device. As the results show, the proposed genetic algorithm statistically outperforms the state-of-the-art gradient-free optimizers by achieving solutions with a better approximation ratio. •A genetic algorithm is proposed to optimize the gate parameters of QAOA.•The QAOA optimized by a genetic algorithm is applied to solve the MaxCut problem.•The proposed genetic algorithm outperforms state-of-the-art gradientfree methods.
ArticleNumber 110296
Author Acampora, Giovanni
Vitiello, Autilia
Chiatto, Angela
Author_xml – sequence: 1
  givenname: Giovanni
  surname: Acampora
  fullname: Acampora, Giovanni
  email: giovanni.acampora@unina.it
– sequence: 2
  givenname: Angela
  surname: Chiatto
  fullname: Chiatto, Angela
– sequence: 3
  givenname: Autilia
  surname: Vitiello
  fullname: Vitiello, Autilia
BookMark eNp9kM1KAzEURoNUsK2-gKu8wNT8TSYBN6VoFQpF0J0QMpmMTZmZDEkq6tM7dXTjoqt7F_d83O_MwKTznQXgGqMFRpjf7Bc6erMgiNAFxohIfgamWBQkk1zgybDnXGRMMn4BZjHu0QBJIqbgdW07m5yBunnzwaVdG6GO0DQ6Rmd0A32fXOu-bIC1DzDtLHw66C4dWrjs--A_XKuThdvxSifnO7j8i7oE57Vuor36nXPwcn_3vHrINtv142q5yQxFKGU5rUpBLZeiKjBB2CKWF9SamhSGV5wYWrK8rHOmy1rkmkkpdKULVmpJuWGczoEYc03wMQZbK-PSzy8paNcojNTRktqroyV1tKRGSwNK_qF9GCqFz9PQ7QjZodS7s0FF42xnbOWCNUlV3p3CvwFbr4UK
CitedBy_id crossref_primary_10_47897_bilmes_1581041
crossref_primary_10_1016_j_suscom_2025_101151
crossref_primary_10_1016_j_eswa_2025_127711
crossref_primary_10_1109_ACCESS_2025_3603338
crossref_primary_10_1016_j_inffus_2025_103043
crossref_primary_10_1016_j_patcog_2025_111901
crossref_primary_10_1007_s11128_025_04776_9
crossref_primary_10_1016_j_engappai_2024_109540
crossref_primary_10_3390_pr13010205
crossref_primary_10_1007_s11227_023_05775_2
crossref_primary_10_1038_s41598_024_78761_0
crossref_primary_10_1016_j_asoc_2024_111845
crossref_primary_10_1007_s11831_023_09973_2
crossref_primary_10_1016_j_agwat_2023_108620
crossref_primary_10_1109_ACCESS_2025_3530952
crossref_primary_10_1016_j_future_2025_107934
crossref_primary_10_1142_S0129156424400986
crossref_primary_10_1016_j_fuel_2025_136502
crossref_primary_10_1103_PhysRevA_111_022418
crossref_primary_10_1103_PhysRevResearch_6_043279
crossref_primary_10_1063_5_0189374
crossref_primary_10_1080_19648189_2024_2407864
crossref_primary_10_1002_qute_202400253
crossref_primary_10_1016_j_asoc_2024_112096
crossref_primary_10_1109_JSEN_2024_3519559
crossref_primary_10_1016_j_compag_2025_110455
crossref_primary_10_1016_j_physrep_2024_03_002
crossref_primary_10_1109_JSEN_2024_3456290
crossref_primary_10_2298_FIL2432553Y
crossref_primary_10_1016_j_tust_2024_105781
crossref_primary_10_1016_j_measurement_2025_118361
crossref_primary_10_1080_0305215X_2024_2351197
crossref_primary_10_1016_j_asoc_2023_111156
crossref_primary_10_1016_j_compeleceng_2024_109302
crossref_primary_10_1007_s42484_024_00201_z
crossref_primary_10_1016_j_asoc_2025_113419
crossref_primary_10_3390_earth5030027
crossref_primary_10_1061_JCEMD4_COENG_15129
crossref_primary_10_1016_j_cosrev_2025_100807
crossref_primary_10_1016_j_energy_2023_128654
crossref_primary_10_1016_j_asoc_2023_110987
crossref_primary_10_1007_s12083_025_01909_w
crossref_primary_10_3390_jmse11081593
crossref_primary_10_1093_jcde_qwaf039
crossref_primary_10_1080_0305215X_2024_2434726
Cites_doi 10.1093/comjnl/7.2.155
10.1017/S0962492900002841
10.1016/j.cam.2021.113388
10.1038/ncomms5213
10.1016/j.eswa.2022.118203
10.1103/PhysRevA.101.032308
10.1007/s11128-021-03342-3
10.1080/00031305.1981.10479327
10.1038/s42254-021-00348-9
10.1007/s11128-021-03140-x
10.1093/comjnl/7.4.308
10.1103/PhysRevA.105.052414
10.1162/evco.1996.4.4.361
10.1103/PhysRevA.99.032331
10.1109/HPEC.2019.8916288
10.1038/s41467-021-27045-6
10.1103/PhysRevA.94.022309
10.1103/PhysRevA.75.012328
10.1016/j.inffus.2022.08.003
10.1007/BF02650179
10.22331/q-2018-08-06-79
10.1088/1367-2630/18/2/023023
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2023.110296
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2023_110296
S1568494623003149
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-53db83e698d71201e04573ecf27c6d62c3b45bf54abf85a4998ada74ba936c463
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001054381800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 20:00:29 EST 2025
Sat Nov 29 07:01:19 EST 2025
Fri Feb 23 02:36:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quantum computing
Quantum Approximate Optimization Algorithm
Quantum optimization algorithms
Genetic algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-53db83e698d71201e04573ecf27c6d62c3b45bf54abf85a4998ada74ba936c463
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2023_110296
crossref_primary_10_1016_j_asoc_2023_110296
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110296
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Powell (b20) 1964; 7
Preskill (b3) 2018; 2
Acampora, Schiattarella, Vitiello (b5) 2022
Goldberg (b33) 1989
Wilcoxon (b39) 1992
Lamata, Alvarez-Rodriguez, Martín-Guerrero, Sanz, Solano (b26) 2018; 4
Nielsen, Chuang (b31) 2001; 54
Huang, Li, Hou, Wu, Yung, Bayat, Wang (b29) 2022; 105
Peruzzo, McClean, Shadbolt, Yung, Zhou, Love, Aspuru-Guzik, O’brien (b28) 2014; 5
Conover, Iman (b41) 1981; 35
Schuld, Bergholm, Gogolin, Izaac, Killoran (b13) 2019; 99
Knill, Ortiz, Somma (b14) 2007; 75
Powell (b36) 1998; 7
McClean, Romero, Babbush, Aspuru-Guzik (b23) 2016; 18
Farhi, Goldstone, Gutmann (b32) 2014
Goldberg, Deb (b34) 1991
Acampora, Chiatto, Vitiello (b25) 2022
Powell (b18) 1994
Vikstål, Grönkvist, Svensson, Andersson, Johansson, Ferrini (b6) 2020; 14
Nelder, Mead (b19) 1965; 7
Wright (b37) 1996
Lotshaw, Humble, Herrman, Ostrowski, Siopsis (b10) 2021; 20
Pellow-Jarman, Sinayskiy, Pillay, Petruccione (b17) 2021; 20
Wang, Fontana, Cerezo, Sharma, Sone, Cincio, Coles (b24) 2021; 12
Fernández-Pendás, Combarro, Vallecorsa, Ranilla, Rúa (b9) 2022; 404
Cerezo, Arrasmith, Babbush, Benjamin, Endo, Fujii, McClean, Mitarai, Yuan, Cincio (b22) 2021; 3
Feynman (b1) 1982; 21
Crooks (b12) 2018
.
Zhou, Wang, Choi, Pichler, Lukin (b11) 2020; 10
Bourreau, Fleury, Lacomme (b7) 2022
Wecker, Hastings, Troyer (b16) 2016; 94
Spall (b21) 1998; 19
R. Shaydulin, I. Safro, J. Larson, Multistart Methods for Quantum Approximate optimization, in: 2019 IEEE High Performance Extreme Computing Conference, HPEC, 2019, pp. 1–8
Press, Teukolsky, Vetterling, Flannery (b38) 2007
Blickle, Thiele (b35) 1996; 4
Acampora, Di Martino, Massa, Schiattarella, Vitiello (b4) 2023; 89
Schuld, Bocharov, Svore, Wiebe (b15) 2020; 101
Ding, Lamata, Sanz, Chen, Solano (b27) 2019; 2
Chivilikhin, Samarin, Ulyantsev, Iorsh, Oganov, Kyriienko (b30) 2020
Acampora, Schiattarella, Vitiello (b40) 2022; 209
Deutsch (b2) 1985; 400
Press (10.1016/j.asoc.2023.110296_b38) 2007
Powell (10.1016/j.asoc.2023.110296_b20) 1964; 7
Cerezo (10.1016/j.asoc.2023.110296_b22) 2021; 3
Huang (10.1016/j.asoc.2023.110296_b29) 2022; 105
Crooks (10.1016/j.asoc.2023.110296_b12) 2018
Peruzzo (10.1016/j.asoc.2023.110296_b28) 2014; 5
Goldberg (10.1016/j.asoc.2023.110296_b33) 1989
Schuld (10.1016/j.asoc.2023.110296_b15) 2020; 101
Schuld (10.1016/j.asoc.2023.110296_b13) 2019; 99
Acampora (10.1016/j.asoc.2023.110296_b40) 2022; 209
Ding (10.1016/j.asoc.2023.110296_b27) 2019; 2
Goldberg (10.1016/j.asoc.2023.110296_b34) 1991
Fernández-Pendás (10.1016/j.asoc.2023.110296_b9) 2022; 404
Pellow-Jarman (10.1016/j.asoc.2023.110296_b17) 2021; 20
Acampora (10.1016/j.asoc.2023.110296_b5) 2022
Conover (10.1016/j.asoc.2023.110296_b41) 1981; 35
Powell (10.1016/j.asoc.2023.110296_b18) 1994
Feynman (10.1016/j.asoc.2023.110296_b1) 1982; 21
Deutsch (10.1016/j.asoc.2023.110296_b2) 1985; 400
McClean (10.1016/j.asoc.2023.110296_b23) 2016; 18
10.1016/j.asoc.2023.110296_b8
Acampora (10.1016/j.asoc.2023.110296_b25) 2022
Lotshaw (10.1016/j.asoc.2023.110296_b10) 2021; 20
Acampora (10.1016/j.asoc.2023.110296_b4) 2023; 89
Zhou (10.1016/j.asoc.2023.110296_b11) 2020; 10
Powell (10.1016/j.asoc.2023.110296_b36) 1998; 7
Vikstål (10.1016/j.asoc.2023.110296_b6) 2020; 14
Nelder (10.1016/j.asoc.2023.110296_b19) 1965; 7
Lamata (10.1016/j.asoc.2023.110296_b26) 2018; 4
Wright (10.1016/j.asoc.2023.110296_b37) 1996
Farhi (10.1016/j.asoc.2023.110296_b32) 2014
Nielsen (10.1016/j.asoc.2023.110296_b31) 2001; 54
Preskill (10.1016/j.asoc.2023.110296_b3) 2018; 2
Knill (10.1016/j.asoc.2023.110296_b14) 2007; 75
Wecker (10.1016/j.asoc.2023.110296_b16) 2016; 94
Wilcoxon (10.1016/j.asoc.2023.110296_b39) 1992
Blickle (10.1016/j.asoc.2023.110296_b35) 1996; 4
Spall (10.1016/j.asoc.2023.110296_b21) 1998; 19
Chivilikhin (10.1016/j.asoc.2023.110296_b30) 2020
Bourreau (10.1016/j.asoc.2023.110296_b7) 2022
Wang (10.1016/j.asoc.2023.110296_b24) 2021; 12
References_xml – volume: 12
  start-page: 1
  year: 2021
  end-page: 11
  ident: b24
  article-title: Noise-induced barren plateaus in variational quantum algorithms
  publication-title: Nature Commun.
– volume: 209
  year: 2022
  ident: b40
  article-title: Using quantum amplitude amplification in genetic algorithms
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 1
  year: 2021
  end-page: 32
  ident: b10
  article-title: Empirical performance bounds for quantum approximate optimization
  publication-title: Quantum Inf. Process.
– year: 2022
  ident: b25
  article-title: Training variational quantum circuits through genetic algorithms
  publication-title: 2022 IEEE Congress on Evolutionary Computation
– year: 2022
  ident: b5
  article-title: On the implementation of fuzzy inference engines on quantum computers
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 75
  year: 2007
  ident: b14
  article-title: Optimal quantum measurements of expectation values of observables
  publication-title: Phys. Rev. A
– volume: 3
  start-page: 625
  year: 2021
  end-page: 644
  ident: b22
  article-title: Variational quantum algorithms
  publication-title: Nat. Rev. Phys.
– start-page: 69
  year: 1991
  end-page: 93
  ident: b34
  article-title: A comparative analysis of selection schemes used in genetic algorithms
  publication-title: Foundations of Genetic Algorithms, Vol. 1
– year: 2007
  ident: b38
  article-title: Numerical Recipes 3rd Edition: The Art of Scientific Computing
– volume: 4
  year: 2018
  ident: b26
  article-title: Quantum autoencoders via quantum adders with genetic algorithms
  publication-title: Quant. Sci. Technol.
– year: 2014
  ident: b32
  article-title: A quantum approximate optimization algorithm
– volume: 101
  year: 2020
  ident: b15
  article-title: Circuit-centric quantum classifiers
  publication-title: Phys. Rev. A
– year: 2020
  ident: b30
  article-title: MoG-VQE: Multiobjective genetic variational quantum eigensolver
– volume: 10
  year: 2020
  ident: b11
  article-title: Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices
  publication-title: Phys. Rev. X
– volume: 7
  start-page: 155
  year: 1964
  end-page: 162
  ident: b20
  article-title: An efficient method for finding the minimum of a function of several variables without calculating derivatives
  publication-title: Comput. J.
– start-page: 51
  year: 1994
  end-page: 67
  ident: b18
  article-title: A direct search optimization method that models the objective and constraint functions by linear interpolation
  publication-title: Advances in Optimization and Numerical Analysis
– volume: 14
  year: 2020
  ident: b6
  article-title: Applying the quantum approximate optimization algorithm to the tail-assignment problem
  publication-title: Phys. Rev. A
– volume: 99
  year: 2019
  ident: b13
  article-title: Evaluating analytic gradients on quantum hardware
  publication-title: Phys. Rev. A
– volume: 19
  start-page: 482
  year: 1998
  end-page: 492
  ident: b21
  article-title: An overview of the simultaneous perturbation method for efficient optimization
  publication-title: Johns Hopkins Apl Tech. Digest.
– volume: 5
  start-page: 1
  year: 2014
  end-page: 7
  ident: b28
  article-title: A variational eigenvalue solver on a photonic quantum processor
  publication-title: Nature Commun.
– volume: 404
  year: 2022
  ident: b9
  article-title: A study of the performance of classical minimizers in the quantum approximate optimization algorithm
  publication-title: J. Comput. Appl. Math.
– volume: 2
  year: 2019
  ident: b27
  article-title: Experimental implementation of a quantum autoencoder via quantum adders
  publication-title: Adv. Quant. Technol.
– start-page: 196
  year: 1992
  end-page: 202
  ident: b39
  article-title: Individual comparisons by ranking methods
  publication-title: Breakthroughs in Statistics
– year: 2018
  ident: b12
  article-title: Performance of the quantum approximate optimization algorithm on the maximum cut problem
– volume: 21
  start-page: 467
  year: 1982
  end-page: 488
  ident: b1
  article-title: Simulating physics with computers
  publication-title: Internat. J. Theoret. Phys.
– volume: 89
  start-page: 16
  year: 2023
  end-page: 28
  ident: b4
  article-title: D-NISQ: a reference model for distributed noisy intermediate-scale quantum computers
  publication-title: Inf. Fusion
– volume: 400
  start-page: 97
  year: 1985
  end-page: 117
  ident: b2
  article-title: Quantum theory, the Church–Turing principle and the universal quantum computer
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– start-page: 191
  year: 1996
  end-page: 208
  ident: b37
  article-title: Direct search methods: Once scorned, now respectable
  publication-title: Pitman Res. Not. Math. Ser.
– volume: 94
  year: 2016
  ident: b16
  article-title: Training a quantum optimizer
  publication-title: Phys. Rev. A
– volume: 4
  start-page: 361
  year: 1996
  end-page: 394
  ident: b35
  article-title: A comparison of selection schemes used in evolutionary algorithms
  publication-title: Evol. Comput.
– volume: 7
  start-page: 287
  year: 1998
  end-page: 336
  ident: b36
  article-title: Direct search algorithms for optimization calculations
  publication-title: Acta Numer.
– reference: .
– year: 2022
  ident: b7
  article-title: Mixer Hamiltonian with QAOA for max k-coloring : numerical evaluations
– reference: R. Shaydulin, I. Safro, J. Larson, Multistart Methods for Quantum Approximate optimization, in: 2019 IEEE High Performance Extreme Computing Conference, HPEC, 2019, pp. 1–8,
– volume: 35
  start-page: 124
  year: 1981
  end-page: 129
  ident: b41
  article-title: Rank transformations as a bridge between parametric and nonparametric statistics
  publication-title: Amer. Statist.
– volume: 105
  year: 2022
  ident: b29
  article-title: Robust resource-efficient quantum variational ansatz through an evolutionary algorithm
  publication-title: Phys. Rev. A
– volume: 54
  start-page: 60
  year: 2001
  ident: b31
  article-title: Quantum computation and quantum information
  publication-title: Phys. Today
– volume: 18
  year: 2016
  ident: b23
  article-title: The theory of variational hybrid quantum-classical algorithms
  publication-title: New J. Phys.
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: b19
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– volume: 20
  year: 2021
  ident: b17
  article-title: A comparison of various classical optimizers for a variational quantum linear solver
  publication-title: Quantum Inf. Process.
– year: 1989
  ident: b33
  article-title: Genetic algorithms in search
  publication-title: Optim. Mach. Learn.
– volume: 2
  start-page: 79
  year: 2018
  ident: b3
  article-title: Quantum computing in the NISQ era and beyond
  publication-title: Quantum
– volume: 7
  start-page: 155
  issue: 2
  year: 1964
  ident: 10.1016/j.asoc.2023.110296_b20
  article-title: An efficient method for finding the minimum of a function of several variables without calculating derivatives
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.2.155
– volume: 2
  issue: 7–8
  year: 2019
  ident: 10.1016/j.asoc.2023.110296_b27
  article-title: Experimental implementation of a quantum autoencoder via quantum adders
  publication-title: Adv. Quant. Technol.
– start-page: 69
  year: 1991
  ident: 10.1016/j.asoc.2023.110296_b34
  article-title: A comparative analysis of selection schemes used in genetic algorithms
– start-page: 196
  year: 1992
  ident: 10.1016/j.asoc.2023.110296_b39
  article-title: Individual comparisons by ranking methods
– year: 2014
  ident: 10.1016/j.asoc.2023.110296_b32
– volume: 7
  start-page: 287
  year: 1998
  ident: 10.1016/j.asoc.2023.110296_b36
  article-title: Direct search algorithms for optimization calculations
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002841
– volume: 19
  start-page: 482
  issue: 4
  year: 1998
  ident: 10.1016/j.asoc.2023.110296_b21
  article-title: An overview of the simultaneous perturbation method for efficient optimization
  publication-title: Johns Hopkins Apl Tech. Digest.
– volume: 404
  year: 2022
  ident: 10.1016/j.asoc.2023.110296_b9
  article-title: A study of the performance of classical minimizers in the quantum approximate optimization algorithm
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2021.113388
– volume: 5
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2023.110296_b28
  article-title: A variational eigenvalue solver on a photonic quantum processor
  publication-title: Nature Commun.
  doi: 10.1038/ncomms5213
– volume: 209
  year: 2022
  ident: 10.1016/j.asoc.2023.110296_b40
  article-title: Using quantum amplitude amplification in genetic algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118203
– volume: 101
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2023.110296_b15
  article-title: Circuit-centric quantum classifiers
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.032308
– volume: 20
  start-page: 1
  issue: 12
  year: 2021
  ident: 10.1016/j.asoc.2023.110296_b10
  article-title: Empirical performance bounds for quantum approximate optimization
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-021-03342-3
– year: 2018
  ident: 10.1016/j.asoc.2023.110296_b12
– volume: 4
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2023.110296_b26
  article-title: Quantum autoencoders via quantum adders with genetic algorithms
  publication-title: Quant. Sci. Technol.
– volume: 35
  start-page: 124
  issue: 3
  year: 1981
  ident: 10.1016/j.asoc.2023.110296_b41
  article-title: Rank transformations as a bridge between parametric and nonparametric statistics
  publication-title: Amer. Statist.
  doi: 10.1080/00031305.1981.10479327
– volume: 3
  start-page: 625
  issue: 9
  year: 2021
  ident: 10.1016/j.asoc.2023.110296_b22
  article-title: Variational quantum algorithms
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00348-9
– volume: 400
  start-page: 97
  issue: 1818
  year: 1985
  ident: 10.1016/j.asoc.2023.110296_b2
  article-title: Quantum theory, the Church–Turing principle and the universal quantum computer
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 20
  issue: 6
  year: 2021
  ident: 10.1016/j.asoc.2023.110296_b17
  article-title: A comparison of various classical optimizers for a variational quantum linear solver
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-021-03140-x
– volume: 7
  start-page: 308
  issue: 4
  year: 1965
  ident: 10.1016/j.asoc.2023.110296_b19
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 105
  issue: 5
  year: 2022
  ident: 10.1016/j.asoc.2023.110296_b29
  article-title: Robust resource-efficient quantum variational ansatz through an evolutionary algorithm
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.052414
– start-page: 191
  year: 1996
  ident: 10.1016/j.asoc.2023.110296_b37
  article-title: Direct search methods: Once scorned, now respectable
  publication-title: Pitman Res. Not. Math. Ser.
– volume: 54
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.asoc.2023.110296_b31
  article-title: Quantum computation and quantum information
  publication-title: Phys. Today
– volume: 4
  start-page: 361
  issue: 4
  year: 1996
  ident: 10.1016/j.asoc.2023.110296_b35
  article-title: A comparison of selection schemes used in evolutionary algorithms
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1996.4.4.361
– volume: 99
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2023.110296_b13
  article-title: Evaluating analytic gradients on quantum hardware
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.032331
– year: 2007
  ident: 10.1016/j.asoc.2023.110296_b38
– ident: 10.1016/j.asoc.2023.110296_b8
  doi: 10.1109/HPEC.2019.8916288
– volume: 10
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2023.110296_b11
  article-title: Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices
  publication-title: Phys. Rev. X
– start-page: 51
  year: 1994
  ident: 10.1016/j.asoc.2023.110296_b18
  article-title: A direct search optimization method that models the objective and constraint functions by linear interpolation
– year: 1989
  ident: 10.1016/j.asoc.2023.110296_b33
  article-title: Genetic algorithms in search
  publication-title: Optim. Mach. Learn.
– volume: 14
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2023.110296_b6
  article-title: Applying the quantum approximate optimization algorithm to the tail-assignment problem
  publication-title: Phys. Rev. A
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110296_b24
  article-title: Noise-induced barren plateaus in variational quantum algorithms
  publication-title: Nature Commun.
  doi: 10.1038/s41467-021-27045-6
– year: 2022
  ident: 10.1016/j.asoc.2023.110296_b25
  article-title: Training variational quantum circuits through genetic algorithms
– volume: 94
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2023.110296_b16
  article-title: Training a quantum optimizer
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.022309
– volume: 75
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2023.110296_b14
  article-title: Optimal quantum measurements of expectation values of observables
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.012328
– volume: 89
  start-page: 16
  year: 2023
  ident: 10.1016/j.asoc.2023.110296_b4
  article-title: D-NISQ: a reference model for distributed noisy intermediate-scale quantum computers
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.08.003
– volume: 21
  start-page: 467
  issue: 6/7
  year: 1982
  ident: 10.1016/j.asoc.2023.110296_b1
  article-title: Simulating physics with computers
  publication-title: Internat. J. Theoret. Phys.
  doi: 10.1007/BF02650179
– year: 2022
  ident: 10.1016/j.asoc.2023.110296_b7
– year: 2020
  ident: 10.1016/j.asoc.2023.110296_b30
– year: 2022
  ident: 10.1016/j.asoc.2023.110296_b5
  article-title: On the implementation of fuzzy inference engines on quantum computers
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 2
  start-page: 79
  year: 2018
  ident: 10.1016/j.asoc.2023.110296_b3
  article-title: Quantum computing in the NISQ era and beyond
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 18
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2023.110296_b23
  article-title: The theory of variational hybrid quantum-classical algorithms
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/2/023023
SSID ssj0016928
Score 2.587095
Snippet Optimization is one of the research areas where quantum computing could bring significant benefits. In this scenario, a hybrid quantum–classical variational...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110296
SubjectTerms Genetic algorithms
Quantum Approximate Optimization Algorithm
Quantum computing
Quantum optimization algorithms
Title Genetic algorithms as classical optimizer for the Quantum Approximate Optimization Algorithm
URI https://dx.doi.org/10.1016/j.asoc.2023.110296
Volume 142
WOSCitedRecordID wos001054381800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cAFyksUCvKBW5VqEydxfFyholKhAqJUe0CK_ApNtc1Wmyxa8euZiR1v1KIKkLhEkRXb0cyX8Xgy_oaQN1rHRigD37fUOkpZhYGmahJZcJEmWsZa9bwFZx_4yUkxm4lPPiGz7csJ8KYp1mtx9V9VDW2gbDw6-xfqDoNCA9yD0uEKaofrHykeiaR7Ftb59wXs_M8vW6wlo9FL7hWyACNxWf-0y5Bh-HkF4sVAPfKLr2vwYe3-R_eUg8d0GGrsyg7-awuGvM9MX3XDMogA0rLnvOrj7pjw2jT1JpUA8NC58zWYUxtWhjOkd_U_g6Yw3LyW46hEwkIGqw-V3Tgu46xrXkSp8DFH69oKnkQid3Vbgkl2jFs3zLuLNFwcSEDuAU6LpxgScY1Lu1-dv-BkOBfssZCiX9wl2wnPBFi-7en7w9lx-NeUi74Cb3g5f7TKZQFen-n37svIJTndIQ_8XoJOHQYekTu2eUweDnU6qDfbT8g3Dwm6gQSVLQ2QoAESFCBBARLUQ4KOIEHHkKABEk_J13eHp2-PIl9VI9IgiS7KmFEFs7koDI_B_bPg1HNmdZVwnZs80UylmaqyVKqqyCTsiAtpJE-VFCzXac6eka1m0djnhKqKcTnhhiulUykyhYRkE1sxU8XGJOkuiQdhldpTzmPlk3k55BZelCjgEgVcOgHvkv3Q58oRrtz6dDbooPQuo3MFS4DMLf1e_GO_l-T-Bu17ZKtbruwrck__6Op2-doj6xd4NZUY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+algorithms+as+classical+optimizer+for+the+Quantum+Approximate+Optimization+Algorithm&rft.jtitle=Applied+soft+computing&rft.au=Acampora%2C+Giovanni&rft.au=Chiatto%2C+Angela&rft.au=Vitiello%2C+Autilia&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=142&rft_id=info:doi/10.1016%2Fj.asoc.2023.110296&rft.externalDocID=S1568494623003149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon