Human Evolutionary Optimization Algorithm
This paper introduces the Human Evolutionary Optimization Algorithm (HEOA), a metaheuristic algorithm inspired by human evolution. HEOA divides the global search process into two distinct phases: human exploration and human development. Logistic Chaos Mapping is employed for initialization. In the h...
Uložené v:
| Vydané v: | Expert systems with applications Ročník 241; s. 122638 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.05.2024
|
| Predmet: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper introduces the Human Evolutionary Optimization Algorithm (HEOA), a metaheuristic algorithm inspired by human evolution. HEOA divides the global search process into two distinct phases: human exploration and human development. Logistic Chaos Mapping is employed for initialization. In the human exploration phase, an initial global search is conducted, followed by the human development phase, in which the population is categorized into leaders, explorers, followers, and losers, each utilizing distinct search strategies. The convergence speed and search accuracy of HEOA are evaluated using 23 well-established test functions. Furthermore, the algorithm's applicability in engineering optimization is assessed with four engineering problems. A comparative analysis with ten other algorithms highlights HEOA's effectiveness, as evidenced by various performance metrics and statistical measures. Consistently, the results demonstrate that HEOA surpasses most current state-of-the-art algorithms in approximating optimal solutions for complex global optimization problems. The MATLAB code for HEOA is available at https://github.com/junbolian/HEOA.git. |
|---|---|
| AbstractList | This paper introduces the Human Evolutionary Optimization Algorithm (HEOA), a metaheuristic algorithm inspired by human evolution. HEOA divides the global search process into two distinct phases: human exploration and human development. Logistic Chaos Mapping is employed for initialization. In the human exploration phase, an initial global search is conducted, followed by the human development phase, in which the population is categorized into leaders, explorers, followers, and losers, each utilizing distinct search strategies. The convergence speed and search accuracy of HEOA are evaluated using 23 well-established test functions. Furthermore, the algorithm's applicability in engineering optimization is assessed with four engineering problems. A comparative analysis with ten other algorithms highlights HEOA's effectiveness, as evidenced by various performance metrics and statistical measures. Consistently, the results demonstrate that HEOA surpasses most current state-of-the-art algorithms in approximating optimal solutions for complex global optimization problems. The MATLAB code for HEOA is available at https://github.com/junbolian/HEOA.git. |
| ArticleNumber | 122638 |
| Author | Lian, Junbo Hui, Guohua |
| Author_xml | – sequence: 1 givenname: Junbo orcidid: 0000-0001-7602-0022 surname: Lian fullname: Lian, Junbo email: junbolian@qq.com – sequence: 2 givenname: Guohua orcidid: 0000-0002-6786-4992 surname: Hui fullname: Hui, Guohua email: deliver1982@163.com |
| BookMark | eNp9zz1PwzAQgGELFYm28AeYsjIknO0kjiWWqiotUqUuMFuOewFH-ahstwh-PQllYuhgnTy8p3tmZNL1HRJyTyGhQPPHOkH_qRMGjCeUsZwXV2RKC8HjXEg-IVOQmYhTKtIbMvO-BqACQEzJw-bY6i5anfrmGGzfafcV7Q7BtvZbj_9o0bz3zoaP9pZcV7rxePc35-TtefW63MTb3fpludjGhgOEOAOObHgFy9Gke8As1bLSKbCKa8lMyXklcw2FlCVSU6alZMgzkxclFwiGz0lx3mtc773DShkbfm8JTttGUVAjWdVqJKuRrM7kIWX_0oOz7UC6HD2dIxxQJ4tOeWOxM7i3Dk1Q-95eyn8ASRxx5A |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_127416 crossref_primary_10_1186_s40537_025_01260_0 crossref_primary_10_3390_math13030418 crossref_primary_10_1016_j_asoc_2025_113071 crossref_primary_10_1038_s41598_025_93410_w crossref_primary_10_3390_app15020595 crossref_primary_10_1007_s10586_025_05315_y crossref_primary_10_1089_jmf_2024_k_0004 crossref_primary_10_3390_biomimetics10090629 crossref_primary_10_1007_s10586_025_05508_5 crossref_primary_10_1038_s41598_025_91270_y crossref_primary_10_1016_j_asoc_2025_113505 crossref_primary_10_1007_s11227_024_06092_y crossref_primary_10_3390_biomimetics10060380 crossref_primary_10_3390_sym17060841 crossref_primary_10_1007_s10586_024_05094_y crossref_primary_10_1007_s12065_025_01052_8 crossref_primary_10_1016_j_compbiomed_2024_109080 crossref_primary_10_1038_s41598_024_56521_4 crossref_primary_10_1109_JIOT_2025_3532749 crossref_primary_10_1109_JAS_2024_124788 crossref_primary_10_1007_s10586_025_05241_z crossref_primary_10_1038_s41598_024_77115_0 crossref_primary_10_1109_ACCESS_2025_3533034 crossref_primary_10_1109_ACCESS_2025_3567303 crossref_primary_10_3390_biomimetics10050260 crossref_primary_10_1093_jcde_qwae080 crossref_primary_10_3390_app14188284 crossref_primary_10_1007_s10825_025_02373_8 crossref_primary_10_3390_axioms14040235 crossref_primary_10_1002_cpe_70143 crossref_primary_10_1007_s11831_025_10388_4 crossref_primary_10_1038_s41598_024_81144_0 crossref_primary_10_1016_j_measurement_2025_118361 crossref_primary_10_1007_s13042_024_02462_3 crossref_primary_10_1007_s10499_025_01958_1 crossref_primary_10_1016_j_eswa_2025_126532 crossref_primary_10_3390_math13040668 crossref_primary_10_1016_j_compbiomed_2025_110898 crossref_primary_10_1016_j_eswa_2025_128595 crossref_primary_10_1016_j_eswa_2025_129288 crossref_primary_10_1109_ACCESS_2025_3583176 crossref_primary_10_1016_j_cma_2025_117825 crossref_primary_10_1016_j_eswa_2025_127877 crossref_primary_10_1007_s10586_024_05005_1 crossref_primary_10_1007_s10586_025_05445_3 crossref_primary_10_1038_s41598_025_96559_6 crossref_primary_10_1007_s00521_024_10009_4 crossref_primary_10_3390_biomimetics10080482 crossref_primary_10_1007_s10586_025_05319_8 crossref_primary_10_1007_s11370_024_00548_z crossref_primary_10_1007_s12065_025_01027_9 crossref_primary_10_1016_j_rineng_2025_105998 crossref_primary_10_1080_00207721_2024_2367079 crossref_primary_10_1109_ACCESS_2025_3529618 crossref_primary_10_1007_s11227_024_06137_2 crossref_primary_10_1016_j_knosys_2025_113908 crossref_primary_10_1038_s41598_024_63188_4 crossref_primary_10_1109_ACCESS_2024_3403089 crossref_primary_10_1007_s10462_024_11023_7 crossref_primary_10_1007_s10462_024_11069_7 crossref_primary_10_3390_math12101506 crossref_primary_10_3390_en17153629 crossref_primary_10_1007_s11042_023_18038_2 crossref_primary_10_1007_s10586_025_05305_0 crossref_primary_10_1007_s11227_024_06078_w crossref_primary_10_1007_s11694_024_02897_w crossref_primary_10_3390_math13040675 crossref_primary_10_1016_j_bspc_2025_108050 crossref_primary_10_1016_j_knosys_2024_112347 crossref_primary_10_1016_j_knosys_2024_111850 crossref_primary_10_1007_s00542_024_05834_5 crossref_primary_10_1038_s41598_025_94260_2 crossref_primary_10_3390_biomimetics9080478 crossref_primary_10_3390_f15091512 crossref_primary_10_3390_biomimetics10050282 crossref_primary_10_3390_biomimetics9080474 crossref_primary_10_3390_math13050717 crossref_primary_10_1016_j_swevo_2025_102082 crossref_primary_10_1016_j_bspc_2025_107558 crossref_primary_10_1007_s10586_024_04730_x crossref_primary_10_3390_biomimetics10010023 crossref_primary_10_3390_biomimetics10090616 crossref_primary_10_1177_09544062251352346 crossref_primary_10_1088_1361_6501_ad76c8 crossref_primary_10_3390_biomimetics10090589 crossref_primary_10_1186_s40537_024_00917_6 crossref_primary_10_1007_s10462_024_10729_y crossref_primary_10_1007_s10586_024_04680_4 crossref_primary_10_1016_j_rineng_2025_106785 crossref_primary_10_1016_j_eswa_2024_124190 crossref_primary_10_1016_j_knosys_2025_113062 crossref_primary_10_1038_s41598_025_93370_1 |
| Cites_doi | 10.1109/CDC.1990.203904 10.1007/s00521-014-1806-7 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U 10.1007/978-3-642-12538-6_6 10.1016/j.advengsoft.2005.04.005 10.1515/jisys-2021-0164 10.1016/j.asoc.2014.06.034 10.1109/TEVC.2008.919004 10.1038/267117a0 10.1007/s12293-016-0212-3 10.1016/j.future.2017.10.052 10.1016/j.eswa.2016.03.047 10.1016/j.knosys.2021.107529 10.1016/j.advengsoft.2017.07.002 10.1016/j.advengsoft.2017.03.014 10.1007/s10462-020-09952-0 10.1016/j.engappai.2018.04.021 10.1016/j.advengsoft.2015.01.010 10.1016/j.swevo.2020.100693 10.1016/j.cie.2020.107050 10.1007/978-3-642-04944-6_14 10.1007/s00170-015-6993-6 10.1016/j.asoc.2017.11.043 10.1016/j.ins.2009.03.004 10.1016/j.knosys.2015.12.022 10.1109/4235.771163 10.1016/j.chaos.2007.10.049 10.3390/app10113827 10.1016/j.eswa.2022.116924 10.1109/TEVC.2008.927706 10.1023/A:1008202821328 10.1016/j.eswa.2020.113377 10.1016/j.future.2019.07.015 10.1016/j.advengsoft.2016.01.008 10.1038/nature06948 10.1016/j.knosys.2021.107625 10.1016/j.knosys.2011.07.001 10.1109/MHS.1995.494215 10.1007/s00521-015-1920-1 10.1016/j.jcde.2015.06.003 10.1016/j.knosys.2019.105190 10.1016/j.future.2019.02.028 10.1007/s00521-015-1870-7 10.1016/j.physrep.2016.08.001 10.2528/PIER07082403 10.1007/BFb0029736 10.1016/j.ins.2011.08.006 10.1016/j.swevo.2018.02.013 10.1016/j.knosys.2015.07.006 10.1016/j.swevo.2015.07.002 10.1016/j.knosys.2020.106711 10.1016/j.cnsns.2012.05.010 10.1016/j.advengsoft.2017.01.004 10.3934/mbe.2022023 10.1080/03052150108940941 10.3390/e23121637 10.1016/j.cma.2020.113609 10.1016/j.eswa.2020.114353 10.1016/j.asoc.2015.07.045 10.1007/s10898-007-9149-x 10.1016/j.cie.2021.107250 10.1016/j.ins.2015.09.051 10.1080/21642583.2019.1708830 10.1016/j.neucom.2016.09.068 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2023.122638 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2023_122638 S0957417423031408 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY1 LY7 M41 R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-503e203e826ec4d0e54a9fa402f3a92cb33f96a0899be1cb4b92e35c68b37e0c3 |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001125943100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Tue Nov 18 21:00:47 EST 2025 Sat Nov 29 07:04:15 EST 2025 Sat Feb 17 16:07:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Swarm optimization Metaheuristic Heuristic algorithm Evolutionary Constrained optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-503e203e826ec4d0e54a9fa402f3a92cb33f96a0899be1cb4b92e35c68b37e0c3 |
| ORCID | 0000-0001-7602-0022 0000-0002-6786-4992 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_122638 crossref_primary_10_1016_j_eswa_2023_122638 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_122638 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 2024-05-00 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jain, Singh, Rani (b0135) 2019; 44 Yang, X. S. (2009a). Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms (pp. 169-178). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04944-6_14. Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65-74). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12538-6_6. Johnson, T., & Husbands, P. (1990, October). System identification using genetic algorithms. In International conference on parallel problem solving from nature (pp. 85-89). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/BFb0029736. Kumar, Wu, Ali, Mallipeddi, Suganthan, Das (b0175) 2020; 56 Mirjalili (b0210) 2015; 83 Formato, R. A. (2007). Central force optimization. Prog Electromagn Res, 77(1), 425-491. https://www.academia.edu/download/39993697/CFO_PREPRINT_11-12-2015.pdf. Cheraghalipour, Hajiaghaei-Keshteli, Paydar (b0050) 2018; 72 Moghdani, Salimifard (b0240) 2018; 64 Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b0125) 2019; 101 Salcedo-Sanz (b0285) 2016; 655 Dong, Chen, Heidari, Turabieh, Mafarja, Wang (b0070) 2021; 233 Haklı, Uğuz (b0120) 2014; 23 Yazdani, Jolai (b0350) 2016; 3 Agushaka, Ezugwu, Abualigah (b0025) 2022; 391 Kaveh, Dadras (b0170) 2017; 110 Liang, Qu, Suganthan (b0185) 2013; 635 Michalewicz, Z., Krawczyk, J. B., Kazemi, M., & Janikow, C. Z. (1990, December). Genetic algorithms and optimal control problems. In 29th IEEE conference on decision and control (pp. 1664-1666). IEEE. https://ieeexplore.ieee.org/abstract/document/203904. Gandomi, Alavi (b0105) 2012; 17 John (b0150) 1992; 267 Storn, Price (b0305) 1997; 11 Zapata, Perozo, Angulo, Contreras (b0355) 2020; 18 Faramarzi, Heidarinejad, Mirjalili, Gandomi (b0095) 2020; 152 Saremi, Mirjalili, Lewis (b0295) 2017; 105 Beni, Wang (b0045) 1993 Xue, Shen (b0325) 2020; 8 Mirjalili (b0220) 2016; 27 Pan (b0260) 2012; 26 Abualigah, Yousri, Abd Elaziz, Ewees, Al-Qaness, Gandomi (b0015) 2021; 157 Kumar, Kulkarni, Satapathy (b0180) 2018; 81 Tang, Dong, Jiang, Li, Huang (b0310) 2015; 36 Saremi, Mirjalili, Mirjalili (b0290) 2015; 26 Rashedi, Nezamabadi-Pour, Saryazdi (b0275) 2009; 179 Colorni, A., Dorigo, M., & Maniezzo, V. (1991, December). Distributed optimization by ant colonies. In Proceedings of the first European conference on artificial life (Vol. 142, pp. 134-142). https://www-public.imtbs-tsp.eu/∼gibson/Teaching/Teaching-ReadingMaterial/ColorniDorigoManiezzo91.pdf. Mirjalili (b0215) 2016; 96 Oyelade, O. N., & Ezugwu, A. E. (2021). Ebola Optimization Search Algorithm (EOSA): A new metaheuristic algorithm based on the propagation model of Ebola virus disease. arXiv preprint arXiv:2106.01416. https://arxiv.org/abs/2106.01416. Nadimi-Shahraki, Fatahi, Zamani, Mirjalili, Abualigah (b0190) 2021; 23 MiarNaeimi, Azizyan, Rashki (b0195) 2021; 213 Barrow (b0035) 1977; 267 Ezugwu, Shukla, Nath, Akinyelu, Agushaka, Chiroma, Muhuri (b0085) 2021; 54 Agushaka, Ezugwu (b0030) 2021; 31 Kaidi, Khishe, Mohammadi (b0155) 2022; 235 Simon (b0300) 2008; 12 Chopra, Ansari (b0060) 2022; 198 Mirjalili, Mirjalili, Hatamlou (b0225) 2016; 27 Yang, Deb (b0340) 2009 Mirjalili, Lewis (b0230) 2016; 95 Zheng, Jia, Abualigah, Liu, Wang (b0365) 2022; 19 Wang (b0315) 2018; 10 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0130) 2019; 97 Nabil (b0250) 2016; 57 Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b0020) 2021; 376 Qin, Huang, Suganthan (b0265) 2008; 13 Rao, Savsani, Vakharia (b0270) 2012; 183 Ray, Saini (b0280) 2001; 33 Faramarzi, Heidarinejad, Stephens, Mirjalili (b0090) 2020; 191 Kanso, Smaoui (b0160) 2009; 40 Karaboga, Basturk (b0165) 2007; 39 Yao, Liu, Lin (b0345) 1999; 3 Zhang, Wang, Yang, Ding, Li, Hu (b0360) 2017; 221 Abualigah, Diabat, Geem (b0010) 2020; 10 Hajipour, Mehdizadeh, Tavakkoli-Moghaddam (b0110) 2014; 21 Mirjalili (b0205) 2015; 89 Barthelemy, Bertolotti, Wiersma (b0040) 2008; 453 Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). IEEE. https://ieeexplore.ieee.org/document/494215. Hajipour, Kheirkhah, Tavana, Absi (b0115) 2015; 80 Abedinpourshotorban, Shamsuddin, Beheshti, Jawawi (b0005) 2016; 26 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0235) 2017; 114 Erol, Eksin (b0080) 2006; 37 Jerebic, Mernik, Liu, Ravber, Baketarić, Mernik, Črepinšek (b0140) 2021; 167 Mohammadi-Balani, Nayeri, Azar, Taghizadeh-Yazdi (b0245) 2021; 152 Chickermane, Gea (b0055) 1996; 39 Wu (b0320) 2016; 329 10.1016/j.eswa.2023.122638_b0330 Hajipour (10.1016/j.eswa.2023.122638_b0115) 2015; 80 Simon (10.1016/j.eswa.2023.122638_b0300) 2008; 12 Faramarzi (10.1016/j.eswa.2023.122638_b0095) 2020; 152 Tang (10.1016/j.eswa.2023.122638_b0310) 2015; 36 Yao (10.1016/j.eswa.2023.122638_b0345) 1999; 3 Hajipour (10.1016/j.eswa.2023.122638_b0110) 2014; 21 Zhang (10.1016/j.eswa.2023.122638_b0360) 2017; 221 Jerebic (10.1016/j.eswa.2023.122638_b0140) 2021; 167 Abedinpourshotorban (10.1016/j.eswa.2023.122638_b0005) 2016; 26 10.1016/j.eswa.2023.122638_b0335 10.1016/j.eswa.2023.122638_b0255 Yang (10.1016/j.eswa.2023.122638_b0340) 2009 Gandomi (10.1016/j.eswa.2023.122638_b0105) 2012; 17 Ray (10.1016/j.eswa.2023.122638_b0280) 2001; 33 Barthelemy (10.1016/j.eswa.2023.122638_b0040) 2008; 453 Abualigah (10.1016/j.eswa.2023.122638_b0020) 2021; 376 Beni (10.1016/j.eswa.2023.122638_b0045) 1993 Heidari (10.1016/j.eswa.2023.122638_b0130) 2019; 97 10.1016/j.eswa.2023.122638_b0100 Kaidi (10.1016/j.eswa.2023.122638_b0155) 2022; 235 Barrow (10.1016/j.eswa.2023.122638_b0035) 1977; 267 Haklı (10.1016/j.eswa.2023.122638_b0120) 2014; 23 10.1016/j.eswa.2023.122638_b0065 Xue (10.1016/j.eswa.2023.122638_b0325) 2020; 8 Kumar (10.1016/j.eswa.2023.122638_b0175) 2020; 56 Abualigah (10.1016/j.eswa.2023.122638_b0010) 2020; 10 Kaveh (10.1016/j.eswa.2023.122638_b0170) 2017; 110 Erol (10.1016/j.eswa.2023.122638_b0080) 2006; 37 10.1016/j.eswa.2023.122638_b0145 Qin (10.1016/j.eswa.2023.122638_b0265) 2008; 13 Mohammadi-Balani (10.1016/j.eswa.2023.122638_b0245) 2021; 152 Dong (10.1016/j.eswa.2023.122638_b0070) 2021; 233 Agushaka (10.1016/j.eswa.2023.122638_b0025) 2022; 391 Mirjalili (10.1016/j.eswa.2023.122638_b0205) 2015; 89 Nabil (10.1016/j.eswa.2023.122638_b0250) 2016; 57 MiarNaeimi (10.1016/j.eswa.2023.122638_b0195) 2021; 213 Faramarzi (10.1016/j.eswa.2023.122638_b0090) 2020; 191 Moghdani (10.1016/j.eswa.2023.122638_b0240) 2018; 64 Saremi (10.1016/j.eswa.2023.122638_b0295) 2017; 105 Mirjalili (10.1016/j.eswa.2023.122638_b0225) 2016; 27 Cheraghalipour (10.1016/j.eswa.2023.122638_b0050) 2018; 72 10.1016/j.eswa.2023.122638_b0075 Wu (10.1016/j.eswa.2023.122638_b0320) 2016; 329 Kumar (10.1016/j.eswa.2023.122638_b0180) 2018; 81 Mirjalili (10.1016/j.eswa.2023.122638_b0210) 2015; 83 Kanso (10.1016/j.eswa.2023.122638_b0160) 2009; 40 Zheng (10.1016/j.eswa.2023.122638_b0365) 2022; 19 Rashedi (10.1016/j.eswa.2023.122638_b0275) 2009; 179 Saremi (10.1016/j.eswa.2023.122638_b0290) 2015; 26 Mirjalili (10.1016/j.eswa.2023.122638_b0230) 2016; 95 Storn (10.1016/j.eswa.2023.122638_b0305) 1997; 11 Nadimi-Shahraki (10.1016/j.eswa.2023.122638_b0190) 2021; 23 Mirjalili (10.1016/j.eswa.2023.122638_b0235) 2017; 114 Chopra (10.1016/j.eswa.2023.122638_b0060) 2022; 198 Karaboga (10.1016/j.eswa.2023.122638_b0165) 2007; 39 Pan (10.1016/j.eswa.2023.122638_b0260) 2012; 26 Hashim (10.1016/j.eswa.2023.122638_b0125) 2019; 101 Rao (10.1016/j.eswa.2023.122638_b0270) 2012; 183 Jain (10.1016/j.eswa.2023.122638_b0135) 2019; 44 Ezugwu (10.1016/j.eswa.2023.122638_b0085) 2021; 54 10.1016/j.eswa.2023.122638_b0200 Salcedo-Sanz (10.1016/j.eswa.2023.122638_b0285) 2016; 655 Wang (10.1016/j.eswa.2023.122638_b0315) 2018; 10 Zapata (10.1016/j.eswa.2023.122638_b0355) 2020; 18 Abualigah (10.1016/j.eswa.2023.122638_b0015) 2021; 157 Liang (10.1016/j.eswa.2023.122638_b0185) 2013; 635 Mirjalili (10.1016/j.eswa.2023.122638_b0220) 2016; 27 Agushaka (10.1016/j.eswa.2023.122638_b0030) 2021; 31 Chickermane (10.1016/j.eswa.2023.122638_b0055) 1996; 39 John (10.1016/j.eswa.2023.122638_b0150) 1992; 267 Mirjalili (10.1016/j.eswa.2023.122638_b0215) 2016; 96 Yazdani (10.1016/j.eswa.2023.122638_b0350) 2016; 3 |
| References_xml | – volume: 329 start-page: 597 year: 2016 end-page: 618 ident: b0320 article-title: Across neighborhood search for numerical optimization publication-title: Information Sciences – volume: 157 year: 2021 ident: b0015 article-title: Aquila optimizer: A novel meta-heuristic optimization algorithm publication-title: Computers & Industrial Engineering – volume: 183 start-page: 1 year: 2012 end-page: 15 ident: b0270 article-title: Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems publication-title: Information Sciences – volume: 64 start-page: 161 year: 2018 end-page: 185 ident: b0240 article-title: Volleyball premier league algorithm publication-title: Applied Soft Computing – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0305 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of global optimization – reference: Oyelade, O. N., & Ezugwu, A. E. (2021). Ebola Optimization Search Algorithm (EOSA): A new metaheuristic algorithm based on the propagation model of Ebola virus disease. arXiv preprint arXiv:2106.01416. https://arxiv.org/abs/2106.01416. – volume: 57 start-page: 192 year: 2016 end-page: 203 ident: b0250 article-title: A modified flower pollination algorithm for global optimization publication-title: Expert Systems with Applications – volume: 453 start-page: 495 year: 2008 end-page: 498 ident: b0040 article-title: A Lévy flight for light publication-title: Nature – reference: Colorni, A., Dorigo, M., & Maniezzo, V. (1991, December). Distributed optimization by ant colonies. In Proceedings of the first European conference on artificial life (Vol. 142, pp. 134-142). https://www-public.imtbs-tsp.eu/∼gibson/Teaching/Teaching-ReadingMaterial/ColorniDorigoManiezzo91.pdf. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b0235 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b0165 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: Journal of global optimization – volume: 267 start-page: 117 year: 1977 end-page: 120 ident: b0035 article-title: A chaotic cosmology publication-title: Nature – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0230 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – reference: Michalewicz, Z., Krawczyk, J. B., Kazemi, M., & Janikow, C. Z. (1990, December). Genetic algorithms and optimal control problems. In 29th IEEE conference on decision and control (pp. 1664-1666). IEEE. https://ieeexplore.ieee.org/abstract/document/203904. – volume: 37 start-page: 106 year: 2006 end-page: 111 ident: b0080 article-title: A new optimization method: Big bang–big crunch publication-title: Advances in engineering software – volume: 39 start-page: 829 year: 1996 end-page: 846 ident: b0055 article-title: Structural optimization using a new local approximation method publication-title: International Journal For Numerical Methods In Engineering – volume: 21 start-page: 2368 year: 2014 end-page: 2378 ident: b0110 article-title: A novel Pareto-based multi-objective vibration damping optimization algorithm to solve multi-objective optimization problems publication-title: Scientia Iranica – volume: 40 start-page: 2557 year: 2009 end-page: 2568 ident: b0160 article-title: Logistic chaotic maps for binary numbers generations publication-title: Chaos, Solitons & Fractals – volume: 26 start-page: 1257 year: 2015 end-page: 1263 ident: b0290 article-title: Evolutionary population dynamics and grey wolf optimizer publication-title: Neural Computing and Applications – volume: 72 start-page: 393 year: 2018 end-page: 414 ident: b0050 article-title: Tree Growth Algorithm (TGA): A novel approach for solving optimization problems publication-title: Engineering Applications of Artificial Intelligence – start-page: 703 year: 1993 end-page: 712 ident: b0045 article-title: Swarm intelligence in cellular robotic systems publication-title: Robots and biological systems: towards a new bionics? – reference: Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). IEEE. https://ieeexplore.ieee.org/document/494215. – reference: Formato, R. A. (2007). Central force optimization. Prog Electromagn Res, 77(1), 425-491. https://www.academia.edu/download/39993697/CFO_PREPRINT_11-12-2015.pdf. – volume: 80 start-page: 31 year: 2015 end-page: 45 ident: b0115 article-title: Novel Pareto-based meta-heuristics for solving multi-objective multi-item capacitated lot-sizing problems publication-title: The International Journal of Advanced Manufacturing Technology – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: b0210 article-title: The ant lion optimizer publication-title: Advances in Engineering Software – volume: 26 start-page: 8 year: 2016 end-page: 22 ident: b0005 article-title: Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm publication-title: Swarm and Evolutionary Computation – volume: 23 start-page: 333 year: 2014 end-page: 345 ident: b0120 article-title: A novel particle swarm optimization algorithm with Levy flight publication-title: Applied Soft Computing – volume: 167 year: 2021 ident: b0140 article-title: A novel direct measure of exploration and exploitation based on attraction basins publication-title: Expert Systems with Applications – reference: Yang, X. S. (2009a). Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms (pp. 169-178). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04944-6_14. – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b0225 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications – start-page: 210 year: 2009 end-page: 214 ident: b0340 article-title: Cuckoo search via Lévy flights publication-title: In 2009 World congress on nature & biologically inspired computing (NaBIC) – volume: 213 year: 2021 ident: b0195 article-title: Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems publication-title: Knowledge-Based Systems – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b0205 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-based Systems – volume: 44 start-page: 148 year: 2019 end-page: 175 ident: b0135 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm and evolutionary computation – volume: 56 year: 2020 ident: b0175 article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results publication-title: Swarm and Evolutionary Computation – volume: 33 start-page: 735 year: 2001 end-page: 748 ident: b0280 article-title: Engineering design optimization using a swarm with an intelligent information sharing among individuals publication-title: Engineering Optimization – volume: 655 start-page: 1 year: 2016 end-page: 70 ident: b0285 article-title: Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures publication-title: Physics Reports – reference: Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65-74). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12538-6_6. – volume: 10 start-page: 3827 year: 2020 ident: b0010 article-title: A comprehensive survey of the harmony search algorithm in clustering applications publication-title: Applied Sciences – volume: 36 start-page: 670 year: 2015 end-page: 698 ident: b0310 article-title: ITGO: Invasive tumor growth optimization algorithm publication-title: Applied Soft Computing – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: b0125 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Generation Computer Systems – volume: 198 year: 2022 ident: b0060 article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications publication-title: Expert Systems with Applications – volume: 81 start-page: 252 year: 2018 end-page: 272 ident: b0180 article-title: Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology publication-title: Future Generation Computer Systems – volume: 152 year: 2021 ident: b0245 article-title: Golden eagle optimizer: A nature-inspired metaheuristic algorithm publication-title: Computers & Industrial Engineering – volume: 31 start-page: 70 year: 2021 end-page: 94 ident: b0030 article-title: Evaluation of several initialization methods on arithmetic optimization algorithm performance publication-title: Journal of Intelligent Systems – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b0215 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-based systems – volume: 3 start-page: 82 year: 1999 end-page: 102 ident: b0345 article-title: Evolutionary programming made faster publication-title: IEEE Transactions on Evolutionary computation – volume: 54 start-page: 4237 year: 2021 end-page: 4316 ident: b0085 article-title: Metaheuristics: A comprehensive overview and classification along with bibliometric analysis publication-title: Artificial Intelligence Review – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: b0295 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Advances in engineering software – volume: 376 year: 2021 ident: b0020 article-title: The arithmetic optimization algorithm publication-title: Computer methods in applied mechanics and engineering – volume: 18 start-page: 1 year: 2020 end-page: 18 ident: b0355 article-title: A hybrid swarm algorithm for collective construction of 3D structures publication-title: International Journal of Artificial Intelligence – volume: 110 start-page: 69 year: 2017 end-page: 84 ident: b0170 article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization publication-title: Advances in engineering software – volume: 13 start-page: 398 year: 2008 end-page: 417 ident: b0265 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE transactions on Evolutionary Computation – volume: 391 year: 2022 ident: b0025 article-title: Dwarf mongoose optimization algorithm publication-title: ComputerMethods in Applied Mechanics and Engineering – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b0220 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications – volume: 233 year: 2021 ident: b0070 article-title: Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem publication-title: Knowledge-Based Systems – volume: 3 start-page: 24 year: 2016 end-page: 36 ident: b0350 article-title: Lion optimization algorithm (LOA): A nature-inspired metaheuristic algorithm publication-title: Journal of computational design and engineering – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b0130 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems – volume: 191 year: 2020 ident: b0090 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowledge-Based Systems – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b0275 article-title: GSA: A gravitational search algorithm publication-title: Information Sciences – volume: 8 start-page: 22 year: 2020 end-page: 34 ident: b0325 article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm publication-title: Systems science & control engineering – volume: 10 start-page: 151 year: 2018 end-page: 164 ident: b0315 article-title: Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memetic Computing – volume: 221 start-page: 123 year: 2017 end-page: 137 ident: b0360 article-title: Collective decision optimization algorithm: A new heuristic optimization method publication-title: Neurocomputing – volume: 26 start-page: 69 year: 2012 end-page: 74 ident: b0260 article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example publication-title: Knowledge-Based Systems – volume: 635 year: 2013 ident: b0185 article-title: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization publication-title: Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore – volume: 19 start-page: 473 year: 2022 end-page: 512 ident: b0365 article-title: An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems publication-title: Mathematical Biosciences and Engineering – volume: 235 year: 2022 ident: b0155 article-title: Dynamic levy flight chimp optimization publication-title: Knowledge-Based Systems – volume: 152 year: 2020 ident: b0095 article-title: Marine predators algorithm: A nature-inspired metaheuristic publication-title: Expert systems with applications – volume: 23 start-page: 1637 year: 2021 ident: b0190 article-title: An improved moth–flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems publication-title: Entropy – volume: 267 start-page: 44 year: 1992 end-page: 50 ident: b0150 article-title: Holland. Genetic algorithms publication-title: Scientific American – reference: Johnson, T., & Husbands, P. (1990, October). System identification using genetic algorithms. In International conference on parallel problem solving from nature (pp. 85-89). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/BFb0029736. – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: b0300 article-title: Biogeography-based optimization publication-title: IEEE transactions on evolutionary computation – volume: 17 start-page: 4831 year: 2012 end-page: 4845 ident: b0105 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation – volume: 391 year: 2022 ident: 10.1016/j.eswa.2023.122638_b0025 article-title: Dwarf mongoose optimization algorithm publication-title: ComputerMethods in Applied Mechanics and Engineering – ident: 10.1016/j.eswa.2023.122638_b0200 doi: 10.1109/CDC.1990.203904 – volume: 26 start-page: 1257 year: 2015 ident: 10.1016/j.eswa.2023.122638_b0290 article-title: Evolutionary population dynamics and grey wolf optimizer publication-title: Neural Computing and Applications doi: 10.1007/s00521-014-1806-7 – volume: 39 start-page: 829 issue: 5 year: 1996 ident: 10.1016/j.eswa.2023.122638_b0055 article-title: Structural optimization using a new local approximation method publication-title: International Journal For Numerical Methods In Engineering doi: 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U – ident: 10.1016/j.eswa.2023.122638_b0255 – ident: 10.1016/j.eswa.2023.122638_b0330 doi: 10.1007/978-3-642-12538-6_6 – volume: 37 start-page: 106 issue: 2 year: 2006 ident: 10.1016/j.eswa.2023.122638_b0080 article-title: A new optimization method: Big bang–big crunch publication-title: Advances in engineering software doi: 10.1016/j.advengsoft.2005.04.005 – volume: 18 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.eswa.2023.122638_b0355 article-title: A hybrid swarm algorithm for collective construction of 3D structures publication-title: International Journal of Artificial Intelligence – volume: 31 start-page: 70 issue: 1 year: 2021 ident: 10.1016/j.eswa.2023.122638_b0030 article-title: Evaluation of several initialization methods on arithmetic optimization algorithm performance publication-title: Journal of Intelligent Systems doi: 10.1515/jisys-2021-0164 – volume: 23 start-page: 333 year: 2014 ident: 10.1016/j.eswa.2023.122638_b0120 article-title: A novel particle swarm optimization algorithm with Levy flight publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.06.034 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.eswa.2023.122638_b0300 article-title: Biogeography-based optimization publication-title: IEEE transactions on evolutionary computation doi: 10.1109/TEVC.2008.919004 – volume: 267 start-page: 117 issue: 5607 year: 1977 ident: 10.1016/j.eswa.2023.122638_b0035 article-title: A chaotic cosmology publication-title: Nature doi: 10.1038/267117a0 – volume: 10 start-page: 151 issue: 2 year: 2018 ident: 10.1016/j.eswa.2023.122638_b0315 article-title: Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memetic Computing doi: 10.1007/s12293-016-0212-3 – volume: 81 start-page: 252 year: 2018 ident: 10.1016/j.eswa.2023.122638_b0180 article-title: Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2017.10.052 – volume: 57 start-page: 192 year: 2016 ident: 10.1016/j.eswa.2023.122638_b0250 article-title: A modified flower pollination algorithm for global optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.03.047 – volume: 233 year: 2021 ident: 10.1016/j.eswa.2023.122638_b0070 article-title: Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107529 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.eswa.2023.122638_b0235 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – volume: 110 start-page: 69 year: 2017 ident: 10.1016/j.eswa.2023.122638_b0170 article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization publication-title: Advances in engineering software doi: 10.1016/j.advengsoft.2017.03.014 – volume: 54 start-page: 4237 year: 2021 ident: 10.1016/j.eswa.2023.122638_b0085 article-title: Metaheuristics: A comprehensive overview and classification along with bibliometric analysis publication-title: Artificial Intelligence Review doi: 10.1007/s10462-020-09952-0 – volume: 72 start-page: 393 year: 2018 ident: 10.1016/j.eswa.2023.122638_b0050 article-title: Tree Growth Algorithm (TGA): A novel approach for solving optimization problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2018.04.021 – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.eswa.2023.122638_b0210 article-title: The ant lion optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2015.01.010 – volume: 56 year: 2020 ident: 10.1016/j.eswa.2023.122638_b0175 article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2020.100693 – volume: 152 year: 2021 ident: 10.1016/j.eswa.2023.122638_b0245 article-title: Golden eagle optimizer: A nature-inspired metaheuristic algorithm publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.107050 – ident: 10.1016/j.eswa.2023.122638_b0335 doi: 10.1007/978-3-642-04944-6_14 – volume: 80 start-page: 31 year: 2015 ident: 10.1016/j.eswa.2023.122638_b0115 article-title: Novel Pareto-based meta-heuristics for solving multi-objective multi-item capacitated lot-sizing problems publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-015-6993-6 – volume: 64 start-page: 161 year: 2018 ident: 10.1016/j.eswa.2023.122638_b0240 article-title: Volleyball premier league algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.11.043 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.eswa.2023.122638_b0275 article-title: GSA: A gravitational search algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2009.03.004 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.eswa.2023.122638_b0215 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-based systems doi: 10.1016/j.knosys.2015.12.022 – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 10.1016/j.eswa.2023.122638_b0345 article-title: Evolutionary programming made faster publication-title: IEEE Transactions on Evolutionary computation doi: 10.1109/4235.771163 – volume: 40 start-page: 2557 issue: 5 year: 2009 ident: 10.1016/j.eswa.2023.122638_b0160 article-title: Logistic chaotic maps for binary numbers generations publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2007.10.049 – volume: 10 start-page: 3827 issue: 11 year: 2020 ident: 10.1016/j.eswa.2023.122638_b0010 article-title: A comprehensive survey of the harmony search algorithm in clustering applications publication-title: Applied Sciences doi: 10.3390/app10113827 – volume: 198 year: 2022 ident: 10.1016/j.eswa.2023.122638_b0060 article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.116924 – volume: 635 issue: 2 year: 2013 ident: 10.1016/j.eswa.2023.122638_b0185 article-title: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization publication-title: Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore – volume: 13 start-page: 398 issue: 2 year: 2008 ident: 10.1016/j.eswa.2023.122638_b0265 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.927706 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.eswa.2023.122638_b0305 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of global optimization doi: 10.1023/A:1008202821328 – volume: 152 year: 2020 ident: 10.1016/j.eswa.2023.122638_b0095 article-title: Marine predators algorithm: A nature-inspired metaheuristic publication-title: Expert systems with applications doi: 10.1016/j.eswa.2020.113377 – volume: 101 start-page: 646 year: 2019 ident: 10.1016/j.eswa.2023.122638_b0125 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.07.015 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2023.122638_b0230 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – ident: 10.1016/j.eswa.2023.122638_b0065 – volume: 453 start-page: 495 issue: 7194 year: 2008 ident: 10.1016/j.eswa.2023.122638_b0040 article-title: A Lévy flight for light publication-title: Nature doi: 10.1038/nature06948 – volume: 235 year: 2022 ident: 10.1016/j.eswa.2023.122638_b0155 article-title: Dynamic levy flight chimp optimization publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107625 – volume: 26 start-page: 69 year: 2012 ident: 10.1016/j.eswa.2023.122638_b0260 article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2011.07.001 – ident: 10.1016/j.eswa.2023.122638_b0075 doi: 10.1109/MHS.1995.494215 – volume: 27 start-page: 1053 year: 2016 ident: 10.1016/j.eswa.2023.122638_b0220 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1920-1 – volume: 3 start-page: 24 issue: 1 year: 2016 ident: 10.1016/j.eswa.2023.122638_b0350 article-title: Lion optimization algorithm (LOA): A nature-inspired metaheuristic algorithm publication-title: Journal of computational design and engineering doi: 10.1016/j.jcde.2015.06.003 – volume: 191 year: 2020 ident: 10.1016/j.eswa.2023.122638_b0090 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105190 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.eswa.2023.122638_b0130 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.02.028 – volume: 27 start-page: 495 year: 2016 ident: 10.1016/j.eswa.2023.122638_b0225 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1870-7 – volume: 21 start-page: 2368 issue: 6 year: 2014 ident: 10.1016/j.eswa.2023.122638_b0110 article-title: A novel Pareto-based multi-objective vibration damping optimization algorithm to solve multi-objective optimization problems publication-title: Scientia Iranica – volume: 655 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2023.122638_b0285 article-title: Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures publication-title: Physics Reports doi: 10.1016/j.physrep.2016.08.001 – ident: 10.1016/j.eswa.2023.122638_b0100 doi: 10.2528/PIER07082403 – ident: 10.1016/j.eswa.2023.122638_b0145 doi: 10.1007/BFb0029736 – volume: 183 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.eswa.2023.122638_b0270 article-title: Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems publication-title: Information Sciences doi: 10.1016/j.ins.2011.08.006 – start-page: 210 year: 2009 ident: 10.1016/j.eswa.2023.122638_b0340 article-title: Cuckoo search via Lévy flights – volume: 44 start-page: 148 year: 2019 ident: 10.1016/j.eswa.2023.122638_b0135 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm and evolutionary computation doi: 10.1016/j.swevo.2018.02.013 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.eswa.2023.122638_b0205 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-based Systems doi: 10.1016/j.knosys.2015.07.006 – volume: 26 start-page: 8 year: 2016 ident: 10.1016/j.eswa.2023.122638_b0005 article-title: Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2015.07.002 – volume: 213 year: 2021 ident: 10.1016/j.eswa.2023.122638_b0195 article-title: Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106711 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 10.1016/j.eswa.2023.122638_b0105 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2012.05.010 – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.eswa.2023.122638_b0295 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Advances in engineering software doi: 10.1016/j.advengsoft.2017.01.004 – volume: 19 start-page: 473 issue: 1 year: 2022 ident: 10.1016/j.eswa.2023.122638_b0365 article-title: An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems publication-title: Mathematical Biosciences and Engineering doi: 10.3934/mbe.2022023 – volume: 33 start-page: 735 issue: 6 year: 2001 ident: 10.1016/j.eswa.2023.122638_b0280 article-title: Engineering design optimization using a swarm with an intelligent information sharing among individuals publication-title: Engineering Optimization doi: 10.1080/03052150108940941 – volume: 23 start-page: 1637 issue: 12 year: 2021 ident: 10.1016/j.eswa.2023.122638_b0190 article-title: An improved moth–flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems publication-title: Entropy doi: 10.3390/e23121637 – volume: 376 year: 2021 ident: 10.1016/j.eswa.2023.122638_b0020 article-title: The arithmetic optimization algorithm publication-title: Computer methods in applied mechanics and engineering doi: 10.1016/j.cma.2020.113609 – volume: 267 start-page: 44 issue: 1 year: 1992 ident: 10.1016/j.eswa.2023.122638_b0150 article-title: Holland. Genetic algorithms publication-title: Scientific American – volume: 167 year: 2021 ident: 10.1016/j.eswa.2023.122638_b0140 article-title: A novel direct measure of exploration and exploitation based on attraction basins publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114353 – start-page: 703 year: 1993 ident: 10.1016/j.eswa.2023.122638_b0045 article-title: Swarm intelligence in cellular robotic systems – volume: 36 start-page: 670 year: 2015 ident: 10.1016/j.eswa.2023.122638_b0310 article-title: ITGO: Invasive tumor growth optimization algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.07.045 – volume: 39 start-page: 459 year: 2007 ident: 10.1016/j.eswa.2023.122638_b0165 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: Journal of global optimization doi: 10.1007/s10898-007-9149-x – volume: 157 year: 2021 ident: 10.1016/j.eswa.2023.122638_b0015 article-title: Aquila optimizer: A novel meta-heuristic optimization algorithm publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107250 – volume: 329 start-page: 597 year: 2016 ident: 10.1016/j.eswa.2023.122638_b0320 article-title: Across neighborhood search for numerical optimization publication-title: Information Sciences doi: 10.1016/j.ins.2015.09.051 – volume: 8 start-page: 22 issue: 1 year: 2020 ident: 10.1016/j.eswa.2023.122638_b0325 article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm publication-title: Systems science & control engineering doi: 10.1080/21642583.2019.1708830 – volume: 221 start-page: 123 year: 2017 ident: 10.1016/j.eswa.2023.122638_b0360 article-title: Collective decision optimization algorithm: A new heuristic optimization method publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.068 |
| SSID | ssj0017007 |
| Score | 2.6741078 |
| Snippet | This paper introduces the Human Evolutionary Optimization Algorithm (HEOA), a metaheuristic algorithm inspired by human evolution. HEOA divides the global... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 122638 |
| SubjectTerms | Constrained optimization Evolutionary Heuristic algorithm Metaheuristic Swarm optimization |
| Title | Human Evolutionary Optimization Algorithm |
| URI | https://dx.doi.org/10.1016/j.eswa.2023.122638 |
| Volume | 241 |
| WOSCitedRecordID | wos001125943100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFLagMLBwI8qlDCwItUpiu4nHCpVrAAaQukW269CiNq3atPTn81w7B6dgYEgUWb4_6-W953cgdKq4TmulvBpmJAABhUt9SQiiSoc0FO0EAaNykWwiuLsL2232YBMsThbpBIIkCedzNvpXqKEMwNaus3-AO-8UCuAbQIc3wA7vXwFv1PKtmR1EW8XdA10YWIfL82b_eTjupd3BO6W8jnic2rjOmcdb6W47t9vpcevMkYhhcSQWJgFX02F3ystqBJ8URnu5PhCw8kzKnIw0-iYolSVuHrBqJhTLJ7prVAAvdTV51cGcfFwvKr8Pcv3h55ObBGbWZi-R7iPSfUSmj2W04geUAclaad602rf5JVHgGm_4bObWJ8qY732cydd8R4mXeNxE61YIcJoGvC20pJJttJEl2HAsvd1BZwssnTKWThlLJ8dyFz1dth4vrms2t0VNYtdNa9TFyocHpDslScdVlHAWc5DmY8yZLwXGMWtwfSkrlCcFEcxXmMpGKHCgXIn3UCUZJmofObDG2KUh9mLhEU6x4B0WM2jfwB4RxK0iL1t5JG3gd51_pB99v-dVdJ63GZmwJz_WptmGRpZxMwxZBOfjh3YHfxrlEK0VB_cIVdLxVB2jVTlLe5PxiT0cb1YlYas |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Evolutionary+Optimization+Algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Lian%2C+Junbo&rft.au=Hui%2C+Guohua&rft.date=2024-05-01&rft.issn=0957-4174&rft.volume=241&rft.spage=122638&rft_id=info:doi/10.1016%2Fj.eswa.2023.122638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_122638 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |