New Results on Monotone Dualization and Generating Hypergraph Transversals

We consider the problem of dualizing a monotone CNF (equivalently, computing all minimal transversals of a hypergraph) whose associated decision problem is a prominent open problem in NP-completeness. We present a number of new polynomial time, respectively, output-polynomial time results for signif...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on computing Vol. 32; no. 2; pp. 514 - 537
Main Authors: Eiter, Thomas, Gottlob, Georg, Makino, Kazuhisa
Format: Journal Article
Language:English
Published: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2003
Subjects:
ISSN:0097-5397, 1095-7111
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the problem of dualizing a monotone CNF (equivalently, computing all minimal transversals of a hypergraph) whose associated decision problem is a prominent open problem in NP-completeness. We present a number of new polynomial time, respectively, output-polynomial time results for significant cases, which largely advance the tractability frontier and improve on previous results. Furthermore, we show that duality of two monotone CNFs can be disproved with limited nondeterminism. More precisely, this is feasible in polynomial time with O(log2n/\log log n) suitably guessed bits. This result sheds new light on the complexity of this important problem.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0097-5397
1095-7111
DOI:10.1137/S009753970240639X