Genetic algorithms as classical optimizer for the Quantum Approximate Optimization Algorithm
Optimization is one of the research areas where quantum computing could bring significant benefits. In this scenario, a hybrid quantum–classical variational algorithm, the Quantum Approximate Optimization Algorithm (QAOA), is receiving much attention for its potential to efficiently solve combinator...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 142; s. 110296 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.07.2023
|
| Témata: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Optimization is one of the research areas where quantum computing could bring significant benefits. In this scenario, a hybrid quantum–classical variational algorithm, the Quantum Approximate Optimization Algorithm (QAOA), is receiving much attention for its potential to efficiently solve combinatorial optimization problems. This approach works by using a classical optimizer to identify appropriate parameters of a problem-dependent quantum circuit, which ultimately performs the optimization process. Unfortunately, learning the most appropriate QAOA circuit parameters is a complex task that is affected by several issues, such as search landscapes characterized by many local optima. Moreover, gradient-based optimizers, which have been pioneered in this context, tend to waste quantum computing resources. Therefore, gradient-free approaches are emerging as promising methods to address this parameter-setting task. Following this trend, this paper proposes, for the first time, the use of genetic algorithms as gradient-free methods for optimizing the QAOA circuit. The proposed evolutionary approach has been evaluated in solving the MaxCut problem for graphs with 5 to 9 nodes on a noisy quantum device. As the results show, the proposed genetic algorithm statistically outperforms the state-of-the-art gradient-free optimizers by achieving solutions with a better approximation ratio.
•A genetic algorithm is proposed to optimize the gate parameters of QAOA.•The QAOA optimized by a genetic algorithm is applied to solve the MaxCut problem.•The proposed genetic algorithm outperforms state-of-the-art gradientfree methods. |
|---|---|
| ISSN: | 1568-4946 1872-9681 |
| DOI: | 10.1016/j.asoc.2023.110296 |