Optimization of an auto drum fashioned brake using the elite opposition-based learning and chaotic k-best gravitational search strategy based grey wolf optimizer algorithm
Highly non-linear optimization problems are widely found in many real-world engineering applications. To tackle these problems, a novel assisted optimization strategy, named elite opposition-based learning and chaotic k-best gravitational search strategy (EOCS), is proposed for the grey wolf optimiz...
Saved in:
| Published in: | Applied soft computing Vol. 123; p. 108947 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.07.2022
|
| Subjects: | |
| ISSN: | 1568-4946 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Highly non-linear optimization problems are widely found in many real-world engineering applications. To tackle these problems, a novel assisted optimization strategy, named elite opposition-based learning and chaotic k-best gravitational search strategy (EOCS), is proposed for the grey wolf optimizer (GWO) algorithm. In the EOCS based grey wolf optimizer (EOCSGWO) algorithm, the elite opposition-based learning strategy (EOBLS) is proposed to take full advantage of better-performing particles for optimization in the next generations. A chaotic k-best gravitational search strategy (CKGSS) is proposed to obtain the adaptive step to improve the global exploratory ability. The performance of the EOCSGWO is verified and compared with those of other seven meta-heuristic optimization algorithms using ten popular benchmark functions. Results show that the EOCSGWO is more competitive in accuracy and robustness, and obtains the first in ranking among the six optimization algorithms. Further, the EOCSGWO is employed to optimize the design of an auto drum fashioned brake. The results show that the braking efficiency factor can be improved by 28.412% compared with the initial design.
•Elite opposition-based learning and chaotic k-best gravitational search strategy (EOCS) are proposed.•A novel search strategy is proposed to enhance the global exploratory capability and convergence speed.•The EOCS based grey wolf optimizer (EOCSGWO) algorithm outperforms its peer in terms of searching accuracy and reliability.•EOCSGWO is applied to ensure the parameter of an auto drum fashioned brake. |
|---|---|
| AbstractList | Highly non-linear optimization problems are widely found in many real-world engineering applications. To tackle these problems, a novel assisted optimization strategy, named elite opposition-based learning and chaotic k-best gravitational search strategy (EOCS), is proposed for the grey wolf optimizer (GWO) algorithm. In the EOCS based grey wolf optimizer (EOCSGWO) algorithm, the elite opposition-based learning strategy (EOBLS) is proposed to take full advantage of better-performing particles for optimization in the next generations. A chaotic k-best gravitational search strategy (CKGSS) is proposed to obtain the adaptive step to improve the global exploratory ability. The performance of the EOCSGWO is verified and compared with those of other seven meta-heuristic optimization algorithms using ten popular benchmark functions. Results show that the EOCSGWO is more competitive in accuracy and robustness, and obtains the first in ranking among the six optimization algorithms. Further, the EOCSGWO is employed to optimize the design of an auto drum fashioned brake. The results show that the braking efficiency factor can be improved by 28.412% compared with the initial design.
•Elite opposition-based learning and chaotic k-best gravitational search strategy (EOCS) are proposed.•A novel search strategy is proposed to enhance the global exploratory capability and convergence speed.•The EOCS based grey wolf optimizer (EOCSGWO) algorithm outperforms its peer in terms of searching accuracy and reliability.•EOCSGWO is applied to ensure the parameter of an auto drum fashioned brake. |
| ArticleNumber | 108947 |
| Author | Zhao, Yong Wang, Zhenxi Ren, Jianji Shao, Xiangyu Yuan, Yongliang Mu, Xiaokai |
| Author_xml | – sequence: 1 givenname: Yongliang surname: Yuan fullname: Yuan, Yongliang organization: School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China – sequence: 2 givenname: Xiaokai surname: Mu fullname: Mu, Xiaokai organization: School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 3 givenname: Xiangyu surname: Shao fullname: Shao, Xiangyu email: shaoxy@hpu.edu.cn organization: School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China – sequence: 4 givenname: Jianji surname: Ren fullname: Ren, Jianji email: renjianji@hpu.edu.cn organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454003, China – sequence: 5 givenname: Yong surname: Zhao fullname: Zhao, Yong organization: School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China – sequence: 6 givenname: Zhenxi surname: Wang fullname: Wang, Zhenxi organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454003, China |
| BookMark | eNp9kE1u2zAQhblwgDppL9DVXEAOSf3YAropgqYpECCbdk0MyZFEWxYNknbhXqmXLGV71UVWAwze92beu2eLyU_E2GfBV4KL5nG7wujNSnIp82LTVusFW4q62RRVWzUf2H2MW56Frdws2d-3Q3J79weT8xP4DnACPCYPNhz30GEc8p4s6IA7gmN0Uw9pIKDRJQJ_OPjoZrTQGLNsJAzTrMHJghnQJ2dgV2iKCfqAJ5cuh3CEmJVmgJgCJurPcOX7QGf47ccuW1_-ogA49j64NOw_srsOx0ifbvOB_Xr-9vPppXh9-_7j6etrYUrOU1HLxghrpUAheCe1lqWuuF5XkkpBdW11TVxQ05RVKVrNcb22oumM1VXX6laXD0xefU3wMQbq1CG4PYazElzNFautmitWc8XqWnGGNv9B5hY2J3Tj--iXK0o51MlRUNE4mgxZF8gkZb17D_8HuXeg8w |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_115426 crossref_primary_10_1016_j_aei_2023_101908 crossref_primary_10_1016_j_apm_2024_115655 crossref_primary_10_1007_s00521_023_09202_8 crossref_primary_10_1016_j_egyr_2022_12_149 crossref_primary_10_1007_s13369_023_08376_6 crossref_primary_10_1063_5_0157491 crossref_primary_10_1038_s41598_024_57098_8 crossref_primary_10_3390_e24111640 crossref_primary_10_3390_technologies12080136 crossref_primary_10_1016_j_asoc_2023_110085 crossref_primary_10_1063_5_0137562 crossref_primary_10_3390_su15139853 crossref_primary_10_1186_s10033_024_01109_2 crossref_primary_10_3390_app13095612 crossref_primary_10_1108_RIA_12_2023_0177 crossref_primary_10_1063_5_0157407 crossref_primary_10_1080_08839514_2023_2175115 crossref_primary_10_1155_2022_3986247 crossref_primary_10_3390_biomimetics9010032 crossref_primary_10_1109_ACCESS_2023_3265712 crossref_primary_10_1109_ACCESS_2023_3262600 crossref_primary_10_1109_ACCESS_2023_3304889 crossref_primary_10_1016_j_eswa_2024_124581 crossref_primary_10_1109_ACCESS_2022_3203720 crossref_primary_10_1063_5_0147299 crossref_primary_10_1063_5_0167500 crossref_primary_10_1016_j_eswa_2024_125863 crossref_primary_10_1063_5_0141913 crossref_primary_10_1007_s00521_024_10621_4 crossref_primary_10_1016_j_cma_2023_116664 crossref_primary_10_1016_j_renene_2024_120211 crossref_primary_10_1109_ACCESS_2023_3314514 crossref_primary_10_1016_j_eswa_2022_119269 crossref_primary_10_1109_ACCESS_2023_3276932 crossref_primary_10_1063_5_0149442 crossref_primary_10_1007_s13042_024_02216_1 crossref_primary_10_3390_app15020718 crossref_primary_10_1016_j_cma_2025_117908 crossref_primary_10_3390_app131810149 crossref_primary_10_3390_math13172721 crossref_primary_10_3390_app12199709 crossref_primary_10_1007_s00202_024_02821_x crossref_primary_10_1016_j_oceaneng_2023_113647 crossref_primary_10_1038_s41598_023_50910_x crossref_primary_10_1109_ACCESS_2022_3195519 crossref_primary_10_1016_j_engappai_2023_106469 crossref_primary_10_1016_j_oceaneng_2023_114317 crossref_primary_10_1016_j_jer_2024_01_008 crossref_primary_10_1038_s41598_025_91418_w crossref_primary_10_1063_5_0153077 crossref_primary_10_1063_5_0153550 crossref_primary_10_1007_s42979_024_03290_6 crossref_primary_10_1109_ACCESS_2022_3214206 crossref_primary_10_1016_j_est_2024_113388 crossref_primary_10_1115_1_4069152 crossref_primary_10_1007_s11227_023_05086_6 crossref_primary_10_1016_j_aei_2023_102210 crossref_primary_10_1007_s13369_024_08710_6 crossref_primary_10_1038_s41598_024_54807_1 crossref_primary_10_1038_s41598_024_65676_z crossref_primary_10_1016_j_ins_2024_121714 crossref_primary_10_1063_5_0108340 crossref_primary_10_1007_s10462_024_10986_x crossref_primary_10_1109_ACCESS_2022_3193769 crossref_primary_10_1007_s00521_025_11652_1 crossref_primary_10_1016_j_swevo_2025_102043 crossref_primary_10_26599_TST_2023_9010144 crossref_primary_10_1007_s42235_023_00387_1 crossref_primary_10_1007_s11227_022_04754_3 crossref_primary_10_1063_5_0130344 crossref_primary_10_1016_j_aei_2023_102209 crossref_primary_10_1007_s00500_023_07952_0 crossref_primary_10_1016_j_aei_2023_102004 crossref_primary_10_1063_5_0152822 crossref_primary_10_1007_s00371_023_03016_4 crossref_primary_10_1109_ACCESS_2023_3265469 crossref_primary_10_1016_j_applthermaleng_2023_120386 crossref_primary_10_1109_ACCESS_2022_3221744 crossref_primary_10_1109_ACCESS_2023_3241279 crossref_primary_10_1063_5_0184113 crossref_primary_10_1038_s41598_024_63826_x crossref_primary_10_1109_ACCESS_2023_3261266 |
| Cites_doi | 10.1016/j.solener.2010.02.012 10.1016/j.enconman.2015.05.074 10.1016/j.future.2019.02.028 10.1007/s00521-015-1920-1 10.1108/EC-08-2019-0362 10.1109/ACCESS.2021.3091495 10.1007/s40095-015-0198-5 10.1016/j.solener.2013.05.007 10.1108/WJE-09-2019-0254 10.1080/0305215X.2019.1618290 10.1007/s10489-016-0825-8 10.1016/j.ins.2009.03.004 10.1016/j.asoc.2007.07.010 10.1109/TEVC.2008.2009457 10.1007/s11465-019-0578-2 10.1063/1.3122082 10.1016/j.asoc.2017.01.008 10.3923/jse.2016.16.28 10.1016/j.apenergy.2017.05.029 10.1016/j.eswa.2020.113338 10.1016/j.advengsoft.2013.12.007 10.1016/j.apenergy.2013.06.004 10.1063/5.0035635 10.1016/j.energy.2014.05.011 10.1007/s00158-009-0462-5 10.1016/j.ins.2011.08.006 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2022.108947 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_asoc_2022_108947 S1568494622002927 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SST SSV SSZ T5K UHS UNMZH ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-526c1dd21a110f2bb23b40b742e31e55db5e01e6634319b0a77d16fcdb4f9b9b3 |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805689700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 20:19:53 EST 2025 Sat Nov 29 07:02:17 EST 2025 Sun Apr 06 06:54:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Grey wolf optimizer algorithm Chaotic k-best gravitational search Parameter identification Opposition-based learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-526c1dd21a110f2bb23b40b742e31e55db5e01e6634319b0a77d16fcdb4f9b9b3 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2022_108947 crossref_citationtrail_10_1016_j_asoc_2022_108947 elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108947 |
| PublicationCentury | 2000 |
| PublicationDate | July 2022 2022-07-00 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Guo, Wang, Yue (b29) 2015; 28 Salgotra, Singh, Saha (b34) 2020 Viktorin, Senkerik, Pluhacek (b38) 2020 Stanovov, Akhmedova, Semenkin (b36) 2020 Das, Abraham, Chakraborty (b26) 2009; 13 Mirjalili, Hashim, Sardroudi (b32) 2012; 218 Kaveh, Talatahari (b17) 2010; 41 Wang, Li, Liu (b42) 2021; 40 Zagrouba, Sellami, Bouaïcha, Ksouri (b13) 2010; 84 Mirjalili, Jangir, Saremi (b3) 2017; 46 Ye, Wang, Xu (b8) 2009; 105 Oliva, Aziz, Hassanien (b7) 2017; 200 Yuan, Lv, Wang (b2) 2020; 15 Rashedi, Nezamabadi-Pour, Saryazdi (b20) 2009; 179 Heidari, Mirjalili, Faris (b21) 2019; 97 Jamadi, Merrikh-Bayat, Bigdeli (b12) 2016; 7 Yuan, Wang, Lv (b5) 2021; 38 Rao, Savsani, Vakharia (b10) 2012; 183 Yu, Wang, Wang (b9) 2014; 1 Oliva, Cuevas, Pajares (b11) 2014; 72 Jiang, Maskell, Patra (b16) 2013; 112 Khishe, Mosavi (b22) 2020; 149 Mirjalili, Gandomi (b31) 2017; 53 Jou, Wang, Yeh (b35) 2020 Ali, Anas, Ali (b37) 2020 Zhou, Wu, Wang (b25) 2013; 41 Mirjalili, Mirjalili, Lewis (b18) 2014; 69 Yuan, Lv, Wang (b1) 2020; 52 Li, Chen, Zhang (b28) 2016; 10 Madadi, Motlagh (b4) 2014; 4 Talatahari, Bayzidi, Saraee (b23) 2021; 9 Rahnamayan, Tizhoosh, Salama (b24) 2008; 8 Mirjalili (b19) 2016; 27 Bujok, Kolenovsky, Janisch (b33) 2020 Rather, Bala (b39) 2020; 17 Jangir, Parmar, Trivedi (b6) 2017; 20 Razali, Wah (b40) 2011; 2 Alam, Yousri, Eteiba (b14) 2015; 101 Esmat, Hossein, Saeid (b30) 2009; 179 Yuan, Ren, Zu (b41) 2021; 11 Gong, Cai (b15) 2013; 94 Li, Zhou, Zhang (b27) 2016; 1 Yuan (10.1016/j.asoc.2022.108947_b5) 2021; 38 Yu (10.1016/j.asoc.2022.108947_b9) 2014; 1 Alam (10.1016/j.asoc.2022.108947_b14) 2015; 101 Rashedi (10.1016/j.asoc.2022.108947_b20) 2009; 179 Mirjalili (10.1016/j.asoc.2022.108947_b32) 2012; 218 Viktorin (10.1016/j.asoc.2022.108947_b38) 2020 Oliva (10.1016/j.asoc.2022.108947_b11) 2014; 72 Bujok (10.1016/j.asoc.2022.108947_b33) 2020 Das (10.1016/j.asoc.2022.108947_b26) 2009; 13 Stanovov (10.1016/j.asoc.2022.108947_b36) 2020 Li (10.1016/j.asoc.2022.108947_b27) 2016; 1 Zagrouba (10.1016/j.asoc.2022.108947_b13) 2010; 84 Jangir (10.1016/j.asoc.2022.108947_b6) 2017; 20 Gong (10.1016/j.asoc.2022.108947_b15) 2013; 94 Madadi (10.1016/j.asoc.2022.108947_b4) 2014; 4 Jamadi (10.1016/j.asoc.2022.108947_b12) 2016; 7 Yuan (10.1016/j.asoc.2022.108947_b2) 2020; 15 Ye (10.1016/j.asoc.2022.108947_b8) 2009; 105 Li (10.1016/j.asoc.2022.108947_b28) 2016; 10 Jou (10.1016/j.asoc.2022.108947_b35) 2020 Guo (10.1016/j.asoc.2022.108947_b29) 2015; 28 Jiang (10.1016/j.asoc.2022.108947_b16) 2013; 112 Mirjalili (10.1016/j.asoc.2022.108947_b31) 2017; 53 Wang (10.1016/j.asoc.2022.108947_b42) 2021; 40 Yuan (10.1016/j.asoc.2022.108947_b41) 2021; 11 Khishe (10.1016/j.asoc.2022.108947_b22) 2020; 149 Mirjalili (10.1016/j.asoc.2022.108947_b19) 2016; 27 Ali (10.1016/j.asoc.2022.108947_b37) 2020 Mirjalili (10.1016/j.asoc.2022.108947_b18) 2014; 69 Oliva (10.1016/j.asoc.2022.108947_b7) 2017; 200 Zhou (10.1016/j.asoc.2022.108947_b25) 2013; 41 Salgotra (10.1016/j.asoc.2022.108947_b34) 2020 Rao (10.1016/j.asoc.2022.108947_b10) 2012; 183 Kaveh (10.1016/j.asoc.2022.108947_b17) 2010; 41 Esmat (10.1016/j.asoc.2022.108947_b30) 2009; 179 Rahnamayan (10.1016/j.asoc.2022.108947_b24) 2008; 8 Yuan (10.1016/j.asoc.2022.108947_b1) 2020; 52 Mirjalili (10.1016/j.asoc.2022.108947_b3) 2017; 46 Razali (10.1016/j.asoc.2022.108947_b40) 2011; 2 Talatahari (10.1016/j.asoc.2022.108947_b23) 2021; 9 Rather (10.1016/j.asoc.2022.108947_b39) 2020; 17 Heidari (10.1016/j.asoc.2022.108947_b21) 2019; 97 |
| References_xml | – volume: 1 start-page: 1 year: 2014 end-page: 13 ident: b9 article-title: An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems publication-title: J. Intell. Manuf. – start-page: 1 year: 2020 end-page: 8 ident: b38 article-title: DISh-xx solving cec2020 single objective bound constrained numerical optimization benchmark publication-title: 2020 IEEE Congress on Evolutionary Computation – volume: 101 start-page: 410 year: 2015 end-page: 422 ident: b14 article-title: Flower pollination algorithm based solar PV parameter estimation publication-title: Energy Convers. Manag. – volume: 84 start-page: 860 year: 2010 end-page: 866 ident: b13 article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction publication-title: Sol. Energy – volume: 8 start-page: 906 year: 2008 end-page: 918 ident: b24 article-title: Opposition versus randomness in soft computing techniques publication-title: Appl. Soft. Comput. – start-page: 1 year: 2020 end-page: 7 ident: b34 article-title: Improving cuckoo search: incorporating changes for CEC 2017 and CEC 2020 benchmark problems publication-title: 2020 IEEE Congress on Evolutionary Computation – volume: 17 start-page: 97 year: 2020 end-page: 114 ident: b39 article-title: Swarm-based chaotic gravitational search algorithm for solving mechanical engineering design problems publication-title: World. J. Eng. – volume: 53 start-page: 407 year: 2017 end-page: 419 ident: b31 article-title: Chaotic gravitational constants for the gravitational search algorithm publication-title: Appl. Softw. Comput. – volume: 105 year: 2009 ident: b8 article-title: Parameter extraction of solar cells using particle swarm optimization publication-title: J. Appl. Phys. – volume: 200 start-page: 141 year: 2017 end-page: 154 ident: b7 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Appl. Energ. – volume: 94 start-page: 209 year: 2013 end-page: 220 ident: b15 article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution publication-title: Sol. Energy – volume: 20 start-page: 570 year: 2017 end-page: 586 ident: b6 article-title: A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem publication-title: Eng. Sci. Technol. – volume: 72 start-page: 93 year: 2014 end-page: 102 ident: b11 article-title: Parameter identification of solar cells using artificial bee colony optimization publication-title: Energy – volume: 10 start-page: 16 year: 2016 end-page: 28 ident: b28 article-title: A cuckoo optimization algorithm using elite opposition-based learning and chaotic disturbance publication-title: J. Softw. Eng. – volume: 41 start-page: 893 year: 2010 end-page: 911 ident: b17 article-title: Optimal design of skeletal structures via the charged system search algorithm publication-title: Struct. Multidiscip. Optim. – volume: 2 start-page: 21 year: 2011 end-page: 33 ident: b40 article-title: Power comparisons of shapiro-wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests publication-title: J. Stat. Model. Anal. – start-page: 1 year: 2020 end-page: 8 ident: b37 article-title: Evaluating the performance of adaptive gaining-sharing knowledge based algorithm on CEC 2020 benchmark problems publication-title: 2020 IEEE Congress on Evolutionary Computation – volume: 52 start-page: 915 year: 2020 end-page: 931 ident: b1 article-title: Optimization of a frame structure using the Coulomb force search strategy-based dragonfly algorithm publication-title: Eng. Optimiz. – volume: 46 start-page: 79 year: 2017 end-page: 95 ident: b3 article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems publication-title: Appl. Intell. – start-page: 1 year: 2020 end-page: 8 ident: b35 article-title: Multi-population modified l-shade for single objective bound constrained optimization publication-title: 2020 IEEE Congress on Evolutionary Computation – volume: 112 start-page: 185 year: 2013 end-page: 193 ident: b16 article-title: Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm publication-title: Appl. Energy – volume: 13 start-page: 526 year: 2009 end-page: 553 ident: b26 article-title: Differential evolution using a neighborhood-based mutation operator publication-title: IEEE T. Evol. Comput. – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b19 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. – volume: 149 year: 2020 ident: b22 article-title: Chimp optimization algorithm publication-title: Expert. Syst. Appl. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b30 article-title: GSA: A gravitational search algorithm publication-title: Inform. Sci. – volume: 11 start-page: 25012 year: 2021 ident: b41 article-title: An adaptive instinctive reaction strategy based on harris hawks optimization algorithm for numerical optimization problems publication-title: AIP Adv. – volume: 9 start-page: 92815 year: 2021 end-page: 92863 ident: b23 article-title: Social network search for global optimization publication-title: IEEE Access. – volume: 38 start-page: 2228 year: 2021 end-page: 2251 ident: b5 article-title: An adaptive resistance and stamina strategy-based dragonfly algorithm for solving engineering optimization problems publication-title: Eng. Computation. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b20 article-title: GSA : a gravitational search algorithm publication-title: Inform. Sci. – volume: 7 start-page: 13 year: 2016 end-page: 25 ident: b12 article-title: Very accurate parameter estimation of single-and double-diode solar cell models using a modified artificial bee colony algorithm publication-title: Int. J. Energy Env. E – volume: 1 start-page: 1 year: 2016 end-page: 22 ident: b27 article-title: Lévy-flight moth-flame algorithm for function optimization and engineering design problems publication-title: Math. Probl. Eng. – start-page: 1 year: 2020 end-page: 7 ident: b36 article-title: Ranked archive differential evolution with selective pressure for CEC 2020 numerical optimization publication-title: 2020 IEEE Congress on Evolutionary Computation – volume: 4 start-page: 373 year: 2014 end-page: 379 ident: b4 article-title: Optimal control of DC motor using grey wolf optimizer algorithm publication-title: Tech. J. Eng. Appl. Science. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b18 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b21 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future. Gener. Comp. Sy. – volume: 218 start-page: 11125 year: 2012 end-page: 11137 ident: b32 article-title: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm publication-title: Appl. Math. Comput. – volume: 15 start-page: 406 year: 2020 end-page: 416 ident: b2 article-title: Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer publication-title: Front. Mech. Eng-Prc. – start-page: 1 year: 2020 end-page: 6 ident: b33 article-title: Eigenvector crossover in jde100 algorithm publication-title: 2020 IEEE Congress on Evolutionary Computation – volume: 41 start-page: 1647 year: 2013 end-page: 1652 ident: b25 article-title: Elite opposition-based particle swarm optimization publication-title: Acta. Electr. Sinica – volume: 40 start-page: 134 year: 2021 end-page: 138 ident: b42 article-title: Optimization design of drum brake stability based on Kriging surrogate model publication-title: J. Vib. Shock. – volume: 28 start-page: 1268 year: 2015 end-page: 1275 ident: b29 article-title: Elite opposition-based Artificial Bee Colony algorithm for global optimization publication-title: Int. J. Eng-Tran. – volume: 183 start-page: 1 year: 2012 end-page: 150 ident: b10 article-title: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems publication-title: Inform. Sci. – volume: 84 start-page: 860 year: 2010 ident: 10.1016/j.asoc.2022.108947_b13 article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction publication-title: Sol. Energy doi: 10.1016/j.solener.2010.02.012 – volume: 101 start-page: 410 year: 2015 ident: 10.1016/j.asoc.2022.108947_b14 article-title: Flower pollination algorithm based solar PV parameter estimation publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.05.074 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.asoc.2022.108947_b21 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future. Gener. Comp. Sy. doi: 10.1016/j.future.2019.02.028 – volume: 28 start-page: 1268 year: 2015 ident: 10.1016/j.asoc.2022.108947_b29 article-title: Elite opposition-based Artificial Bee Colony algorithm for global optimization publication-title: Int. J. Eng-Tran. – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.asoc.2022.108947_b27 article-title: Lévy-flight moth-flame algorithm for function optimization and engineering design problems publication-title: Math. Probl. Eng. – volume: 4 start-page: 373 year: 2014 ident: 10.1016/j.asoc.2022.108947_b4 article-title: Optimal control of DC motor using grey wolf optimizer algorithm publication-title: Tech. J. Eng. Appl. Science. – volume: 27 start-page: 1053 year: 2016 ident: 10.1016/j.asoc.2022.108947_b19 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 38 start-page: 2228 year: 2021 ident: 10.1016/j.asoc.2022.108947_b5 article-title: An adaptive resistance and stamina strategy-based dragonfly algorithm for solving engineering optimization problems publication-title: Eng. Computation. doi: 10.1108/EC-08-2019-0362 – volume: 1 start-page: 1 year: 2014 ident: 10.1016/j.asoc.2022.108947_b9 article-title: An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems publication-title: J. Intell. Manuf. – volume: 9 start-page: 92815 year: 2021 ident: 10.1016/j.asoc.2022.108947_b23 article-title: Social network search for global optimization publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3091495 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2022.108947_b35 article-title: Multi-population modified l-shade for single objective bound constrained optimization – volume: 7 start-page: 13 year: 2016 ident: 10.1016/j.asoc.2022.108947_b12 article-title: Very accurate parameter estimation of single-and double-diode solar cell models using a modified artificial bee colony algorithm publication-title: Int. J. Energy Env. E doi: 10.1007/s40095-015-0198-5 – volume: 94 start-page: 209 year: 2013 ident: 10.1016/j.asoc.2022.108947_b15 article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution publication-title: Sol. Energy doi: 10.1016/j.solener.2013.05.007 – volume: 17 start-page: 97 issue: 1 year: 2020 ident: 10.1016/j.asoc.2022.108947_b39 article-title: Swarm-based chaotic gravitational search algorithm for solving mechanical engineering design problems publication-title: World. J. Eng. doi: 10.1108/WJE-09-2019-0254 – volume: 20 start-page: 570 year: 2017 ident: 10.1016/j.asoc.2022.108947_b6 article-title: A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem publication-title: Eng. Sci. Technol. – volume: 52 start-page: 915 year: 2020 ident: 10.1016/j.asoc.2022.108947_b1 article-title: Optimization of a frame structure using the Coulomb force search strategy-based dragonfly algorithm publication-title: Eng. Optimiz. doi: 10.1080/0305215X.2019.1618290 – volume: 46 start-page: 79 year: 2017 ident: 10.1016/j.asoc.2022.108947_b3 article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems publication-title: Appl. Intell. doi: 10.1007/s10489-016-0825-8 – volume: 179 start-page: 2232 year: 2009 ident: 10.1016/j.asoc.2022.108947_b20 article-title: GSA : a gravitational search algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2009.03.004 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2022.108947_b37 article-title: Evaluating the performance of adaptive gaining-sharing knowledge based algorithm on CEC 2020 benchmark problems – volume: 218 start-page: 11125 year: 2012 ident: 10.1016/j.asoc.2022.108947_b32 article-title: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm publication-title: Appl. Math. Comput. – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2022.108947_b36 article-title: Ranked archive differential evolution with selective pressure for CEC 2020 numerical optimization – volume: 41 start-page: 1647 year: 2013 ident: 10.1016/j.asoc.2022.108947_b25 article-title: Elite opposition-based particle swarm optimization publication-title: Acta. Electr. Sinica – volume: 8 start-page: 906 year: 2008 ident: 10.1016/j.asoc.2022.108947_b24 article-title: Opposition versus randomness in soft computing techniques publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2007.07.010 – volume: 13 start-page: 526 year: 2009 ident: 10.1016/j.asoc.2022.108947_b26 article-title: Differential evolution using a neighborhood-based mutation operator publication-title: IEEE T. Evol. Comput. doi: 10.1109/TEVC.2008.2009457 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.asoc.2022.108947_b30 article-title: GSA: A gravitational search algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 15 start-page: 406 year: 2020 ident: 10.1016/j.asoc.2022.108947_b2 article-title: Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer publication-title: Front. Mech. Eng-Prc. doi: 10.1007/s11465-019-0578-2 – volume: 105 year: 2009 ident: 10.1016/j.asoc.2022.108947_b8 article-title: Parameter extraction of solar cells using particle swarm optimization publication-title: J. Appl. Phys. doi: 10.1063/1.3122082 – volume: 2 start-page: 21 issue: 1 year: 2011 ident: 10.1016/j.asoc.2022.108947_b40 article-title: Power comparisons of shapiro-wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests publication-title: J. Stat. Model. Anal. – volume: 53 start-page: 407 year: 2017 ident: 10.1016/j.asoc.2022.108947_b31 article-title: Chaotic gravitational constants for the gravitational search algorithm publication-title: Appl. Softw. Comput. doi: 10.1016/j.asoc.2017.01.008 – volume: 10 start-page: 16 year: 2016 ident: 10.1016/j.asoc.2022.108947_b28 article-title: A cuckoo optimization algorithm using elite opposition-based learning and chaotic disturbance publication-title: J. Softw. Eng. doi: 10.3923/jse.2016.16.28 – volume: 200 start-page: 141 year: 2017 ident: 10.1016/j.asoc.2022.108947_b7 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2017.05.029 – volume: 149 year: 2020 ident: 10.1016/j.asoc.2022.108947_b22 article-title: Chimp optimization algorithm publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2020.113338 – volume: 40 start-page: 134 issue: 11 year: 2021 ident: 10.1016/j.asoc.2022.108947_b42 article-title: Optimization design of drum brake stability based on Kriging surrogate model publication-title: J. Vib. Shock. – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.asoc.2022.108947_b18 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2022.108947_b33 article-title: Eigenvector crossover in jde100 algorithm – volume: 112 start-page: 185 year: 2013 ident: 10.1016/j.asoc.2022.108947_b16 article-title: Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.06.004 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2022.108947_b38 article-title: DISh-xx solving cec2020 single objective bound constrained numerical optimization benchmark – volume: 11 start-page: 25012 year: 2021 ident: 10.1016/j.asoc.2022.108947_b41 article-title: An adaptive instinctive reaction strategy based on harris hawks optimization algorithm for numerical optimization problems publication-title: AIP Adv. doi: 10.1063/5.0035635 – volume: 72 start-page: 93 year: 2014 ident: 10.1016/j.asoc.2022.108947_b11 article-title: Parameter identification of solar cells using artificial bee colony optimization publication-title: Energy doi: 10.1016/j.energy.2014.05.011 – volume: 41 start-page: 893 year: 2010 ident: 10.1016/j.asoc.2022.108947_b17 article-title: Optimal design of skeletal structures via the charged system search algorithm publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-009-0462-5 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2022.108947_b34 article-title: Improving cuckoo search: incorporating changes for CEC 2017 and CEC 2020 benchmark problems – volume: 183 start-page: 1 year: 2012 ident: 10.1016/j.asoc.2022.108947_b10 article-title: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.08.006 |
| SSID | ssj0016928 |
| Score | 2.6066425 |
| Snippet | Highly non-linear optimization problems are widely found in many real-world engineering applications. To tackle these problems, a novel assisted optimization... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108947 |
| SubjectTerms | Chaotic k-best gravitational search Grey wolf optimizer algorithm Opposition-based learning Parameter identification |
| Title | Optimization of an auto drum fashioned brake using the elite opposition-based learning and chaotic k-best gravitational search strategy based grey wolf optimizer algorithm |
| URI | https://dx.doi.org/10.1016/j.asoc.2022.108947 |
| Volume | 123 |
| WOSCitedRecordID | wos000805689700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016928 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3qjlpTlwi1LlnfWxQkWAoCBR0HKK7MRp95WsspvS_iIO_ElmYju7bFEFSFyilXftOJlvPePxfDOMvUCrIU2ElG6okqEbFSiLoReWbio8Kb1yqLwu5P_Lu_T4eDga8Y-DwXfLhTmfpVU1vLjgi_8qamxDYRN19i_E3Q-KDfgZhY5XFDte_0jwH3ARmBt2ZXfKXzmiRQuzaNq5U1LtpLois7MRU-W0S0uXUkRGduqFjeJySb8VtqqEJjLmZ6KmBK9TV6Iycah0kUnxTawT7T9Z6nS3l47uj9v5S-dbPStx6G5eqnHE7LRuxquz-aZlbM3hJeqFLtC9XVmt2tUN047arzXRjsX6i_ctNY_Gop6Kce8uwnma5ur0su0PlQwRBVsn4013R7AOjTU-uCs8HL1sE9C4cWbadV0Tma_oCO2umBwIhP8B3YLiLLnO-7mVe_sTDUzjBhTLwoP0BtsN0pijBtg9fHM0etsfWCW8K-PbT8Tws3Qo4fadfm8Dbdg1J3fZbbMhgUMNpHtsoKr77I4t9gFm7X_AfmziCuoSRAWEKyBcQY8r6HAFHa4AcQUdrmAbV2BxhcMUYHAFGlfwC65A4wosrkD3J1wB4Qp6XEGPq4fs86ujk5evXVPpw81Dz1u5cZDkflEEvkBrtAykDEIZeTKNAhX6Ko4LGSvPV2gdo73LpSfStPCTMi9kVHLJZfiI7VT4kHsMijzBV4xrDs-jSMUhz9OixH1zEPIyT0W5z3z77rPcPAtVY5llNt5xkpG8MpJXpuW1z5y-z0Ingbn217EVaWbMWG2eZojAa_o9_sd-T9it9R_lKdtZNa16xm7m56vxsnlugPoTBg_MrQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+an+auto+drum+fashioned+brake+using+the+elite+opposition-based+learning+and+chaotic+k-best+gravitational+search+strategy+based+grey+wolf+optimizer+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Yuan%2C+Yongliang&rft.au=Mu%2C+Xiaokai&rft.au=Shao%2C+Xiangyu&rft.au=Ren%2C+Jianji&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=123&rft_id=info:doi/10.1016%2Fj.asoc.2022.108947&rft.externalDocID=S1568494622002927 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |