PPB-MCTS: A novel distributed-memory parallel partial-backpropagation Monte Carlo tree search algorithm

Monte-Carlo Tree Search (MCTS) is an adaptive and heuristic tree-search algorithm designed to uncover sub-optimal actions at each decision-making point. This method progressively constructs a search tree by gathering samples throughout its execution. Predominantly applied within the realm of gaming,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of parallel and distributed computing Ročník 193; s. 104944
Hlavní autoři: Naderzadeh, Yashar, Grosu, Daniel, Chinnam, Ratna Babu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.11.2024
Témata:
ISSN:0743-7315
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Monte-Carlo Tree Search (MCTS) is an adaptive and heuristic tree-search algorithm designed to uncover sub-optimal actions at each decision-making point. This method progressively constructs a search tree by gathering samples throughout its execution. Predominantly applied within the realm of gaming, MCTS has exhibited exceptional achievements. Additionally, it has displayed promising outcomes when employed to solve NP-hard combinatorial optimization problems. MCTS has been adapted for distributed-memory parallel platforms. The primary challenges associated with distributed-memory parallel MCTS are the substantial communication overhead and the necessity to balance the computational load among various processes. In this work, we introduce a novel distributed-memory parallel MCTS algorithm with partial backpropagations, referred to as Parallel Partial-Backpropagation MCTS (PPB-MCTS). Our design approach aims to significantly reduce the communication overhead while maintaining, or even slightly improving, the performance in the context of combinatorial optimization problems. To address the communication overhead challenge, we propose a strategy involving transmitting an additional backpropagation message. This strategy avoids attaching an information table to the communication messages exchanged by the processes, thus reducing the communication overhead. Furthermore, this approach contributes to enhancing the decision-making accuracy during the selection phase. The load balancing issue is also effectively addressed by implementing a shared transposition table among the parallel processes. Furthermore, we introduce two primary methods for managing duplicate states within distributed-memory parallel MCTS, drawing upon techniques utilized in addressing duplicate states within sequential MCTS. Duplicate states can transform the conventional search tree into a Directed Acyclic Graph (DAG). To evaluate the performance of our proposed parallel algorithm, we conduct an extensive series of experiments on solving instances of the Job-Shop Scheduling Problem (JSSP) and the Weighted Set-Cover Problem (WSCP). These problems are recognized for their complexity and classified as NP-hard combinatorial optimization problems with considerable relevance within industrial applications. The experiments are performed on a cluster of computers with many cores. The empirical results highlight the enhanced scalability of our algorithm compared to that of the existing distributed-memory parallel MCTS algorithms. As the number of processes increases, our algorithm demonstrates increased rollout efficiency while maintaining an improved load balance across processes. •A distributed-memory parallel Monte Carlo Tree Search algorithm is proposed.•The algorithm is scalable and efficient.•The algorithm is used to solve several Job-Shop Scheduling Problem instances.
AbstractList Monte-Carlo Tree Search (MCTS) is an adaptive and heuristic tree-search algorithm designed to uncover sub-optimal actions at each decision-making point. This method progressively constructs a search tree by gathering samples throughout its execution. Predominantly applied within the realm of gaming, MCTS has exhibited exceptional achievements. Additionally, it has displayed promising outcomes when employed to solve NP-hard combinatorial optimization problems. MCTS has been adapted for distributed-memory parallel platforms. The primary challenges associated with distributed-memory parallel MCTS are the substantial communication overhead and the necessity to balance the computational load among various processes. In this work, we introduce a novel distributed-memory parallel MCTS algorithm with partial backpropagations, referred to as Parallel Partial-Backpropagation MCTS (PPB-MCTS). Our design approach aims to significantly reduce the communication overhead while maintaining, or even slightly improving, the performance in the context of combinatorial optimization problems. To address the communication overhead challenge, we propose a strategy involving transmitting an additional backpropagation message. This strategy avoids attaching an information table to the communication messages exchanged by the processes, thus reducing the communication overhead. Furthermore, this approach contributes to enhancing the decision-making accuracy during the selection phase. The load balancing issue is also effectively addressed by implementing a shared transposition table among the parallel processes. Furthermore, we introduce two primary methods for managing duplicate states within distributed-memory parallel MCTS, drawing upon techniques utilized in addressing duplicate states within sequential MCTS. Duplicate states can transform the conventional search tree into a Directed Acyclic Graph (DAG). To evaluate the performance of our proposed parallel algorithm, we conduct an extensive series of experiments on solving instances of the Job-Shop Scheduling Problem (JSSP) and the Weighted Set-Cover Problem (WSCP). These problems are recognized for their complexity and classified as NP-hard combinatorial optimization problems with considerable relevance within industrial applications. The experiments are performed on a cluster of computers with many cores. The empirical results highlight the enhanced scalability of our algorithm compared to that of the existing distributed-memory parallel MCTS algorithms. As the number of processes increases, our algorithm demonstrates increased rollout efficiency while maintaining an improved load balance across processes. •A distributed-memory parallel Monte Carlo Tree Search algorithm is proposed.•The algorithm is scalable and efficient.•The algorithm is used to solve several Job-Shop Scheduling Problem instances.
ArticleNumber 104944
Author Grosu, Daniel
Naderzadeh, Yashar
Chinnam, Ratna Babu
Author_xml – sequence: 1
  givenname: Yashar
  surname: Naderzadeh
  fullname: Naderzadeh, Yashar
  organization: Department of Computer Science, Wayne State University, 5057 Woodward Ave., Detroit, 48202, MI, USA
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0003-2340-5433
  surname: Grosu
  fullname: Grosu, Daniel
  email: dgrosu@wayne.edu
  organization: Department of Computer Science, Wayne State University, 5057 Woodward Ave., Detroit, 48202, MI, USA
– sequence: 3
  givenname: Ratna Babu
  orcidid: 0000-0003-0980-1544
  surname: Chinnam
  fullname: Chinnam, Ratna Babu
  organization: Department of Industrial and Systems Engineering, Wayne State University, 4815 Fourth Street, Detroit, 48202, MI, USA
BookMark eNp9kE1uwjAQRr2gUoH2Al35AqF27MRJ1Q1F_ZNARSpdW449AadJHDkuErdvgK66YDWjGb3RN2-CRq1rAaE7SmaU0PS-mlWd0bOYxHwY8JzzERoTwVkkGE2u0aTvK0IoTUQ2Rtv1-ilaLTafD3iOW7eHGhvbB2-LnwAmaqBx_oA75VVdD7uhCVbVUaH0d-ddp7YqWNfilWsD4IXytcPBA-AelNc7rOqt8zbsmht0Vaq6h9u_OkVfL8-bxVu0_Hh9X8yXkWaEhIjnhsU01ukpt-DCZEabvFCMmRiUTlVaaJ2XaUFjlXCuBc9LxkRJgWUiSdgUZee72ru-91BKbcMpY_DK1pISeZQkK3mUJI-S5FnSgMb_0M7bRvnDZejxDMHw1N6Cl7220Gow1oMO0jh7Cf8Fi6SFrQ
CitedBy_id crossref_primary_10_3390_e27010035
crossref_primary_10_1016_j_enconman_2025_120173
crossref_primary_10_1109_LRA_2025_3586517
Cites_doi 10.1177/0278364918755924
10.1109/ACCESS.2020.3029868
10.1016/0377-2217(93)90182-M
10.1038/nature16961
10.1109/TG.2020.3048331
10.1109/TCIAIG.2014.2346997
10.1103/PhysRevE.71.036113
10.1007/s10514-024-10156-6
10.1016/0004-3702(85)90084-0
10.1145/2093548.2093574
10.1109/JAS.2016.7471613
10.1109/TCIAIG.2012.2186810
10.1109/JAS.2019.1911540
10.1287/opre.8.2.219
10.1016/j.knosys.2011.11.014
10.1561/2200000038
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jpdc.2024.104944
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_jpdc_2024_104944
S0743731524001084
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADTZH
ADVLN
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
~G0
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-49d3212c604944747d8dcd9ba33d2eac6a6bcc9f6b12a544c749f337f1e387553
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001263563400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0743-7315
IngestDate Sat Nov 29 05:29:19 EST 2025
Tue Nov 18 21:02:46 EST 2025
Sat Aug 24 15:42:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Parallel algorithms
Job shop scheduling
Monte Carlo tree search
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-49d3212c604944747d8dcd9ba33d2eac6a6bcc9f6b12a544c749f337f1e387553
ORCID 0000-0003-0980-1544
0000-0003-2340-5433
ParticipantIDs crossref_citationtrail_10_1016_j_jpdc_2024_104944
crossref_primary_10_1016_j_jpdc_2024_104944
elsevier_sciencedirect_doi_10_1016_j_jpdc_2024_104944
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gao, Cao, Zhang, Chen, Han, Pan (br0260) 2019; 6
Munos (br0360) 2014; 7
Enzenberger, Müller (br0300) 2009
Scheide, Best, Hollinger (br0120) 2021
Zhang, Song, Cao, Zhang, Tan, Chi (br0410) 2020; 33
Skrynnik, Andreychuk, Yakovlev, Panov (br0090) 2024; vol. 38
Yoshizoe, Kishimoto, Kaneko, Yoshimoto, Ishikawa (br0140) 2011; vol. 2
Graf, Lorenz, Platzner, Schaefers (br0160) 2011
Cazenave, Jouandeau (br0290) 2007
Kocsis, Szepesvári (br0010) 2006
Han, Yang (br0420) 2020; 8
Kurzer, Hörtnagl, Zöllner (br0280) 2020
Schaefers, Platzner (br0170) 2014; 7
Holcomb, Porter, Ault, Mao, Wang (br0230) 2018
Yang, Aasawat, Yoshizoe (br0150) 2020
Romein, Plaat, Bal, Schaeffer (br0180) 1999, 1999
Gelly, Kocsis, Schoenauer, Sebag, Silver, Szepesvári, Teytaud (br0240) 2012; 55
Enzenberger, Müller (br0130) 2010
Steinmetz, Gini (br0060) 2020; 13
Guo, Singh, Lewis, Lee (br0030) 2016
Kishimoto, Schaeffer (br0350) 2002
Chaslot, Winands, van Den Herik (br0050) 2008
Williamson, Shmoys (br0380) 2011
Manne (br0270) 1960; 8
Korf (br0340) 1985; 27
Runarsson, Schoenauer, Sebag (br0310) 2012
Lin, Tseng (br0330) 2024; 48
Lawrence (br0390) 1984
Taillard (br0400) 1993; 64
Mirsoleimani, van den Herik, Plaat, Vermaseren (br0080) 2018; vol. 2
Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot (br0020) 2016; 529
Czech, Korus, Kersting (br0200) 2021; vol. 31
Best, Fitch (br0110) 2016
Browne, Powley, Whitehouse, Lucas, Cowling, Rohlfshagen, Tavener, Perez, Samothrakis, Colton (br0040) 2012; 4
Segal (br0070) 2010
Wang, Zhang, Zheng, Wang, Yuan, Dai, Zhang, Yang (br0220) 2016; 3
Batagelj, Brandes (br0430) 2005; 71
Kan (br0250) 2012
Sutton, Barto (br0370) 2018
Saqlain, Ali, Lee (br0320) 2022
Saffidine, Cazenave, Méhat (br0210) 2012; 34
Leurent, Maillard (br0190) 2020
Best, Cliff, Patten, Mettu, Fitch (br0100) 2019; 38
Silver (10.1016/j.jpdc.2024.104944_br0020) 2016; 529
Gao (10.1016/j.jpdc.2024.104944_br0260) 2019; 6
Czech (10.1016/j.jpdc.2024.104944_br0200) 2021; vol. 31
Kishimoto (10.1016/j.jpdc.2024.104944_br0350) 2002
Lin (10.1016/j.jpdc.2024.104944_br0330) 2024; 48
Munos (10.1016/j.jpdc.2024.104944_br0360) 2014; 7
Best (10.1016/j.jpdc.2024.104944_br0100) 2019; 38
Leurent (10.1016/j.jpdc.2024.104944_br0190) 2020
Runarsson (10.1016/j.jpdc.2024.104944_br0310) 2012
Wang (10.1016/j.jpdc.2024.104944_br0220) 2016; 3
Enzenberger (10.1016/j.jpdc.2024.104944_br0300) 2009
Guo (10.1016/j.jpdc.2024.104944_br0030)
Yoshizoe (10.1016/j.jpdc.2024.104944_br0140) 2011; vol. 2
Taillard (10.1016/j.jpdc.2024.104944_br0400) 1993; 64
Williamson (10.1016/j.jpdc.2024.104944_br0380) 2011
Saqlain (10.1016/j.jpdc.2024.104944_br0320) 2022
Zhang (10.1016/j.jpdc.2024.104944_br0410) 2020; 33
Segal (10.1016/j.jpdc.2024.104944_br0070) 2010
Enzenberger (10.1016/j.jpdc.2024.104944_br0130) 2010
Sutton (10.1016/j.jpdc.2024.104944_br0370) 2018
Browne (10.1016/j.jpdc.2024.104944_br0040) 2012; 4
Schaefers (10.1016/j.jpdc.2024.104944_br0170) 2014; 7
Kan (10.1016/j.jpdc.2024.104944_br0250) 2012
Skrynnik (10.1016/j.jpdc.2024.104944_br0090) 2024; vol. 38
Korf (10.1016/j.jpdc.2024.104944_br0340) 1985; 27
Lawrence (10.1016/j.jpdc.2024.104944_br0390) 1984
Holcomb (10.1016/j.jpdc.2024.104944_br0230) 2018
Manne (10.1016/j.jpdc.2024.104944_br0270) 1960; 8
Cazenave (10.1016/j.jpdc.2024.104944_br0290) 2007
Kocsis (10.1016/j.jpdc.2024.104944_br0010) 2006
Steinmetz (10.1016/j.jpdc.2024.104944_br0060) 2020; 13
Yang (10.1016/j.jpdc.2024.104944_br0150)
Mirsoleimani (10.1016/j.jpdc.2024.104944_br0080) 2018; vol. 2
Saffidine (10.1016/j.jpdc.2024.104944_br0210) 2012; 34
Romein (10.1016/j.jpdc.2024.104944_br0180) 1999
Chaslot (10.1016/j.jpdc.2024.104944_br0050) 2008
Graf (10.1016/j.jpdc.2024.104944_br0160) 2011
Han (10.1016/j.jpdc.2024.104944_br0420) 2020; 8
Best (10.1016/j.jpdc.2024.104944_br0110) 2016
Scheide (10.1016/j.jpdc.2024.104944_br0120) 2021
Kurzer (10.1016/j.jpdc.2024.104944_br0280)
Batagelj (10.1016/j.jpdc.2024.104944_br0430) 2005; 71
Gelly (10.1016/j.jpdc.2024.104944_br0240) 2012; 55
References_xml – volume: 64
  start-page: 278
  year: 1993
  end-page: 285
  ident: br0400
  article-title: Benchmarks for basic scheduling problems
  publication-title: Eur. J. Oper. Res.
– volume: 33
  start-page: 1621
  year: 2020
  end-page: 1632
  ident: br0410
  article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 27
  start-page: 97
  year: 1985
  end-page: 109
  ident: br0340
  article-title: Depth-first iterative-deepening: an optimal admissible tree search
  publication-title: Artif. Intell.
– year: 2018
  ident: br0370
  article-title: Reinforcement Learning: An Introduction
– start-page: 14
  year: 2010
  end-page: 20
  ident: br0130
  article-title: A lock-free multithreaded Monte-Carlo tree search algorithm
  publication-title: Proc. of the 12th International Conference Advances in Computer Games (ACG 2009)
– start-page: 67
  year: 2018
  end-page: 71
  ident: br0230
  article-title: Overview on deepmind and its alphago zero ai
  publication-title: Proc. of the International Conference on Big Data and Education (ICBDE 2018)
– volume: 4
  start-page: 1
  year: 2012
  end-page: 43
  ident: br0040
  article-title: A survey of Monte Carlo tree search methods
  publication-title: IEEE Trans. Comput. Intell. AI Games
– volume: vol. 2
  start-page: 589
  year: 2018
  end-page: 598
  ident: br0080
  article-title: A lock-free algorithm for parallel mcts
  publication-title: Proc. of the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018)
– start-page: 365
  year: 2011
  end-page: 376
  ident: br0160
  article-title: Parallel Monte-Carlo tree search for hpc systems
  publication-title: Proc. of the 17th International European Conference on Parallel Processing (Euro-Par 2011), vol. 2
– volume: 7
  start-page: 361
  year: 2014
  end-page: 374
  ident: br0170
  article-title: Distributed Monte Carlo tree search: a novel technique and its application to computer go
  publication-title: IEEE Trans. Comput. Intell. AI Games
– start-page: 14
  year: 2009
  end-page: 20
  ident: br0300
  article-title: A lock-free multithreaded Monte-Carlo tree search algorithm
  publication-title: Proc. of the 12th International Conference on Advances in Computer Games (ACG 2009)
– volume: vol. 2
  start-page: 180
  year: 2011
  end-page: 187
  ident: br0140
  article-title: Scalable distributed Monte-Carlo tree search
  publication-title: Proc. of the International Symposium on Combinatorial Search (SoCS 2011)
– volume: 34
  start-page: 26
  year: 2012
  end-page: 33
  ident: br0210
  article-title: Ucd: upper confidence bound for rooted directed acyclic graphs
  publication-title: Knowl.-Based Syst.
– start-page: 1
  year: 2022
  end-page: 24
  ident: br0320
  article-title: A Monte-Carlo tree search algorithm for the flexible job-shop scheduling in manufacturing systems
  publication-title: Flex. Serv. Manuf. J.
– year: 2020
  ident: br0150
  article-title: Practical massively parallel Monte-Carlo tree search applied to molecular design
– volume: 71
  year: 2005
  ident: br0430
  article-title: Efficient generation of large random networks
  publication-title: Phys. Rev. E
– start-page: 165
  year: 2007
  end-page: 174
  ident: br0290
  article-title: On the parallelization of uct
  publication-title: Proc. of the Computer Games Workshop (CGW 2007)
– start-page: 282
  year: 2006
  end-page: 293
  ident: br0010
  article-title: Bandit based Monte-Carlo planning
  publication-title: Proc. of the 17th European Conference on Machine Learning (ECML 2006)
– start-page: 577
  year: 2020
  end-page: 592
  ident: br0190
  article-title: Monte-Carlo graph search: the value of merging similar states
  publication-title: Proc. of the 12th Asian Conference on Machine Learning (ACML 2020)
– start-page: 323
  year: 2002
  end-page: 330
  ident: br0350
  article-title: Distributed game-tree search using transposition table driven work scheduling
  publication-title: Proc of the 31st International Conference on Parallel Processing (ICPP 2002)
– year: 2020
  ident: br0280
  article-title: Parallelization of Monte Carlo tree search in continuous domains
– start-page: 725
  year: 1999, 1999
  end-page: 731
  ident: br0180
  article-title: Transposition table driven work scheduling in distributed search
  publication-title: Proc. of the 16th National Conference on Artificial Intelligence (AAAI
– volume: 38
  start-page: 316
  year: 2019
  end-page: 337
  ident: br0100
  article-title: Dec-mcts: decentralized planning for multi-robot active perception
  publication-title: Int. J. Robot. Res.
– volume: vol. 31
  start-page: 103
  year: 2021
  end-page: 111
  ident: br0200
  article-title: Improving alphazero using Monte-Carlo graph search
  publication-title: Proc. of the 31st International Conference on Automated Planning and Scheduling (ICAPS 2021)
– volume: 8
  start-page: 186474
  year: 2020
  end-page: 186495
  ident: br0420
  article-title: Research on adaptive job shop scheduling problems based on dueling double dqn
  publication-title: IEEE Access
– volume: 6
  start-page: 904
  year: 2019
  end-page: 916
  ident: br0260
  article-title: A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 7
  start-page: 1
  year: 2014
  end-page: 129
  ident: br0360
  article-title: From bandits to Monte-Carlo tree search: the optimistic principle applied to optimization and planning
  publication-title: Found. Trends Mach. Learn.
– year: 2016
  ident: br0110
  article-title: Probabilistic maximum set cover with path constraints for informative path planning
  publication-title: Proc. of the Australasian Conference on Robotics and Automation
– year: 2012
  ident: br0250
  article-title: Machine Scheduling Problems: Classification, Complexity and Computations
– year: 2011
  ident: br0380
  article-title: The Design of Approximation Algorithms
– volume: 3
  start-page: 113
  year: 2016
  end-page: 120
  ident: br0220
  article-title: Where does alphago go: from church-Turing thesis to alphago thesis and beyond
  publication-title: IEEE/CAA J. Autom. Sin.
– start-page: 36
  year: 2010
  end-page: 47
  ident: br0070
  article-title: On the scalability of parallel uct
  publication-title: Proc. of the 7th International Conference on Computers and Games (CG 2010)
– year: 2016
  ident: br0030
  article-title: Deep learning for reward design to improve Monte Carlo tree search in atari games
– volume: vol. 38
  start-page: 17531
  year: 2024
  end-page: 17540
  ident: br0090
  article-title: Decentralized Monte Carlo tree search for partially observable multi-agent pathfinding
  publication-title: Proc. of the AAAI Conference on Artificial Intelligence
– year: 1984
  ident: br0390
  article-title: Resouce Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques (Supplement), Graduate School of Industrial Administration
– volume: 48
  start-page: 1
  year: 2024
  end-page: 22
  ident: br0330
  article-title: Maximal coverage problems with routing constraints using cross-entropy Monte Carlo tree search
  publication-title: Auton. Robots
– volume: 529
  start-page: 484
  year: 2016
  end-page: 489
  ident: br0020
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
– start-page: 160
  year: 2012
  end-page: 174
  ident: br0310
  article-title: Pilot, rollout and Monte Carlo tree search methods for job shop scheduling
  publication-title: Proc. of the 6th International Conference on Learning and Intelligent Optimization (LION 6)
– start-page: 4837
  year: 2021
  end-page: 4843
  ident: br0120
  article-title: Behavior tree learning for robotic task planning through Monte Carlo dag search over a formal grammar
  publication-title: Proc. of the IEEE International Conference on Robotics and Automation (ICRA)
– volume: 13
  start-page: 315
  year: 2020
  end-page: 320
  ident: br0060
  article-title: More trees or larger trees: parallelizing Monte Carlo tree search
  publication-title: IEEE Trans. Games
– volume: 55
  start-page: 106
  year: 2012
  end-page: 113
  ident: br0240
  article-title: The grand challenge of computer go: Monte Carlo tree search and extensions
  publication-title: Commun. ACM
– start-page: 60
  year: 2008
  end-page: 71
  ident: br0050
  article-title: Parallel Monte-Carlo tree search
  publication-title: Proc. of the 6th International Conference on Computers and Games (CG 2008)
– volume: 8
  start-page: 219
  year: 1960
  end-page: 223
  ident: br0270
  article-title: On the job-shop scheduling problem
  publication-title: Oper. Res.
– start-page: 165
  year: 2007
  ident: 10.1016/j.jpdc.2024.104944_br0290
  article-title: On the parallelization of uct
– start-page: 577
  year: 2020
  ident: 10.1016/j.jpdc.2024.104944_br0190
  article-title: Monte-Carlo graph search: the value of merging similar states
– start-page: 60
  year: 2008
  ident: 10.1016/j.jpdc.2024.104944_br0050
  article-title: Parallel Monte-Carlo tree search
– volume: 38
  start-page: 316
  year: 2019
  ident: 10.1016/j.jpdc.2024.104944_br0100
  article-title: Dec-mcts: decentralized planning for multi-robot active perception
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364918755924
– start-page: 14
  year: 2010
  ident: 10.1016/j.jpdc.2024.104944_br0130
  article-title: A lock-free multithreaded Monte-Carlo tree search algorithm
– volume: 8
  start-page: 186474
  year: 2020
  ident: 10.1016/j.jpdc.2024.104944_br0420
  article-title: Research on adaptive job shop scheduling problems based on dueling double dqn
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029868
– start-page: 282
  year: 2006
  ident: 10.1016/j.jpdc.2024.104944_br0010
  article-title: Bandit based Monte-Carlo planning
– start-page: 4837
  year: 2021
  ident: 10.1016/j.jpdc.2024.104944_br0120
  article-title: Behavior tree learning for robotic task planning through Monte Carlo dag search over a formal grammar
– volume: vol. 2
  start-page: 589
  year: 2018
  ident: 10.1016/j.jpdc.2024.104944_br0080
  article-title: A lock-free algorithm for parallel mcts
– volume: 64
  start-page: 278
  year: 1993
  ident: 10.1016/j.jpdc.2024.104944_br0400
  article-title: Benchmarks for basic scheduling problems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(93)90182-M
– start-page: 725
  year: 1999
  ident: 10.1016/j.jpdc.2024.104944_br0180
  article-title: Transposition table driven work scheduling in distributed search
– start-page: 323
  year: 2002
  ident: 10.1016/j.jpdc.2024.104944_br0350
  article-title: Distributed game-tree search using transposition table driven work scheduling
– ident: 10.1016/j.jpdc.2024.104944_br0030
– volume: 33
  start-page: 1621
  year: 2020
  ident: 10.1016/j.jpdc.2024.104944_br0410
  article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2012
  ident: 10.1016/j.jpdc.2024.104944_br0250
– year: 1984
  ident: 10.1016/j.jpdc.2024.104944_br0390
– volume: 529
  start-page: 484
  year: 2016
  ident: 10.1016/j.jpdc.2024.104944_br0020
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 13
  start-page: 315
  year: 2020
  ident: 10.1016/j.jpdc.2024.104944_br0060
  article-title: More trees or larger trees: parallelizing Monte Carlo tree search
  publication-title: IEEE Trans. Games
  doi: 10.1109/TG.2020.3048331
– start-page: 67
  year: 2018
  ident: 10.1016/j.jpdc.2024.104944_br0230
  article-title: Overview on deepmind and its alphago zero ai
– start-page: 1
  year: 2022
  ident: 10.1016/j.jpdc.2024.104944_br0320
  article-title: A Monte-Carlo tree search algorithm for the flexible job-shop scheduling in manufacturing systems
  publication-title: Flex. Serv. Manuf. J.
– year: 2018
  ident: 10.1016/j.jpdc.2024.104944_br0370
– volume: 7
  start-page: 361
  year: 2014
  ident: 10.1016/j.jpdc.2024.104944_br0170
  article-title: Distributed Monte Carlo tree search: a novel technique and its application to computer go
  publication-title: IEEE Trans. Comput. Intell. AI Games
  doi: 10.1109/TCIAIG.2014.2346997
– year: 2016
  ident: 10.1016/j.jpdc.2024.104944_br0110
  article-title: Probabilistic maximum set cover with path constraints for informative path planning
– start-page: 365
  year: 2011
  ident: 10.1016/j.jpdc.2024.104944_br0160
  article-title: Parallel Monte-Carlo tree search for hpc systems
– ident: 10.1016/j.jpdc.2024.104944_br0280
– volume: 71
  year: 2005
  ident: 10.1016/j.jpdc.2024.104944_br0430
  article-title: Efficient generation of large random networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.036113
– year: 2011
  ident: 10.1016/j.jpdc.2024.104944_br0380
– volume: 48
  start-page: 1
  year: 2024
  ident: 10.1016/j.jpdc.2024.104944_br0330
  article-title: Maximal coverage problems with routing constraints using cross-entropy Monte Carlo tree search
  publication-title: Auton. Robots
  doi: 10.1007/s10514-024-10156-6
– volume: 27
  start-page: 97
  year: 1985
  ident: 10.1016/j.jpdc.2024.104944_br0340
  article-title: Depth-first iterative-deepening: an optimal admissible tree search
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(85)90084-0
– start-page: 36
  year: 2010
  ident: 10.1016/j.jpdc.2024.104944_br0070
  article-title: On the scalability of parallel uct
– start-page: 160
  year: 2012
  ident: 10.1016/j.jpdc.2024.104944_br0310
  article-title: Pilot, rollout and Monte Carlo tree search methods for job shop scheduling
– volume: 55
  start-page: 106
  year: 2012
  ident: 10.1016/j.jpdc.2024.104944_br0240
  article-title: The grand challenge of computer go: Monte Carlo tree search and extensions
  publication-title: Commun. ACM
  doi: 10.1145/2093548.2093574
– volume: vol. 2
  start-page: 180
  year: 2011
  ident: 10.1016/j.jpdc.2024.104944_br0140
  article-title: Scalable distributed Monte-Carlo tree search
– volume: 3
  start-page: 113
  year: 2016
  ident: 10.1016/j.jpdc.2024.104944_br0220
  article-title: Where does alphago go: from church-Turing thesis to alphago thesis and beyond
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2016.7471613
– volume: 4
  start-page: 1
  year: 2012
  ident: 10.1016/j.jpdc.2024.104944_br0040
  article-title: A survey of Monte Carlo tree search methods
  publication-title: IEEE Trans. Comput. Intell. AI Games
  doi: 10.1109/TCIAIG.2012.2186810
– volume: 6
  start-page: 904
  year: 2019
  ident: 10.1016/j.jpdc.2024.104944_br0260
  article-title: A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2019.1911540
– start-page: 14
  year: 2009
  ident: 10.1016/j.jpdc.2024.104944_br0300
  article-title: A lock-free multithreaded Monte-Carlo tree search algorithm
– volume: vol. 38
  start-page: 17531
  year: 2024
  ident: 10.1016/j.jpdc.2024.104944_br0090
  article-title: Decentralized Monte Carlo tree search for partially observable multi-agent pathfinding
– ident: 10.1016/j.jpdc.2024.104944_br0150
– volume: vol. 31
  start-page: 103
  year: 2021
  ident: 10.1016/j.jpdc.2024.104944_br0200
  article-title: Improving alphazero using Monte-Carlo graph search
– volume: 8
  start-page: 219
  year: 1960
  ident: 10.1016/j.jpdc.2024.104944_br0270
  article-title: On the job-shop scheduling problem
  publication-title: Oper. Res.
  doi: 10.1287/opre.8.2.219
– volume: 34
  start-page: 26
  year: 2012
  ident: 10.1016/j.jpdc.2024.104944_br0210
  article-title: Ucd: upper confidence bound for rooted directed acyclic graphs
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.11.014
– volume: 7
  start-page: 1
  year: 2014
  ident: 10.1016/j.jpdc.2024.104944_br0360
  article-title: From bandits to Monte-Carlo tree search: the optimistic principle applied to optimization and planning
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000038
SSID ssj0011578
Score 2.4162195
Snippet Monte-Carlo Tree Search (MCTS) is an adaptive and heuristic tree-search algorithm designed to uncover sub-optimal actions at each decision-making point. This...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104944
SubjectTerms Job shop scheduling
Monte Carlo tree search
Parallel algorithms
Title PPB-MCTS: A novel distributed-memory parallel partial-backpropagation Monte Carlo tree search algorithm
URI https://dx.doi.org/10.1016/j.jpdc.2024.104944
Volume 193
WOSCitedRecordID wos001263563400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0743-7315
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0011578
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBaydodd9h7a7gEddgtc2JZkW72lRfcCWgRbBmQnQ5bkNpnrBKkTdPsR-82jLMvOuqZYD7sIhmLTjvmBouiPJEJvVcBjHmXMo0FGYYMiA4_HRHqh1FyB-0wTJutmE_HpaTIe82Gv98vlwqyKuCyTqys-_6-qhjlQtkmdvYO6W6EwAcegdBhB7TD-k-KHw0Pv5Gj0xeacl7OVrj_D2M5WWnkXhlv7o29qfhcF_DY3MkThZUJ-B3MKBsZi4sTUrTKEkGJm6Oi63wRIRHE2W0yq84sNfm0r2ITk125cs9eXlVsqTQDasKh_wlCHdr6Jy3PRUoXfw-q97HLgOxbCpCwthj-LqhT9Q5Et1yMXIW1S-DoDZ8qjxsSmc7bWmJM1exqY8jX0RlNvow7T_elcmVKUId3vTv6zrva19a5lITqC2zQ1MlIjI7Uy7qHtMGYcrOT24OPx-FP7XSpgdm13T96kYVnG4PUnudnVWXNfRo_Rw0Y_eGDx8gT1dPkUPXI9PXBj4p-hMwefAzzANXjw3-DBTsd4A3hwDR5cgwcb8GALHtyC5zn6-u54dPTBa5pxeJL4fuVRrgi4OTKq_xpsQlWipOKZIESFsHpHIsqk5HmUBaFglMqY8pyQOA80gT0xIy_QVjkr9Y5h05EoSxjMJYxmvuJ-rv1cKqZZHuSc7KLAvbdUNpXqTcOUIt2ssV3Ub6-Z2zott57NnDrSxtO0HmQK6Lrlur073eUletDB_hXaqhZL_Rrdl6tqcrl400DrN5PQoJ4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PPB-MCTS%3A+A+novel+distributed-memory+parallel+partial-backpropagation+Monte+Carlo+tree+search+algorithm&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Naderzadeh%2C+Yashar&rft.au=Grosu%2C+Daniel&rft.au=Chinnam%2C+Ratna+Babu&rft.date=2024-11-01&rft.issn=0743-7315&rft.volume=193&rft.spage=104944&rft_id=info:doi/10.1016%2Fj.jpdc.2024.104944&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpdc_2024_104944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon