Optimization of an auto drum fashioned brake using the elite opposition-based learning and chaotic k-best gravitational search strategy based grey wolf optimizer algorithm

Highly non-linear optimization problems are widely found in many real-world engineering applications. To tackle these problems, a novel assisted optimization strategy, named elite opposition-based learning and chaotic k-best gravitational search strategy (EOCS), is proposed for the grey wolf optimiz...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 123; p. 108947
Main Authors: Yuan, Yongliang, Mu, Xiaokai, Shao, Xiangyu, Ren, Jianji, Zhao, Yong, Wang, Zhenxi
Format: Journal Article
Language:English
Published: Elsevier B.V 01.07.2022
Subjects:
ISSN:1568-4946
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Highly non-linear optimization problems are widely found in many real-world engineering applications. To tackle these problems, a novel assisted optimization strategy, named elite opposition-based learning and chaotic k-best gravitational search strategy (EOCS), is proposed for the grey wolf optimizer (GWO) algorithm. In the EOCS based grey wolf optimizer (EOCSGWO) algorithm, the elite opposition-based learning strategy (EOBLS) is proposed to take full advantage of better-performing particles for optimization in the next generations. A chaotic k-best gravitational search strategy (CKGSS) is proposed to obtain the adaptive step to improve the global exploratory ability. The performance of the EOCSGWO is verified and compared with those of other seven meta-heuristic optimization algorithms using ten popular benchmark functions. Results show that the EOCSGWO is more competitive in accuracy and robustness, and obtains the first in ranking among the six optimization algorithms. Further, the EOCSGWO is employed to optimize the design of an auto drum fashioned brake. The results show that the braking efficiency factor can be improved by 28.412% compared with the initial design. •Elite opposition-based learning and chaotic k-best gravitational search strategy (EOCS) are proposed.•A novel search strategy is proposed to enhance the global exploratory capability and convergence speed.•The EOCS based grey wolf optimizer (EOCSGWO) algorithm outperforms its peer in terms of searching accuracy and reliability.•EOCSGWO is applied to ensure the parameter of an auto drum fashioned brake.
AbstractList Highly non-linear optimization problems are widely found in many real-world engineering applications. To tackle these problems, a novel assisted optimization strategy, named elite opposition-based learning and chaotic k-best gravitational search strategy (EOCS), is proposed for the grey wolf optimizer (GWO) algorithm. In the EOCS based grey wolf optimizer (EOCSGWO) algorithm, the elite opposition-based learning strategy (EOBLS) is proposed to take full advantage of better-performing particles for optimization in the next generations. A chaotic k-best gravitational search strategy (CKGSS) is proposed to obtain the adaptive step to improve the global exploratory ability. The performance of the EOCSGWO is verified and compared with those of other seven meta-heuristic optimization algorithms using ten popular benchmark functions. Results show that the EOCSGWO is more competitive in accuracy and robustness, and obtains the first in ranking among the six optimization algorithms. Further, the EOCSGWO is employed to optimize the design of an auto drum fashioned brake. The results show that the braking efficiency factor can be improved by 28.412% compared with the initial design. •Elite opposition-based learning and chaotic k-best gravitational search strategy (EOCS) are proposed.•A novel search strategy is proposed to enhance the global exploratory capability and convergence speed.•The EOCS based grey wolf optimizer (EOCSGWO) algorithm outperforms its peer in terms of searching accuracy and reliability.•EOCSGWO is applied to ensure the parameter of an auto drum fashioned brake.
ArticleNumber 108947
Author Zhao, Yong
Wang, Zhenxi
Ren, Jianji
Shao, Xiangyu
Yuan, Yongliang
Mu, Xiaokai
Author_xml – sequence: 1
  givenname: Yongliang
  surname: Yuan
  fullname: Yuan, Yongliang
  organization: School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China
– sequence: 2
  givenname: Xiaokai
  surname: Mu
  fullname: Mu, Xiaokai
  organization: School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 3
  givenname: Xiangyu
  surname: Shao
  fullname: Shao, Xiangyu
  email: shaoxy@hpu.edu.cn
  organization: School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
– sequence: 4
  givenname: Jianji
  surname: Ren
  fullname: Ren, Jianji
  email: renjianji@hpu.edu.cn
  organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454003, China
– sequence: 5
  givenname: Yong
  surname: Zhao
  fullname: Zhao, Yong
  organization: School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China
– sequence: 6
  givenname: Zhenxi
  surname: Wang
  fullname: Wang, Zhenxi
  organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454003, China
BookMark eNp9kE1u2zAQhblwgDppL9DVXEAOSf3YAropgqYpECCbdk0MyZFEWxYNknbhXqmXLGV71UVWAwze92beu2eLyU_E2GfBV4KL5nG7wujNSnIp82LTVusFW4q62RRVWzUf2H2MW56Frdws2d-3Q3J79weT8xP4DnACPCYPNhz30GEc8p4s6IA7gmN0Uw9pIKDRJQJ_OPjoZrTQGLNsJAzTrMHJghnQJ2dgV2iKCfqAJ5cuh3CEmJVmgJgCJurPcOX7QGf47ccuW1_-ogA49j64NOw_srsOx0ifbvOB_Xr-9vPppXh9-_7j6etrYUrOU1HLxghrpUAheCe1lqWuuF5XkkpBdW11TVxQ05RVKVrNcb22oumM1VXX6laXD0xefU3wMQbq1CG4PYazElzNFautmitWc8XqWnGGNv9B5hY2J3Tj--iXK0o51MlRUNE4mgxZF8gkZb17D_8HuXeg8w
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_115426
crossref_primary_10_1016_j_aei_2023_101908
crossref_primary_10_1016_j_apm_2024_115655
crossref_primary_10_1007_s00521_023_09202_8
crossref_primary_10_1016_j_egyr_2022_12_149
crossref_primary_10_1007_s13369_023_08376_6
crossref_primary_10_1063_5_0157491
crossref_primary_10_1038_s41598_024_57098_8
crossref_primary_10_3390_e24111640
crossref_primary_10_3390_technologies12080136
crossref_primary_10_1016_j_asoc_2023_110085
crossref_primary_10_1063_5_0137562
crossref_primary_10_3390_su15139853
crossref_primary_10_1186_s10033_024_01109_2
crossref_primary_10_3390_app13095612
crossref_primary_10_1108_RIA_12_2023_0177
crossref_primary_10_1063_5_0157407
crossref_primary_10_1080_08839514_2023_2175115
crossref_primary_10_1155_2022_3986247
crossref_primary_10_3390_biomimetics9010032
crossref_primary_10_1109_ACCESS_2023_3265712
crossref_primary_10_1109_ACCESS_2023_3262600
crossref_primary_10_1109_ACCESS_2023_3304889
crossref_primary_10_1016_j_eswa_2024_124581
crossref_primary_10_1109_ACCESS_2022_3203720
crossref_primary_10_1063_5_0147299
crossref_primary_10_1063_5_0167500
crossref_primary_10_1016_j_eswa_2024_125863
crossref_primary_10_1063_5_0141913
crossref_primary_10_1007_s00521_024_10621_4
crossref_primary_10_1016_j_cma_2023_116664
crossref_primary_10_1016_j_renene_2024_120211
crossref_primary_10_1109_ACCESS_2023_3314514
crossref_primary_10_1016_j_eswa_2022_119269
crossref_primary_10_1109_ACCESS_2023_3276932
crossref_primary_10_1063_5_0149442
crossref_primary_10_1007_s13042_024_02216_1
crossref_primary_10_3390_app15020718
crossref_primary_10_1016_j_cma_2025_117908
crossref_primary_10_3390_app131810149
crossref_primary_10_3390_math13172721
crossref_primary_10_3390_app12199709
crossref_primary_10_1007_s00202_024_02821_x
crossref_primary_10_1016_j_oceaneng_2023_113647
crossref_primary_10_1038_s41598_023_50910_x
crossref_primary_10_1109_ACCESS_2022_3195519
crossref_primary_10_1016_j_engappai_2023_106469
crossref_primary_10_1016_j_oceaneng_2023_114317
crossref_primary_10_1016_j_jer_2024_01_008
crossref_primary_10_1038_s41598_025_91418_w
crossref_primary_10_1063_5_0153077
crossref_primary_10_1063_5_0153550
crossref_primary_10_1007_s42979_024_03290_6
crossref_primary_10_1109_ACCESS_2022_3214206
crossref_primary_10_1016_j_est_2024_113388
crossref_primary_10_1115_1_4069152
crossref_primary_10_1007_s11227_023_05086_6
crossref_primary_10_1016_j_aei_2023_102210
crossref_primary_10_1007_s13369_024_08710_6
crossref_primary_10_1038_s41598_024_54807_1
crossref_primary_10_1038_s41598_024_65676_z
crossref_primary_10_1016_j_ins_2024_121714
crossref_primary_10_1063_5_0108340
crossref_primary_10_1007_s10462_024_10986_x
crossref_primary_10_1109_ACCESS_2022_3193769
crossref_primary_10_1007_s00521_025_11652_1
crossref_primary_10_1016_j_swevo_2025_102043
crossref_primary_10_26599_TST_2023_9010144
crossref_primary_10_1007_s42235_023_00387_1
crossref_primary_10_1007_s11227_022_04754_3
crossref_primary_10_1063_5_0130344
crossref_primary_10_1016_j_aei_2023_102209
crossref_primary_10_1007_s00500_023_07952_0
crossref_primary_10_1016_j_aei_2023_102004
crossref_primary_10_1063_5_0152822
crossref_primary_10_1007_s00371_023_03016_4
crossref_primary_10_1109_ACCESS_2023_3265469
crossref_primary_10_1016_j_applthermaleng_2023_120386
crossref_primary_10_1109_ACCESS_2022_3221744
crossref_primary_10_1109_ACCESS_2023_3241279
crossref_primary_10_1063_5_0184113
crossref_primary_10_1038_s41598_024_63826_x
crossref_primary_10_1109_ACCESS_2023_3261266
Cites_doi 10.1016/j.solener.2010.02.012
10.1016/j.enconman.2015.05.074
10.1016/j.future.2019.02.028
10.1007/s00521-015-1920-1
10.1108/EC-08-2019-0362
10.1109/ACCESS.2021.3091495
10.1007/s40095-015-0198-5
10.1016/j.solener.2013.05.007
10.1108/WJE-09-2019-0254
10.1080/0305215X.2019.1618290
10.1007/s10489-016-0825-8
10.1016/j.ins.2009.03.004
10.1016/j.asoc.2007.07.010
10.1109/TEVC.2008.2009457
10.1007/s11465-019-0578-2
10.1063/1.3122082
10.1016/j.asoc.2017.01.008
10.3923/jse.2016.16.28
10.1016/j.apenergy.2017.05.029
10.1016/j.eswa.2020.113338
10.1016/j.advengsoft.2013.12.007
10.1016/j.apenergy.2013.06.004
10.1063/5.0035635
10.1016/j.energy.2014.05.011
10.1007/s00158-009-0462-5
10.1016/j.ins.2011.08.006
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2022.108947
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2022_108947
S1568494622002927
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-526c1dd21a110f2bb23b40b742e31e55db5e01e6634319b0a77d16fcdb4f9b9b3
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805689700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 20:19:53 EST 2025
Sat Nov 29 07:02:17 EST 2025
Sun Apr 06 06:54:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Grey wolf optimizer algorithm
Chaotic k-best gravitational search
Parameter identification
Opposition-based learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-526c1dd21a110f2bb23b40b742e31e55db5e01e6634319b0a77d16fcdb4f9b9b3
ParticipantIDs crossref_primary_10_1016_j_asoc_2022_108947
crossref_citationtrail_10_1016_j_asoc_2022_108947
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108947
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Guo, Wang, Yue (b29) 2015; 28
Salgotra, Singh, Saha (b34) 2020
Viktorin, Senkerik, Pluhacek (b38) 2020
Stanovov, Akhmedova, Semenkin (b36) 2020
Das, Abraham, Chakraborty (b26) 2009; 13
Mirjalili, Hashim, Sardroudi (b32) 2012; 218
Kaveh, Talatahari (b17) 2010; 41
Wang, Li, Liu (b42) 2021; 40
Zagrouba, Sellami, Bouaïcha, Ksouri (b13) 2010; 84
Mirjalili, Jangir, Saremi (b3) 2017; 46
Ye, Wang, Xu (b8) 2009; 105
Oliva, Aziz, Hassanien (b7) 2017; 200
Yuan, Lv, Wang (b2) 2020; 15
Rashedi, Nezamabadi-Pour, Saryazdi (b20) 2009; 179
Heidari, Mirjalili, Faris (b21) 2019; 97
Jamadi, Merrikh-Bayat, Bigdeli (b12) 2016; 7
Yuan, Wang, Lv (b5) 2021; 38
Rao, Savsani, Vakharia (b10) 2012; 183
Yu, Wang, Wang (b9) 2014; 1
Oliva, Cuevas, Pajares (b11) 2014; 72
Jiang, Maskell, Patra (b16) 2013; 112
Khishe, Mosavi (b22) 2020; 149
Mirjalili, Gandomi (b31) 2017; 53
Jou, Wang, Yeh (b35) 2020
Ali, Anas, Ali (b37) 2020
Zhou, Wu, Wang (b25) 2013; 41
Mirjalili, Mirjalili, Lewis (b18) 2014; 69
Yuan, Lv, Wang (b1) 2020; 52
Li, Chen, Zhang (b28) 2016; 10
Madadi, Motlagh (b4) 2014; 4
Talatahari, Bayzidi, Saraee (b23) 2021; 9
Rahnamayan, Tizhoosh, Salama (b24) 2008; 8
Mirjalili (b19) 2016; 27
Bujok, Kolenovsky, Janisch (b33) 2020
Rather, Bala (b39) 2020; 17
Jangir, Parmar, Trivedi (b6) 2017; 20
Razali, Wah (b40) 2011; 2
Alam, Yousri, Eteiba (b14) 2015; 101
Esmat, Hossein, Saeid (b30) 2009; 179
Yuan, Ren, Zu (b41) 2021; 11
Gong, Cai (b15) 2013; 94
Li, Zhou, Zhang (b27) 2016; 1
Yuan (10.1016/j.asoc.2022.108947_b5) 2021; 38
Yu (10.1016/j.asoc.2022.108947_b9) 2014; 1
Alam (10.1016/j.asoc.2022.108947_b14) 2015; 101
Rashedi (10.1016/j.asoc.2022.108947_b20) 2009; 179
Mirjalili (10.1016/j.asoc.2022.108947_b32) 2012; 218
Viktorin (10.1016/j.asoc.2022.108947_b38) 2020
Oliva (10.1016/j.asoc.2022.108947_b11) 2014; 72
Bujok (10.1016/j.asoc.2022.108947_b33) 2020
Das (10.1016/j.asoc.2022.108947_b26) 2009; 13
Stanovov (10.1016/j.asoc.2022.108947_b36) 2020
Li (10.1016/j.asoc.2022.108947_b27) 2016; 1
Zagrouba (10.1016/j.asoc.2022.108947_b13) 2010; 84
Jangir (10.1016/j.asoc.2022.108947_b6) 2017; 20
Gong (10.1016/j.asoc.2022.108947_b15) 2013; 94
Madadi (10.1016/j.asoc.2022.108947_b4) 2014; 4
Jamadi (10.1016/j.asoc.2022.108947_b12) 2016; 7
Yuan (10.1016/j.asoc.2022.108947_b2) 2020; 15
Ye (10.1016/j.asoc.2022.108947_b8) 2009; 105
Li (10.1016/j.asoc.2022.108947_b28) 2016; 10
Jou (10.1016/j.asoc.2022.108947_b35) 2020
Guo (10.1016/j.asoc.2022.108947_b29) 2015; 28
Jiang (10.1016/j.asoc.2022.108947_b16) 2013; 112
Mirjalili (10.1016/j.asoc.2022.108947_b31) 2017; 53
Wang (10.1016/j.asoc.2022.108947_b42) 2021; 40
Yuan (10.1016/j.asoc.2022.108947_b41) 2021; 11
Khishe (10.1016/j.asoc.2022.108947_b22) 2020; 149
Mirjalili (10.1016/j.asoc.2022.108947_b19) 2016; 27
Ali (10.1016/j.asoc.2022.108947_b37) 2020
Mirjalili (10.1016/j.asoc.2022.108947_b18) 2014; 69
Oliva (10.1016/j.asoc.2022.108947_b7) 2017; 200
Zhou (10.1016/j.asoc.2022.108947_b25) 2013; 41
Salgotra (10.1016/j.asoc.2022.108947_b34) 2020
Rao (10.1016/j.asoc.2022.108947_b10) 2012; 183
Kaveh (10.1016/j.asoc.2022.108947_b17) 2010; 41
Esmat (10.1016/j.asoc.2022.108947_b30) 2009; 179
Rahnamayan (10.1016/j.asoc.2022.108947_b24) 2008; 8
Yuan (10.1016/j.asoc.2022.108947_b1) 2020; 52
Mirjalili (10.1016/j.asoc.2022.108947_b3) 2017; 46
Razali (10.1016/j.asoc.2022.108947_b40) 2011; 2
Talatahari (10.1016/j.asoc.2022.108947_b23) 2021; 9
Rather (10.1016/j.asoc.2022.108947_b39) 2020; 17
Heidari (10.1016/j.asoc.2022.108947_b21) 2019; 97
References_xml – volume: 1
  start-page: 1
  year: 2014
  end-page: 13
  ident: b9
  article-title: An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems
  publication-title: J. Intell. Manuf.
– start-page: 1
  year: 2020
  end-page: 8
  ident: b38
  article-title: DISh-xx solving cec2020 single objective bound constrained numerical optimization benchmark
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– volume: 101
  start-page: 410
  year: 2015
  end-page: 422
  ident: b14
  article-title: Flower pollination algorithm based solar PV parameter estimation
  publication-title: Energy Convers. Manag.
– volume: 84
  start-page: 860
  year: 2010
  end-page: 866
  ident: b13
  article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction
  publication-title: Sol. Energy
– volume: 8
  start-page: 906
  year: 2008
  end-page: 918
  ident: b24
  article-title: Opposition versus randomness in soft computing techniques
  publication-title: Appl. Soft. Comput.
– start-page: 1
  year: 2020
  end-page: 7
  ident: b34
  article-title: Improving cuckoo search: incorporating changes for CEC 2017 and CEC 2020 benchmark problems
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– volume: 17
  start-page: 97
  year: 2020
  end-page: 114
  ident: b39
  article-title: Swarm-based chaotic gravitational search algorithm for solving mechanical engineering design problems
  publication-title: World. J. Eng.
– volume: 53
  start-page: 407
  year: 2017
  end-page: 419
  ident: b31
  article-title: Chaotic gravitational constants for the gravitational search algorithm
  publication-title: Appl. Softw. Comput.
– volume: 105
  year: 2009
  ident: b8
  article-title: Parameter extraction of solar cells using particle swarm optimization
  publication-title: J. Appl. Phys.
– volume: 200
  start-page: 141
  year: 2017
  end-page: 154
  ident: b7
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl. Energ.
– volume: 94
  start-page: 209
  year: 2013
  end-page: 220
  ident: b15
  article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution
  publication-title: Sol. Energy
– volume: 20
  start-page: 570
  year: 2017
  end-page: 586
  ident: b6
  article-title: A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem
  publication-title: Eng. Sci. Technol.
– volume: 72
  start-page: 93
  year: 2014
  end-page: 102
  ident: b11
  article-title: Parameter identification of solar cells using artificial bee colony optimization
  publication-title: Energy
– volume: 10
  start-page: 16
  year: 2016
  end-page: 28
  ident: b28
  article-title: A cuckoo optimization algorithm using elite opposition-based learning and chaotic disturbance
  publication-title: J. Softw. Eng.
– volume: 41
  start-page: 893
  year: 2010
  end-page: 911
  ident: b17
  article-title: Optimal design of skeletal structures via the charged system search algorithm
  publication-title: Struct. Multidiscip. Optim.
– volume: 2
  start-page: 21
  year: 2011
  end-page: 33
  ident: b40
  article-title: Power comparisons of shapiro-wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests
  publication-title: J. Stat. Model. Anal.
– start-page: 1
  year: 2020
  end-page: 8
  ident: b37
  article-title: Evaluating the performance of adaptive gaining-sharing knowledge based algorithm on CEC 2020 benchmark problems
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– volume: 52
  start-page: 915
  year: 2020
  end-page: 931
  ident: b1
  article-title: Optimization of a frame structure using the Coulomb force search strategy-based dragonfly algorithm
  publication-title: Eng. Optimiz.
– volume: 46
  start-page: 79
  year: 2017
  end-page: 95
  ident: b3
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl. Intell.
– start-page: 1
  year: 2020
  end-page: 8
  ident: b35
  article-title: Multi-population modified l-shade for single objective bound constrained optimization
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– volume: 112
  start-page: 185
  year: 2013
  end-page: 193
  ident: b16
  article-title: Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm
  publication-title: Appl. Energy
– volume: 13
  start-page: 526
  year: 2009
  end-page: 553
  ident: b26
  article-title: Differential evolution using a neighborhood-based mutation operator
  publication-title: IEEE T. Evol. Comput.
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b19
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
– volume: 149
  year: 2020
  ident: b22
  article-title: Chimp optimization algorithm
  publication-title: Expert. Syst. Appl.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b30
  article-title: GSA: A gravitational search algorithm
  publication-title: Inform. Sci.
– volume: 11
  start-page: 25012
  year: 2021
  ident: b41
  article-title: An adaptive instinctive reaction strategy based on harris hawks optimization algorithm for numerical optimization problems
  publication-title: AIP Adv.
– volume: 9
  start-page: 92815
  year: 2021
  end-page: 92863
  ident: b23
  article-title: Social network search for global optimization
  publication-title: IEEE Access.
– volume: 38
  start-page: 2228
  year: 2021
  end-page: 2251
  ident: b5
  article-title: An adaptive resistance and stamina strategy-based dragonfly algorithm for solving engineering optimization problems
  publication-title: Eng. Computation.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b20
  article-title: GSA : a gravitational search algorithm
  publication-title: Inform. Sci.
– volume: 7
  start-page: 13
  year: 2016
  end-page: 25
  ident: b12
  article-title: Very accurate parameter estimation of single-and double-diode solar cell models using a modified artificial bee colony algorithm
  publication-title: Int. J. Energy Env. E
– volume: 1
  start-page: 1
  year: 2016
  end-page: 22
  ident: b27
  article-title: Lévy-flight moth-flame algorithm for function optimization and engineering design problems
  publication-title: Math. Probl. Eng.
– start-page: 1
  year: 2020
  end-page: 7
  ident: b36
  article-title: Ranked archive differential evolution with selective pressure for CEC 2020 numerical optimization
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– volume: 4
  start-page: 373
  year: 2014
  end-page: 379
  ident: b4
  article-title: Optimal control of DC motor using grey wolf optimizer algorithm
  publication-title: Tech. J. Eng. Appl. Science.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b18
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b21
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future. Gener. Comp. Sy.
– volume: 218
  start-page: 11125
  year: 2012
  end-page: 11137
  ident: b32
  article-title: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm
  publication-title: Appl. Math. Comput.
– volume: 15
  start-page: 406
  year: 2020
  end-page: 416
  ident: b2
  article-title: Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer
  publication-title: Front. Mech. Eng-Prc.
– start-page: 1
  year: 2020
  end-page: 6
  ident: b33
  article-title: Eigenvector crossover in jde100 algorithm
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– volume: 41
  start-page: 1647
  year: 2013
  end-page: 1652
  ident: b25
  article-title: Elite opposition-based particle swarm optimization
  publication-title: Acta. Electr. Sinica
– volume: 40
  start-page: 134
  year: 2021
  end-page: 138
  ident: b42
  article-title: Optimization design of drum brake stability based on Kriging surrogate model
  publication-title: J. Vib. Shock.
– volume: 28
  start-page: 1268
  year: 2015
  end-page: 1275
  ident: b29
  article-title: Elite opposition-based Artificial Bee Colony algorithm for global optimization
  publication-title: Int. J. Eng-Tran.
– volume: 183
  start-page: 1
  year: 2012
  end-page: 150
  ident: b10
  article-title: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inform. Sci.
– volume: 84
  start-page: 860
  year: 2010
  ident: 10.1016/j.asoc.2022.108947_b13
  article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2010.02.012
– volume: 101
  start-page: 410
  year: 2015
  ident: 10.1016/j.asoc.2022.108947_b14
  article-title: Flower pollination algorithm based solar PV parameter estimation
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.05.074
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.asoc.2022.108947_b21
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future. Gener. Comp. Sy.
  doi: 10.1016/j.future.2019.02.028
– volume: 28
  start-page: 1268
  year: 2015
  ident: 10.1016/j.asoc.2022.108947_b29
  article-title: Elite opposition-based Artificial Bee Colony algorithm for global optimization
  publication-title: Int. J. Eng-Tran.
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2022.108947_b27
  article-title: Lévy-flight moth-flame algorithm for function optimization and engineering design problems
  publication-title: Math. Probl. Eng.
– volume: 4
  start-page: 373
  year: 2014
  ident: 10.1016/j.asoc.2022.108947_b4
  article-title: Optimal control of DC motor using grey wolf optimizer algorithm
  publication-title: Tech. J. Eng. Appl. Science.
– volume: 27
  start-page: 1053
  year: 2016
  ident: 10.1016/j.asoc.2022.108947_b19
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 38
  start-page: 2228
  year: 2021
  ident: 10.1016/j.asoc.2022.108947_b5
  article-title: An adaptive resistance and stamina strategy-based dragonfly algorithm for solving engineering optimization problems
  publication-title: Eng. Computation.
  doi: 10.1108/EC-08-2019-0362
– volume: 1
  start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2022.108947_b9
  article-title: An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems
  publication-title: J. Intell. Manuf.
– volume: 9
  start-page: 92815
  year: 2021
  ident: 10.1016/j.asoc.2022.108947_b23
  article-title: Social network search for global optimization
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3091495
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108947_b35
  article-title: Multi-population modified l-shade for single objective bound constrained optimization
– volume: 7
  start-page: 13
  year: 2016
  ident: 10.1016/j.asoc.2022.108947_b12
  article-title: Very accurate parameter estimation of single-and double-diode solar cell models using a modified artificial bee colony algorithm
  publication-title: Int. J. Energy Env. E
  doi: 10.1007/s40095-015-0198-5
– volume: 94
  start-page: 209
  year: 2013
  ident: 10.1016/j.asoc.2022.108947_b15
  article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.05.007
– volume: 17
  start-page: 97
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108947_b39
  article-title: Swarm-based chaotic gravitational search algorithm for solving mechanical engineering design problems
  publication-title: World. J. Eng.
  doi: 10.1108/WJE-09-2019-0254
– volume: 20
  start-page: 570
  year: 2017
  ident: 10.1016/j.asoc.2022.108947_b6
  article-title: A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem
  publication-title: Eng. Sci. Technol.
– volume: 52
  start-page: 915
  year: 2020
  ident: 10.1016/j.asoc.2022.108947_b1
  article-title: Optimization of a frame structure using the Coulomb force search strategy-based dragonfly algorithm
  publication-title: Eng. Optimiz.
  doi: 10.1080/0305215X.2019.1618290
– volume: 46
  start-page: 79
  year: 2017
  ident: 10.1016/j.asoc.2022.108947_b3
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-016-0825-8
– volume: 179
  start-page: 2232
  year: 2009
  ident: 10.1016/j.asoc.2022.108947_b20
  article-title: GSA : a gravitational search algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2009.03.004
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108947_b37
  article-title: Evaluating the performance of adaptive gaining-sharing knowledge based algorithm on CEC 2020 benchmark problems
– volume: 218
  start-page: 11125
  year: 2012
  ident: 10.1016/j.asoc.2022.108947_b32
  article-title: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm
  publication-title: Appl. Math. Comput.
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108947_b36
  article-title: Ranked archive differential evolution with selective pressure for CEC 2020 numerical optimization
– volume: 41
  start-page: 1647
  year: 2013
  ident: 10.1016/j.asoc.2022.108947_b25
  article-title: Elite opposition-based particle swarm optimization
  publication-title: Acta. Electr. Sinica
– volume: 8
  start-page: 906
  year: 2008
  ident: 10.1016/j.asoc.2022.108947_b24
  article-title: Opposition versus randomness in soft computing techniques
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2007.07.010
– volume: 13
  start-page: 526
  year: 2009
  ident: 10.1016/j.asoc.2022.108947_b26
  article-title: Differential evolution using a neighborhood-based mutation operator
  publication-title: IEEE T. Evol. Comput.
  doi: 10.1109/TEVC.2008.2009457
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.asoc.2022.108947_b30
  article-title: GSA: A gravitational search algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 15
  start-page: 406
  year: 2020
  ident: 10.1016/j.asoc.2022.108947_b2
  article-title: Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer
  publication-title: Front. Mech. Eng-Prc.
  doi: 10.1007/s11465-019-0578-2
– volume: 105
  year: 2009
  ident: 10.1016/j.asoc.2022.108947_b8
  article-title: Parameter extraction of solar cells using particle swarm optimization
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3122082
– volume: 2
  start-page: 21
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2022.108947_b40
  article-title: Power comparisons of shapiro-wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests
  publication-title: J. Stat. Model. Anal.
– volume: 53
  start-page: 407
  year: 2017
  ident: 10.1016/j.asoc.2022.108947_b31
  article-title: Chaotic gravitational constants for the gravitational search algorithm
  publication-title: Appl. Softw. Comput.
  doi: 10.1016/j.asoc.2017.01.008
– volume: 10
  start-page: 16
  year: 2016
  ident: 10.1016/j.asoc.2022.108947_b28
  article-title: A cuckoo optimization algorithm using elite opposition-based learning and chaotic disturbance
  publication-title: J. Softw. Eng.
  doi: 10.3923/jse.2016.16.28
– volume: 200
  start-page: 141
  year: 2017
  ident: 10.1016/j.asoc.2022.108947_b7
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2017.05.029
– volume: 149
  year: 2020
  ident: 10.1016/j.asoc.2022.108947_b22
  article-title: Chimp optimization algorithm
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2020.113338
– volume: 40
  start-page: 134
  issue: 11
  year: 2021
  ident: 10.1016/j.asoc.2022.108947_b42
  article-title: Optimization design of drum brake stability based on Kriging surrogate model
  publication-title: J. Vib. Shock.
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.asoc.2022.108947_b18
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108947_b33
  article-title: Eigenvector crossover in jde100 algorithm
– volume: 112
  start-page: 185
  year: 2013
  ident: 10.1016/j.asoc.2022.108947_b16
  article-title: Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.06.004
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108947_b38
  article-title: DISh-xx solving cec2020 single objective bound constrained numerical optimization benchmark
– volume: 11
  start-page: 25012
  year: 2021
  ident: 10.1016/j.asoc.2022.108947_b41
  article-title: An adaptive instinctive reaction strategy based on harris hawks optimization algorithm for numerical optimization problems
  publication-title: AIP Adv.
  doi: 10.1063/5.0035635
– volume: 72
  start-page: 93
  year: 2014
  ident: 10.1016/j.asoc.2022.108947_b11
  article-title: Parameter identification of solar cells using artificial bee colony optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.011
– volume: 41
  start-page: 893
  year: 2010
  ident: 10.1016/j.asoc.2022.108947_b17
  article-title: Optimal design of skeletal structures via the charged system search algorithm
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0462-5
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108947_b34
  article-title: Improving cuckoo search: incorporating changes for CEC 2017 and CEC 2020 benchmark problems
– volume: 183
  start-page: 1
  year: 2012
  ident: 10.1016/j.asoc.2022.108947_b10
  article-title: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.08.006
SSID ssj0016928
Score 2.6066425
Snippet Highly non-linear optimization problems are widely found in many real-world engineering applications. To tackle these problems, a novel assisted optimization...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108947
SubjectTerms Chaotic k-best gravitational search
Grey wolf optimizer algorithm
Opposition-based learning
Parameter identification
Title Optimization of an auto drum fashioned brake using the elite opposition-based learning and chaotic k-best gravitational search strategy based grey wolf optimizer algorithm
URI https://dx.doi.org/10.1016/j.asoc.2022.108947
Volume 123
WOSCitedRecordID wos000805689700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3qjlpTlwi1LlnfWxQkWAoCBR0HKK7MRp95WsspvS_iIO_ElmYju7bFEFSFyilXftOJlvPePxfDOMvUCrIU2ElG6okqEbFSiLoReWbio8Kb1yqLwu5P_Lu_T4eDga8Y-DwXfLhTmfpVU1vLjgi_8qamxDYRN19i_E3Q-KDfgZhY5XFDte_0jwH3ARmBt2ZXfKXzmiRQuzaNq5U1LtpLois7MRU-W0S0uXUkRGduqFjeJySb8VtqqEJjLmZ6KmBK9TV6Iycah0kUnxTawT7T9Z6nS3l47uj9v5S-dbPStx6G5eqnHE7LRuxquz-aZlbM3hJeqFLtC9XVmt2tUN047arzXRjsX6i_ctNY_Gop6Kce8uwnma5ur0su0PlQwRBVsn4013R7AOjTU-uCs8HL1sE9C4cWbadV0Tma_oCO2umBwIhP8B3YLiLLnO-7mVe_sTDUzjBhTLwoP0BtsN0pijBtg9fHM0etsfWCW8K-PbT8Tws3Qo4fadfm8Dbdg1J3fZbbMhgUMNpHtsoKr77I4t9gFm7X_AfmziCuoSRAWEKyBcQY8r6HAFHa4AcQUdrmAbV2BxhcMUYHAFGlfwC65A4wosrkD3J1wB4Qp6XEGPq4fs86ujk5evXVPpw81Dz1u5cZDkflEEvkBrtAykDEIZeTKNAhX6Ko4LGSvPV2gdo73LpSfStPCTMi9kVHLJZfiI7VT4kHsMijzBV4xrDs-jSMUhz9OixH1zEPIyT0W5z3z77rPcPAtVY5llNt5xkpG8MpJXpuW1z5y-z0Ingbn217EVaWbMWG2eZojAa_o9_sd-T9it9R_lKdtZNa16xm7m56vxsnlugPoTBg_MrQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+an+auto+drum+fashioned+brake+using+the+elite+opposition-based+learning+and+chaotic+k-best+gravitational+search+strategy+based+grey+wolf+optimizer+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Yuan%2C+Yongliang&rft.au=Mu%2C+Xiaokai&rft.au=Shao%2C+Xiangyu&rft.au=Ren%2C+Jianji&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=123&rft_id=info:doi/10.1016%2Fj.asoc.2022.108947&rft.externalDocID=S1568494622002927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon