Human Evolutionary Optimization Algorithm

This paper introduces the Human Evolutionary Optimization Algorithm (HEOA), a metaheuristic algorithm inspired by human evolution. HEOA divides the global search process into two distinct phases: human exploration and human development. Logistic Chaos Mapping is employed for initialization. In the h...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 241; s. 122638
Hlavní autori: Lian, Junbo, Hui, Guohua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.05.2024
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper introduces the Human Evolutionary Optimization Algorithm (HEOA), a metaheuristic algorithm inspired by human evolution. HEOA divides the global search process into two distinct phases: human exploration and human development. Logistic Chaos Mapping is employed for initialization. In the human exploration phase, an initial global search is conducted, followed by the human development phase, in which the population is categorized into leaders, explorers, followers, and losers, each utilizing distinct search strategies. The convergence speed and search accuracy of HEOA are evaluated using 23 well-established test functions. Furthermore, the algorithm's applicability in engineering optimization is assessed with four engineering problems. A comparative analysis with ten other algorithms highlights HEOA's effectiveness, as evidenced by various performance metrics and statistical measures. Consistently, the results demonstrate that HEOA surpasses most current state-of-the-art algorithms in approximating optimal solutions for complex global optimization problems. The MATLAB code for HEOA is available at https://github.com/junbolian/HEOA.git.
AbstractList This paper introduces the Human Evolutionary Optimization Algorithm (HEOA), a metaheuristic algorithm inspired by human evolution. HEOA divides the global search process into two distinct phases: human exploration and human development. Logistic Chaos Mapping is employed for initialization. In the human exploration phase, an initial global search is conducted, followed by the human development phase, in which the population is categorized into leaders, explorers, followers, and losers, each utilizing distinct search strategies. The convergence speed and search accuracy of HEOA are evaluated using 23 well-established test functions. Furthermore, the algorithm's applicability in engineering optimization is assessed with four engineering problems. A comparative analysis with ten other algorithms highlights HEOA's effectiveness, as evidenced by various performance metrics and statistical measures. Consistently, the results demonstrate that HEOA surpasses most current state-of-the-art algorithms in approximating optimal solutions for complex global optimization problems. The MATLAB code for HEOA is available at https://github.com/junbolian/HEOA.git.
ArticleNumber 122638
Author Lian, Junbo
Hui, Guohua
Author_xml – sequence: 1
  givenname: Junbo
  orcidid: 0000-0001-7602-0022
  surname: Lian
  fullname: Lian, Junbo
  email: junbolian@qq.com
– sequence: 2
  givenname: Guohua
  orcidid: 0000-0002-6786-4992
  surname: Hui
  fullname: Hui, Guohua
  email: deliver1982@163.com
BookMark eNp9zz1PwzAQgGELFYm28AeYsjIknO0kjiWWqiotUqUuMFuOewFH-ahstwh-PQllYuhgnTy8p3tmZNL1HRJyTyGhQPPHOkH_qRMGjCeUsZwXV2RKC8HjXEg-IVOQmYhTKtIbMvO-BqACQEzJw-bY6i5anfrmGGzfafcV7Q7BtvZbj_9o0bz3zoaP9pZcV7rxePc35-TtefW63MTb3fpludjGhgOEOAOObHgFy9Gke8As1bLSKbCKa8lMyXklcw2FlCVSU6alZMgzkxclFwiGz0lx3mtc773DShkbfm8JTttGUVAjWdVqJKuRrM7kIWX_0oOz7UC6HD2dIxxQJ4tOeWOxM7i3Dk1Q-95eyn8ASRxx5A
CitedBy_id crossref_primary_10_1016_j_eswa_2025_127416
crossref_primary_10_1186_s40537_025_01260_0
crossref_primary_10_3390_math13030418
crossref_primary_10_1016_j_asoc_2025_113071
crossref_primary_10_1038_s41598_025_93410_w
crossref_primary_10_3390_app15020595
crossref_primary_10_1007_s10586_025_05315_y
crossref_primary_10_1089_jmf_2024_k_0004
crossref_primary_10_3390_biomimetics10090629
crossref_primary_10_1007_s10586_025_05508_5
crossref_primary_10_1038_s41598_025_91270_y
crossref_primary_10_1016_j_asoc_2025_113505
crossref_primary_10_1007_s11227_024_06092_y
crossref_primary_10_3390_biomimetics10060380
crossref_primary_10_3390_sym17060841
crossref_primary_10_1007_s10586_024_05094_y
crossref_primary_10_1007_s12065_025_01052_8
crossref_primary_10_1016_j_compbiomed_2024_109080
crossref_primary_10_1038_s41598_024_56521_4
crossref_primary_10_1109_JIOT_2025_3532749
crossref_primary_10_1109_JAS_2024_124788
crossref_primary_10_1007_s10586_025_05241_z
crossref_primary_10_1038_s41598_024_77115_0
crossref_primary_10_1109_ACCESS_2025_3533034
crossref_primary_10_1109_ACCESS_2025_3567303
crossref_primary_10_3390_biomimetics10050260
crossref_primary_10_1093_jcde_qwae080
crossref_primary_10_3390_app14188284
crossref_primary_10_1007_s10825_025_02373_8
crossref_primary_10_3390_axioms14040235
crossref_primary_10_1002_cpe_70143
crossref_primary_10_1007_s11831_025_10388_4
crossref_primary_10_1038_s41598_024_81144_0
crossref_primary_10_1016_j_measurement_2025_118361
crossref_primary_10_1007_s13042_024_02462_3
crossref_primary_10_1007_s10499_025_01958_1
crossref_primary_10_1016_j_eswa_2025_126532
crossref_primary_10_3390_math13040668
crossref_primary_10_1016_j_compbiomed_2025_110898
crossref_primary_10_1016_j_eswa_2025_128595
crossref_primary_10_1016_j_eswa_2025_129288
crossref_primary_10_1109_ACCESS_2025_3583176
crossref_primary_10_1016_j_cma_2025_117825
crossref_primary_10_1016_j_eswa_2025_127877
crossref_primary_10_1007_s10586_024_05005_1
crossref_primary_10_1007_s10586_025_05445_3
crossref_primary_10_1038_s41598_025_96559_6
crossref_primary_10_1007_s00521_024_10009_4
crossref_primary_10_3390_biomimetics10080482
crossref_primary_10_1007_s10586_025_05319_8
crossref_primary_10_1007_s11370_024_00548_z
crossref_primary_10_1007_s12065_025_01027_9
crossref_primary_10_1016_j_rineng_2025_105998
crossref_primary_10_1080_00207721_2024_2367079
crossref_primary_10_1109_ACCESS_2025_3529618
crossref_primary_10_1007_s11227_024_06137_2
crossref_primary_10_1016_j_knosys_2025_113908
crossref_primary_10_1038_s41598_024_63188_4
crossref_primary_10_1109_ACCESS_2024_3403089
crossref_primary_10_1007_s10462_024_11023_7
crossref_primary_10_1007_s10462_024_11069_7
crossref_primary_10_3390_math12101506
crossref_primary_10_3390_en17153629
crossref_primary_10_1007_s11042_023_18038_2
crossref_primary_10_1007_s10586_025_05305_0
crossref_primary_10_1007_s11227_024_06078_w
crossref_primary_10_1007_s11694_024_02897_w
crossref_primary_10_3390_math13040675
crossref_primary_10_1016_j_bspc_2025_108050
crossref_primary_10_1016_j_knosys_2024_112347
crossref_primary_10_1016_j_knosys_2024_111850
crossref_primary_10_1007_s00542_024_05834_5
crossref_primary_10_1038_s41598_025_94260_2
crossref_primary_10_3390_biomimetics9080478
crossref_primary_10_3390_f15091512
crossref_primary_10_3390_biomimetics10050282
crossref_primary_10_3390_biomimetics9080474
crossref_primary_10_3390_math13050717
crossref_primary_10_1016_j_swevo_2025_102082
crossref_primary_10_1016_j_bspc_2025_107558
crossref_primary_10_1007_s10586_024_04730_x
crossref_primary_10_3390_biomimetics10010023
crossref_primary_10_3390_biomimetics10090616
crossref_primary_10_1177_09544062251352346
crossref_primary_10_1088_1361_6501_ad76c8
crossref_primary_10_3390_biomimetics10090589
crossref_primary_10_1186_s40537_024_00917_6
crossref_primary_10_1007_s10462_024_10729_y
crossref_primary_10_1007_s10586_024_04680_4
crossref_primary_10_1016_j_rineng_2025_106785
crossref_primary_10_1016_j_eswa_2024_124190
crossref_primary_10_1016_j_knosys_2025_113062
crossref_primary_10_1038_s41598_025_93370_1
Cites_doi 10.1109/CDC.1990.203904
10.1007/s00521-014-1806-7
10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U
10.1007/978-3-642-12538-6_6
10.1016/j.advengsoft.2005.04.005
10.1515/jisys-2021-0164
10.1016/j.asoc.2014.06.034
10.1109/TEVC.2008.919004
10.1038/267117a0
10.1007/s12293-016-0212-3
10.1016/j.future.2017.10.052
10.1016/j.eswa.2016.03.047
10.1016/j.knosys.2021.107529
10.1016/j.advengsoft.2017.07.002
10.1016/j.advengsoft.2017.03.014
10.1007/s10462-020-09952-0
10.1016/j.engappai.2018.04.021
10.1016/j.advengsoft.2015.01.010
10.1016/j.swevo.2020.100693
10.1016/j.cie.2020.107050
10.1007/978-3-642-04944-6_14
10.1007/s00170-015-6993-6
10.1016/j.asoc.2017.11.043
10.1016/j.ins.2009.03.004
10.1016/j.knosys.2015.12.022
10.1109/4235.771163
10.1016/j.chaos.2007.10.049
10.3390/app10113827
10.1016/j.eswa.2022.116924
10.1109/TEVC.2008.927706
10.1023/A:1008202821328
10.1016/j.eswa.2020.113377
10.1016/j.future.2019.07.015
10.1016/j.advengsoft.2016.01.008
10.1038/nature06948
10.1016/j.knosys.2021.107625
10.1016/j.knosys.2011.07.001
10.1109/MHS.1995.494215
10.1007/s00521-015-1920-1
10.1016/j.jcde.2015.06.003
10.1016/j.knosys.2019.105190
10.1016/j.future.2019.02.028
10.1007/s00521-015-1870-7
10.1016/j.physrep.2016.08.001
10.2528/PIER07082403
10.1007/BFb0029736
10.1016/j.ins.2011.08.006
10.1016/j.swevo.2018.02.013
10.1016/j.knosys.2015.07.006
10.1016/j.swevo.2015.07.002
10.1016/j.knosys.2020.106711
10.1016/j.cnsns.2012.05.010
10.1016/j.advengsoft.2017.01.004
10.3934/mbe.2022023
10.1080/03052150108940941
10.3390/e23121637
10.1016/j.cma.2020.113609
10.1016/j.eswa.2020.114353
10.1016/j.asoc.2015.07.045
10.1007/s10898-007-9149-x
10.1016/j.cie.2021.107250
10.1016/j.ins.2015.09.051
10.1080/21642583.2019.1708830
10.1016/j.neucom.2016.09.068
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.122638
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_122638
S0957417423031408
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
M41
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-503e203e826ec4d0e54a9fa402f3a92cb33f96a0899be1cb4b92e35c68b37e0c3
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001125943100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 21:00:47 EST 2025
Sat Nov 29 07:04:15 EST 2025
Sat Feb 17 16:07:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Swarm optimization
Metaheuristic
Heuristic algorithm
Evolutionary
Constrained optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-503e203e826ec4d0e54a9fa402f3a92cb33f96a0899be1cb4b92e35c68b37e0c3
ORCID 0000-0001-7602-0022
0000-0002-6786-4992
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2023_122638
crossref_primary_10_1016_j_eswa_2023_122638
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_122638
PublicationCentury 2000
PublicationDate 2024-05-01
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jain, Singh, Rani (b0135) 2019; 44
Yang, X. S. (2009a). Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms (pp. 169-178). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04944-6_14.
Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65-74). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12538-6_6.
Johnson, T., & Husbands, P. (1990, October). System identification using genetic algorithms. In International conference on parallel problem solving from nature (pp. 85-89). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/BFb0029736.
Kumar, Wu, Ali, Mallipeddi, Suganthan, Das (b0175) 2020; 56
Mirjalili (b0210) 2015; 83
Formato, R. A. (2007). Central force optimization. Prog Electromagn Res, 77(1), 425-491. https://www.academia.edu/download/39993697/CFO_PREPRINT_11-12-2015.pdf.
Cheraghalipour, Hajiaghaei-Keshteli, Paydar (b0050) 2018; 72
Moghdani, Salimifard (b0240) 2018; 64
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b0125) 2019; 101
Salcedo-Sanz (b0285) 2016; 655
Dong, Chen, Heidari, Turabieh, Mafarja, Wang (b0070) 2021; 233
Haklı, Uğuz (b0120) 2014; 23
Yazdani, Jolai (b0350) 2016; 3
Agushaka, Ezugwu, Abualigah (b0025) 2022; 391
Kaveh, Dadras (b0170) 2017; 110
Liang, Qu, Suganthan (b0185) 2013; 635
Michalewicz, Z., Krawczyk, J. B., Kazemi, M., & Janikow, C. Z. (1990, December). Genetic algorithms and optimal control problems. In 29th IEEE conference on decision and control (pp. 1664-1666). IEEE. https://ieeexplore.ieee.org/abstract/document/203904.
Gandomi, Alavi (b0105) 2012; 17
John (b0150) 1992; 267
Storn, Price (b0305) 1997; 11
Zapata, Perozo, Angulo, Contreras (b0355) 2020; 18
Faramarzi, Heidarinejad, Mirjalili, Gandomi (b0095) 2020; 152
Saremi, Mirjalili, Lewis (b0295) 2017; 105
Beni, Wang (b0045) 1993
Xue, Shen (b0325) 2020; 8
Mirjalili (b0220) 2016; 27
Pan (b0260) 2012; 26
Abualigah, Yousri, Abd Elaziz, Ewees, Al-Qaness, Gandomi (b0015) 2021; 157
Kumar, Kulkarni, Satapathy (b0180) 2018; 81
Tang, Dong, Jiang, Li, Huang (b0310) 2015; 36
Saremi, Mirjalili, Mirjalili (b0290) 2015; 26
Rashedi, Nezamabadi-Pour, Saryazdi (b0275) 2009; 179
Colorni, A., Dorigo, M., & Maniezzo, V. (1991, December). Distributed optimization by ant colonies. In Proceedings of the first European conference on artificial life (Vol. 142, pp. 134-142). https://www-public.imtbs-tsp.eu/∼gibson/Teaching/Teaching-ReadingMaterial/ColorniDorigoManiezzo91.pdf.
Mirjalili (b0215) 2016; 96
Oyelade, O. N., & Ezugwu, A. E. (2021). Ebola Optimization Search Algorithm (EOSA): A new metaheuristic algorithm based on the propagation model of Ebola virus disease. arXiv preprint arXiv:2106.01416. https://arxiv.org/abs/2106.01416.
Nadimi-Shahraki, Fatahi, Zamani, Mirjalili, Abualigah (b0190) 2021; 23
MiarNaeimi, Azizyan, Rashki (b0195) 2021; 213
Barrow (b0035) 1977; 267
Ezugwu, Shukla, Nath, Akinyelu, Agushaka, Chiroma, Muhuri (b0085) 2021; 54
Agushaka, Ezugwu (b0030) 2021; 31
Kaidi, Khishe, Mohammadi (b0155) 2022; 235
Simon (b0300) 2008; 12
Chopra, Ansari (b0060) 2022; 198
Mirjalili, Mirjalili, Hatamlou (b0225) 2016; 27
Yang, Deb (b0340) 2009
Mirjalili, Lewis (b0230) 2016; 95
Zheng, Jia, Abualigah, Liu, Wang (b0365) 2022; 19
Wang (b0315) 2018; 10
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0130) 2019; 97
Nabil (b0250) 2016; 57
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b0020) 2021; 376
Qin, Huang, Suganthan (b0265) 2008; 13
Rao, Savsani, Vakharia (b0270) 2012; 183
Ray, Saini (b0280) 2001; 33
Faramarzi, Heidarinejad, Stephens, Mirjalili (b0090) 2020; 191
Kanso, Smaoui (b0160) 2009; 40
Karaboga, Basturk (b0165) 2007; 39
Yao, Liu, Lin (b0345) 1999; 3
Zhang, Wang, Yang, Ding, Li, Hu (b0360) 2017; 221
Abualigah, Diabat, Geem (b0010) 2020; 10
Hajipour, Mehdizadeh, Tavakkoli-Moghaddam (b0110) 2014; 21
Mirjalili (b0205) 2015; 89
Barthelemy, Bertolotti, Wiersma (b0040) 2008; 453
Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). IEEE. https://ieeexplore.ieee.org/document/494215.
Hajipour, Kheirkhah, Tavana, Absi (b0115) 2015; 80
Abedinpourshotorban, Shamsuddin, Beheshti, Jawawi (b0005) 2016; 26
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0235) 2017; 114
Erol, Eksin (b0080) 2006; 37
Jerebic, Mernik, Liu, Ravber, Baketarić, Mernik, Črepinšek (b0140) 2021; 167
Mohammadi-Balani, Nayeri, Azar, Taghizadeh-Yazdi (b0245) 2021; 152
Chickermane, Gea (b0055) 1996; 39
Wu (b0320) 2016; 329
10.1016/j.eswa.2023.122638_b0330
Hajipour (10.1016/j.eswa.2023.122638_b0115) 2015; 80
Simon (10.1016/j.eswa.2023.122638_b0300) 2008; 12
Faramarzi (10.1016/j.eswa.2023.122638_b0095) 2020; 152
Tang (10.1016/j.eswa.2023.122638_b0310) 2015; 36
Yao (10.1016/j.eswa.2023.122638_b0345) 1999; 3
Hajipour (10.1016/j.eswa.2023.122638_b0110) 2014; 21
Zhang (10.1016/j.eswa.2023.122638_b0360) 2017; 221
Jerebic (10.1016/j.eswa.2023.122638_b0140) 2021; 167
Abedinpourshotorban (10.1016/j.eswa.2023.122638_b0005) 2016; 26
10.1016/j.eswa.2023.122638_b0335
10.1016/j.eswa.2023.122638_b0255
Yang (10.1016/j.eswa.2023.122638_b0340) 2009
Gandomi (10.1016/j.eswa.2023.122638_b0105) 2012; 17
Ray (10.1016/j.eswa.2023.122638_b0280) 2001; 33
Barthelemy (10.1016/j.eswa.2023.122638_b0040) 2008; 453
Abualigah (10.1016/j.eswa.2023.122638_b0020) 2021; 376
Beni (10.1016/j.eswa.2023.122638_b0045) 1993
Heidari (10.1016/j.eswa.2023.122638_b0130) 2019; 97
10.1016/j.eswa.2023.122638_b0100
Kaidi (10.1016/j.eswa.2023.122638_b0155) 2022; 235
Barrow (10.1016/j.eswa.2023.122638_b0035) 1977; 267
Haklı (10.1016/j.eswa.2023.122638_b0120) 2014; 23
10.1016/j.eswa.2023.122638_b0065
Xue (10.1016/j.eswa.2023.122638_b0325) 2020; 8
Kumar (10.1016/j.eswa.2023.122638_b0175) 2020; 56
Abualigah (10.1016/j.eswa.2023.122638_b0010) 2020; 10
Kaveh (10.1016/j.eswa.2023.122638_b0170) 2017; 110
Erol (10.1016/j.eswa.2023.122638_b0080) 2006; 37
10.1016/j.eswa.2023.122638_b0145
Qin (10.1016/j.eswa.2023.122638_b0265) 2008; 13
Mohammadi-Balani (10.1016/j.eswa.2023.122638_b0245) 2021; 152
Dong (10.1016/j.eswa.2023.122638_b0070) 2021; 233
Agushaka (10.1016/j.eswa.2023.122638_b0025) 2022; 391
Mirjalili (10.1016/j.eswa.2023.122638_b0205) 2015; 89
Nabil (10.1016/j.eswa.2023.122638_b0250) 2016; 57
MiarNaeimi (10.1016/j.eswa.2023.122638_b0195) 2021; 213
Faramarzi (10.1016/j.eswa.2023.122638_b0090) 2020; 191
Moghdani (10.1016/j.eswa.2023.122638_b0240) 2018; 64
Saremi (10.1016/j.eswa.2023.122638_b0295) 2017; 105
Mirjalili (10.1016/j.eswa.2023.122638_b0225) 2016; 27
Cheraghalipour (10.1016/j.eswa.2023.122638_b0050) 2018; 72
10.1016/j.eswa.2023.122638_b0075
Wu (10.1016/j.eswa.2023.122638_b0320) 2016; 329
Kumar (10.1016/j.eswa.2023.122638_b0180) 2018; 81
Mirjalili (10.1016/j.eswa.2023.122638_b0210) 2015; 83
Kanso (10.1016/j.eswa.2023.122638_b0160) 2009; 40
Zheng (10.1016/j.eswa.2023.122638_b0365) 2022; 19
Rashedi (10.1016/j.eswa.2023.122638_b0275) 2009; 179
Saremi (10.1016/j.eswa.2023.122638_b0290) 2015; 26
Mirjalili (10.1016/j.eswa.2023.122638_b0230) 2016; 95
Storn (10.1016/j.eswa.2023.122638_b0305) 1997; 11
Nadimi-Shahraki (10.1016/j.eswa.2023.122638_b0190) 2021; 23
Mirjalili (10.1016/j.eswa.2023.122638_b0235) 2017; 114
Chopra (10.1016/j.eswa.2023.122638_b0060) 2022; 198
Karaboga (10.1016/j.eswa.2023.122638_b0165) 2007; 39
Pan (10.1016/j.eswa.2023.122638_b0260) 2012; 26
Hashim (10.1016/j.eswa.2023.122638_b0125) 2019; 101
Rao (10.1016/j.eswa.2023.122638_b0270) 2012; 183
Jain (10.1016/j.eswa.2023.122638_b0135) 2019; 44
Ezugwu (10.1016/j.eswa.2023.122638_b0085) 2021; 54
10.1016/j.eswa.2023.122638_b0200
Salcedo-Sanz (10.1016/j.eswa.2023.122638_b0285) 2016; 655
Wang (10.1016/j.eswa.2023.122638_b0315) 2018; 10
Zapata (10.1016/j.eswa.2023.122638_b0355) 2020; 18
Abualigah (10.1016/j.eswa.2023.122638_b0015) 2021; 157
Liang (10.1016/j.eswa.2023.122638_b0185) 2013; 635
Mirjalili (10.1016/j.eswa.2023.122638_b0220) 2016; 27
Agushaka (10.1016/j.eswa.2023.122638_b0030) 2021; 31
Chickermane (10.1016/j.eswa.2023.122638_b0055) 1996; 39
John (10.1016/j.eswa.2023.122638_b0150) 1992; 267
Mirjalili (10.1016/j.eswa.2023.122638_b0215) 2016; 96
Yazdani (10.1016/j.eswa.2023.122638_b0350) 2016; 3
References_xml – volume: 329
  start-page: 597
  year: 2016
  end-page: 618
  ident: b0320
  article-title: Across neighborhood search for numerical optimization
  publication-title: Information Sciences
– volume: 157
  year: 2021
  ident: b0015
  article-title: Aquila optimizer: A novel meta-heuristic optimization algorithm
  publication-title: Computers & Industrial Engineering
– volume: 183
  start-page: 1
  year: 2012
  end-page: 15
  ident: b0270
  article-title: Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems
  publication-title: Information Sciences
– volume: 64
  start-page: 161
  year: 2018
  end-page: 185
  ident: b0240
  article-title: Volleyball premier league algorithm
  publication-title: Applied Soft Computing
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0305
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of global optimization
– reference: Oyelade, O. N., & Ezugwu, A. E. (2021). Ebola Optimization Search Algorithm (EOSA): A new metaheuristic algorithm based on the propagation model of Ebola virus disease. arXiv preprint arXiv:2106.01416. https://arxiv.org/abs/2106.01416.
– volume: 57
  start-page: 192
  year: 2016
  end-page: 203
  ident: b0250
  article-title: A modified flower pollination algorithm for global optimization
  publication-title: Expert Systems with Applications
– volume: 453
  start-page: 495
  year: 2008
  end-page: 498
  ident: b0040
  article-title: A Lévy flight for light
  publication-title: Nature
– reference: Colorni, A., Dorigo, M., & Maniezzo, V. (1991, December). Distributed optimization by ant colonies. In Proceedings of the first European conference on artificial life (Vol. 142, pp. 134-142). https://www-public.imtbs-tsp.eu/∼gibson/Teaching/Teaching-ReadingMaterial/ColorniDorigoManiezzo91.pdf.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b0235
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b0165
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: Journal of global optimization
– volume: 267
  start-page: 117
  year: 1977
  end-page: 120
  ident: b0035
  article-title: A chaotic cosmology
  publication-title: Nature
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0230
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– reference: Michalewicz, Z., Krawczyk, J. B., Kazemi, M., & Janikow, C. Z. (1990, December). Genetic algorithms and optimal control problems. In 29th IEEE conference on decision and control (pp. 1664-1666). IEEE. https://ieeexplore.ieee.org/abstract/document/203904.
– volume: 37
  start-page: 106
  year: 2006
  end-page: 111
  ident: b0080
  article-title: A new optimization method: Big bang–big crunch
  publication-title: Advances in engineering software
– volume: 39
  start-page: 829
  year: 1996
  end-page: 846
  ident: b0055
  article-title: Structural optimization using a new local approximation method
  publication-title: International Journal For Numerical Methods In Engineering
– volume: 21
  start-page: 2368
  year: 2014
  end-page: 2378
  ident: b0110
  article-title: A novel Pareto-based multi-objective vibration damping optimization algorithm to solve multi-objective optimization problems
  publication-title: Scientia Iranica
– volume: 40
  start-page: 2557
  year: 2009
  end-page: 2568
  ident: b0160
  article-title: Logistic chaotic maps for binary numbers generations
  publication-title: Chaos, Solitons & Fractals
– volume: 26
  start-page: 1257
  year: 2015
  end-page: 1263
  ident: b0290
  article-title: Evolutionary population dynamics and grey wolf optimizer
  publication-title: Neural Computing and Applications
– volume: 72
  start-page: 393
  year: 2018
  end-page: 414
  ident: b0050
  article-title: Tree Growth Algorithm (TGA): A novel approach for solving optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
– start-page: 703
  year: 1993
  end-page: 712
  ident: b0045
  article-title: Swarm intelligence in cellular robotic systems
  publication-title: Robots and biological systems: towards a new bionics?
– reference: Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). IEEE. https://ieeexplore.ieee.org/document/494215.
– reference: Formato, R. A. (2007). Central force optimization. Prog Electromagn Res, 77(1), 425-491. https://www.academia.edu/download/39993697/CFO_PREPRINT_11-12-2015.pdf.
– volume: 80
  start-page: 31
  year: 2015
  end-page: 45
  ident: b0115
  article-title: Novel Pareto-based meta-heuristics for solving multi-objective multi-item capacitated lot-sizing problems
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: b0210
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
– volume: 26
  start-page: 8
  year: 2016
  end-page: 22
  ident: b0005
  article-title: Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm
  publication-title: Swarm and Evolutionary Computation
– volume: 23
  start-page: 333
  year: 2014
  end-page: 345
  ident: b0120
  article-title: A novel particle swarm optimization algorithm with Levy flight
  publication-title: Applied Soft Computing
– volume: 167
  year: 2021
  ident: b0140
  article-title: A novel direct measure of exploration and exploitation based on attraction basins
  publication-title: Expert Systems with Applications
– reference: Yang, X. S. (2009a). Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms (pp. 169-178). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04944-6_14.
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: b0225
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
– start-page: 210
  year: 2009
  end-page: 214
  ident: b0340
  article-title: Cuckoo search via Lévy flights
  publication-title: In 2009 World congress on nature & biologically inspired computing (NaBIC)
– volume: 213
  year: 2021
  ident: b0195
  article-title: Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems
  publication-title: Knowledge-Based Systems
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b0205
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-based Systems
– volume: 44
  start-page: 148
  year: 2019
  end-page: 175
  ident: b0135
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm and evolutionary computation
– volume: 56
  year: 2020
  ident: b0175
  article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results
  publication-title: Swarm and Evolutionary Computation
– volume: 33
  start-page: 735
  year: 2001
  end-page: 748
  ident: b0280
  article-title: Engineering design optimization using a swarm with an intelligent information sharing among individuals
  publication-title: Engineering Optimization
– volume: 655
  start-page: 1
  year: 2016
  end-page: 70
  ident: b0285
  article-title: Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures
  publication-title: Physics Reports
– reference: Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65-74). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12538-6_6.
– volume: 10
  start-page: 3827
  year: 2020
  ident: b0010
  article-title: A comprehensive survey of the harmony search algorithm in clustering applications
  publication-title: Applied Sciences
– volume: 36
  start-page: 670
  year: 2015
  end-page: 698
  ident: b0310
  article-title: ITGO: Invasive tumor growth optimization algorithm
  publication-title: Applied Soft Computing
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b0125
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
– volume: 198
  year: 2022
  ident: b0060
  article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications
  publication-title: Expert Systems with Applications
– volume: 81
  start-page: 252
  year: 2018
  end-page: 272
  ident: b0180
  article-title: Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology
  publication-title: Future Generation Computer Systems
– volume: 152
  year: 2021
  ident: b0245
  article-title: Golden eagle optimizer: A nature-inspired metaheuristic algorithm
  publication-title: Computers & Industrial Engineering
– volume: 31
  start-page: 70
  year: 2021
  end-page: 94
  ident: b0030
  article-title: Evaluation of several initialization methods on arithmetic optimization algorithm performance
  publication-title: Journal of Intelligent Systems
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b0215
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-based systems
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: b0345
  article-title: Evolutionary programming made faster
  publication-title: IEEE Transactions on Evolutionary computation
– volume: 54
  start-page: 4237
  year: 2021
  end-page: 4316
  ident: b0085
  article-title: Metaheuristics: A comprehensive overview and classification along with bibliometric analysis
  publication-title: Artificial Intelligence Review
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b0295
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Advances in engineering software
– volume: 376
  year: 2021
  ident: b0020
  article-title: The arithmetic optimization algorithm
  publication-title: Computer methods in applied mechanics and engineering
– volume: 18
  start-page: 1
  year: 2020
  end-page: 18
  ident: b0355
  article-title: A hybrid swarm algorithm for collective construction of 3D structures
  publication-title: International Journal of Artificial Intelligence
– volume: 110
  start-page: 69
  year: 2017
  end-page: 84
  ident: b0170
  article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization
  publication-title: Advances in engineering software
– volume: 13
  start-page: 398
  year: 2008
  end-page: 417
  ident: b0265
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE transactions on Evolutionary Computation
– volume: 391
  year: 2022
  ident: b0025
  article-title: Dwarf mongoose optimization algorithm
  publication-title: ComputerMethods in Applied Mechanics and Engineering
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b0220
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Applications
– volume: 233
  year: 2021
  ident: b0070
  article-title: Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem
  publication-title: Knowledge-Based Systems
– volume: 3
  start-page: 24
  year: 2016
  end-page: 36
  ident: b0350
  article-title: Lion optimization algorithm (LOA): A nature-inspired metaheuristic algorithm
  publication-title: Journal of computational design and engineering
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b0130
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
– volume: 191
  year: 2020
  ident: b0090
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowledge-Based Systems
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0275
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
– volume: 8
  start-page: 22
  year: 2020
  end-page: 34
  ident: b0325
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Systems science & control engineering
– volume: 10
  start-page: 151
  year: 2018
  end-page: 164
  ident: b0315
  article-title: Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memetic Computing
– volume: 221
  start-page: 123
  year: 2017
  end-page: 137
  ident: b0360
  article-title: Collective decision optimization algorithm: A new heuristic optimization method
  publication-title: Neurocomputing
– volume: 26
  start-page: 69
  year: 2012
  end-page: 74
  ident: b0260
  article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example
  publication-title: Knowledge-Based Systems
– volume: 635
  year: 2013
  ident: b0185
  article-title: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization
  publication-title: Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore
– volume: 19
  start-page: 473
  year: 2022
  end-page: 512
  ident: b0365
  article-title: An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems
  publication-title: Mathematical Biosciences and Engineering
– volume: 235
  year: 2022
  ident: b0155
  article-title: Dynamic levy flight chimp optimization
  publication-title: Knowledge-Based Systems
– volume: 152
  year: 2020
  ident: b0095
  article-title: Marine predators algorithm: A nature-inspired metaheuristic
  publication-title: Expert systems with applications
– volume: 23
  start-page: 1637
  year: 2021
  ident: b0190
  article-title: An improved moth–flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems
  publication-title: Entropy
– volume: 267
  start-page: 44
  year: 1992
  end-page: 50
  ident: b0150
  article-title: Holland. Genetic algorithms
  publication-title: Scientific American
– reference: Johnson, T., & Husbands, P. (1990, October). System identification using genetic algorithms. In International conference on parallel problem solving from nature (pp. 85-89). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/BFb0029736.
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: b0300
  article-title: Biogeography-based optimization
  publication-title: IEEE transactions on evolutionary computation
– volume: 17
  start-page: 4831
  year: 2012
  end-page: 4845
  ident: b0105
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– volume: 391
  year: 2022
  ident: 10.1016/j.eswa.2023.122638_b0025
  article-title: Dwarf mongoose optimization algorithm
  publication-title: ComputerMethods in Applied Mechanics and Engineering
– ident: 10.1016/j.eswa.2023.122638_b0200
  doi: 10.1109/CDC.1990.203904
– volume: 26
  start-page: 1257
  year: 2015
  ident: 10.1016/j.eswa.2023.122638_b0290
  article-title: Evolutionary population dynamics and grey wolf optimizer
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1806-7
– volume: 39
  start-page: 829
  issue: 5
  year: 1996
  ident: 10.1016/j.eswa.2023.122638_b0055
  article-title: Structural optimization using a new local approximation method
  publication-title: International Journal For Numerical Methods In Engineering
  doi: 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U
– ident: 10.1016/j.eswa.2023.122638_b0255
– ident: 10.1016/j.eswa.2023.122638_b0330
  doi: 10.1007/978-3-642-12538-6_6
– volume: 37
  start-page: 106
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2023.122638_b0080
  article-title: A new optimization method: Big bang–big crunch
  publication-title: Advances in engineering software
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 18
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.122638_b0355
  article-title: A hybrid swarm algorithm for collective construction of 3D structures
  publication-title: International Journal of Artificial Intelligence
– volume: 31
  start-page: 70
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.122638_b0030
  article-title: Evaluation of several initialization methods on arithmetic optimization algorithm performance
  publication-title: Journal of Intelligent Systems
  doi: 10.1515/jisys-2021-0164
– volume: 23
  start-page: 333
  year: 2014
  ident: 10.1016/j.eswa.2023.122638_b0120
  article-title: A novel particle swarm optimization algorithm with Levy flight
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.06.034
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.1016/j.eswa.2023.122638_b0300
  article-title: Biogeography-based optimization
  publication-title: IEEE transactions on evolutionary computation
  doi: 10.1109/TEVC.2008.919004
– volume: 267
  start-page: 117
  issue: 5607
  year: 1977
  ident: 10.1016/j.eswa.2023.122638_b0035
  article-title: A chaotic cosmology
  publication-title: Nature
  doi: 10.1038/267117a0
– volume: 10
  start-page: 151
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2023.122638_b0315
  article-title: Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memetic Computing
  doi: 10.1007/s12293-016-0212-3
– volume: 81
  start-page: 252
  year: 2018
  ident: 10.1016/j.eswa.2023.122638_b0180
  article-title: Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2017.10.052
– volume: 57
  start-page: 192
  year: 2016
  ident: 10.1016/j.eswa.2023.122638_b0250
  article-title: A modified flower pollination algorithm for global optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.047
– volume: 233
  year: 2021
  ident: 10.1016/j.eswa.2023.122638_b0070
  article-title: Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107529
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.eswa.2023.122638_b0235
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 110
  start-page: 69
  year: 2017
  ident: 10.1016/j.eswa.2023.122638_b0170
  article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization
  publication-title: Advances in engineering software
  doi: 10.1016/j.advengsoft.2017.03.014
– volume: 54
  start-page: 4237
  year: 2021
  ident: 10.1016/j.eswa.2023.122638_b0085
  article-title: Metaheuristics: A comprehensive overview and classification along with bibliometric analysis
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-020-09952-0
– volume: 72
  start-page: 393
  year: 2018
  ident: 10.1016/j.eswa.2023.122638_b0050
  article-title: Tree Growth Algorithm (TGA): A novel approach for solving optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2018.04.021
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.eswa.2023.122638_b0210
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 56
  year: 2020
  ident: 10.1016/j.eswa.2023.122638_b0175
  article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100693
– volume: 152
  year: 2021
  ident: 10.1016/j.eswa.2023.122638_b0245
  article-title: Golden eagle optimizer: A nature-inspired metaheuristic algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.107050
– ident: 10.1016/j.eswa.2023.122638_b0335
  doi: 10.1007/978-3-642-04944-6_14
– volume: 80
  start-page: 31
  year: 2015
  ident: 10.1016/j.eswa.2023.122638_b0115
  article-title: Novel Pareto-based meta-heuristics for solving multi-objective multi-item capacitated lot-sizing problems
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-015-6993-6
– volume: 64
  start-page: 161
  year: 2018
  ident: 10.1016/j.eswa.2023.122638_b0240
  article-title: Volleyball premier league algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.11.043
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2023.122638_b0275
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.eswa.2023.122638_b0215
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-based systems
  doi: 10.1016/j.knosys.2015.12.022
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 10.1016/j.eswa.2023.122638_b0345
  article-title: Evolutionary programming made faster
  publication-title: IEEE Transactions on Evolutionary computation
  doi: 10.1109/4235.771163
– volume: 40
  start-page: 2557
  issue: 5
  year: 2009
  ident: 10.1016/j.eswa.2023.122638_b0160
  article-title: Logistic chaotic maps for binary numbers generations
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2007.10.049
– volume: 10
  start-page: 3827
  issue: 11
  year: 2020
  ident: 10.1016/j.eswa.2023.122638_b0010
  article-title: A comprehensive survey of the harmony search algorithm in clustering applications
  publication-title: Applied Sciences
  doi: 10.3390/app10113827
– volume: 198
  year: 2022
  ident: 10.1016/j.eswa.2023.122638_b0060
  article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116924
– volume: 635
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2023.122638_b0185
  article-title: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization
  publication-title: Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore
– volume: 13
  start-page: 398
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2023.122638_b0265
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.927706
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.eswa.2023.122638_b0305
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of global optimization
  doi: 10.1023/A:1008202821328
– volume: 152
  year: 2020
  ident: 10.1016/j.eswa.2023.122638_b0095
  article-title: Marine predators algorithm: A nature-inspired metaheuristic
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2020.113377
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.eswa.2023.122638_b0125
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.07.015
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2023.122638_b0230
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 10.1016/j.eswa.2023.122638_b0065
– volume: 453
  start-page: 495
  issue: 7194
  year: 2008
  ident: 10.1016/j.eswa.2023.122638_b0040
  article-title: A Lévy flight for light
  publication-title: Nature
  doi: 10.1038/nature06948
– volume: 235
  year: 2022
  ident: 10.1016/j.eswa.2023.122638_b0155
  article-title: Dynamic levy flight chimp optimization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107625
– volume: 26
  start-page: 69
  year: 2012
  ident: 10.1016/j.eswa.2023.122638_b0260
  article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2011.07.001
– ident: 10.1016/j.eswa.2023.122638_b0075
  doi: 10.1109/MHS.1995.494215
– volume: 27
  start-page: 1053
  year: 2016
  ident: 10.1016/j.eswa.2023.122638_b0220
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1920-1
– volume: 3
  start-page: 24
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2023.122638_b0350
  article-title: Lion optimization algorithm (LOA): A nature-inspired metaheuristic algorithm
  publication-title: Journal of computational design and engineering
  doi: 10.1016/j.jcde.2015.06.003
– volume: 191
  year: 2020
  ident: 10.1016/j.eswa.2023.122638_b0090
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105190
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.eswa.2023.122638_b0130
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– volume: 27
  start-page: 495
  year: 2016
  ident: 10.1016/j.eswa.2023.122638_b0225
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1870-7
– volume: 21
  start-page: 2368
  issue: 6
  year: 2014
  ident: 10.1016/j.eswa.2023.122638_b0110
  article-title: A novel Pareto-based multi-objective vibration damping optimization algorithm to solve multi-objective optimization problems
  publication-title: Scientia Iranica
– volume: 655
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2023.122638_b0285
  article-title: Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2016.08.001
– ident: 10.1016/j.eswa.2023.122638_b0100
  doi: 10.2528/PIER07082403
– ident: 10.1016/j.eswa.2023.122638_b0145
  doi: 10.1007/BFb0029736
– volume: 183
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2023.122638_b0270
  article-title: Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.08.006
– start-page: 210
  year: 2009
  ident: 10.1016/j.eswa.2023.122638_b0340
  article-title: Cuckoo search via Lévy flights
– volume: 44
  start-page: 148
  year: 2019
  ident: 10.1016/j.eswa.2023.122638_b0135
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm and evolutionary computation
  doi: 10.1016/j.swevo.2018.02.013
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.eswa.2023.122638_b0205
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-based Systems
  doi: 10.1016/j.knosys.2015.07.006
– volume: 26
  start-page: 8
  year: 2016
  ident: 10.1016/j.eswa.2023.122638_b0005
  article-title: Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2015.07.002
– volume: 213
  year: 2021
  ident: 10.1016/j.eswa.2023.122638_b0195
  article-title: Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106711
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 10.1016/j.eswa.2023.122638_b0105
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.eswa.2023.122638_b0295
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Advances in engineering software
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 19
  start-page: 473
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.122638_b0365
  article-title: An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems
  publication-title: Mathematical Biosciences and Engineering
  doi: 10.3934/mbe.2022023
– volume: 33
  start-page: 735
  issue: 6
  year: 2001
  ident: 10.1016/j.eswa.2023.122638_b0280
  article-title: Engineering design optimization using a swarm with an intelligent information sharing among individuals
  publication-title: Engineering Optimization
  doi: 10.1080/03052150108940941
– volume: 23
  start-page: 1637
  issue: 12
  year: 2021
  ident: 10.1016/j.eswa.2023.122638_b0190
  article-title: An improved moth–flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems
  publication-title: Entropy
  doi: 10.3390/e23121637
– volume: 376
  year: 2021
  ident: 10.1016/j.eswa.2023.122638_b0020
  article-title: The arithmetic optimization algorithm
  publication-title: Computer methods in applied mechanics and engineering
  doi: 10.1016/j.cma.2020.113609
– volume: 267
  start-page: 44
  issue: 1
  year: 1992
  ident: 10.1016/j.eswa.2023.122638_b0150
  article-title: Holland. Genetic algorithms
  publication-title: Scientific American
– volume: 167
  year: 2021
  ident: 10.1016/j.eswa.2023.122638_b0140
  article-title: A novel direct measure of exploration and exploitation based on attraction basins
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114353
– start-page: 703
  year: 1993
  ident: 10.1016/j.eswa.2023.122638_b0045
  article-title: Swarm intelligence in cellular robotic systems
– volume: 36
  start-page: 670
  year: 2015
  ident: 10.1016/j.eswa.2023.122638_b0310
  article-title: ITGO: Invasive tumor growth optimization algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.07.045
– volume: 39
  start-page: 459
  year: 2007
  ident: 10.1016/j.eswa.2023.122638_b0165
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: Journal of global optimization
  doi: 10.1007/s10898-007-9149-x
– volume: 157
  year: 2021
  ident: 10.1016/j.eswa.2023.122638_b0015
  article-title: Aquila optimizer: A novel meta-heuristic optimization algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107250
– volume: 329
  start-page: 597
  year: 2016
  ident: 10.1016/j.eswa.2023.122638_b0320
  article-title: Across neighborhood search for numerical optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.09.051
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.122638_b0325
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Systems science & control engineering
  doi: 10.1080/21642583.2019.1708830
– volume: 221
  start-page: 123
  year: 2017
  ident: 10.1016/j.eswa.2023.122638_b0360
  article-title: Collective decision optimization algorithm: A new heuristic optimization method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.068
SSID ssj0017007
Score 2.6741078
Snippet This paper introduces the Human Evolutionary Optimization Algorithm (HEOA), a metaheuristic algorithm inspired by human evolution. HEOA divides the global...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122638
SubjectTerms Constrained optimization
Evolutionary
Heuristic algorithm
Metaheuristic
Swarm optimization
Title Human Evolutionary Optimization Algorithm
URI https://dx.doi.org/10.1016/j.eswa.2023.122638
Volume 241
WOSCitedRecordID wos001125943100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFLagMLBwI8qlDCwItUpiu4nHCpVrAAaQukW269CiNq3atPTn81w7B6dgYEgUWb4_6-W953cgdKq4TmulvBpmJAABhUt9SQiiSoc0FO0EAaNykWwiuLsL2232YBMsThbpBIIkCedzNvpXqKEMwNaus3-AO-8UCuAbQIc3wA7vXwFv1PKtmR1EW8XdA10YWIfL82b_eTjupd3BO6W8jnic2rjOmcdb6W47t9vpcevMkYhhcSQWJgFX02F3ystqBJ8URnu5PhCw8kzKnIw0-iYolSVuHrBqJhTLJ7prVAAvdTV51cGcfFwvKr8Pcv3h55ObBGbWZi-R7iPSfUSmj2W04geUAclaad602rf5JVHgGm_4bObWJ8qY732cydd8R4mXeNxE61YIcJoGvC20pJJttJEl2HAsvd1BZwssnTKWThlLJ8dyFz1dth4vrms2t0VNYtdNa9TFyocHpDslScdVlHAWc5DmY8yZLwXGMWtwfSkrlCcFEcxXmMpGKHCgXIn3UCUZJmofObDG2KUh9mLhEU6x4B0WM2jfwB4RxK0iL1t5JG3gd51_pB99v-dVdJ63GZmwJz_WptmGRpZxMwxZBOfjh3YHfxrlEK0VB_cIVdLxVB2jVTlLe5PxiT0cb1YlYas
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Evolutionary+Optimization+Algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Lian%2C+Junbo&rft.au=Hui%2C+Guohua&rft.date=2024-05-01&rft.issn=0957-4174&rft.volume=241&rft.spage=122638&rft_id=info:doi/10.1016%2Fj.eswa.2023.122638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_122638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon