Semi-supervised fuzzy clustering algorithm based on prior membership degree matrix with expert preference

Existing pre-processing methods for the prior membership degree matrix suffer from the following issues: (1) The labeling constraints for prior membership degree matrix have an effect on the expert’s judgment on the prior membership degree, which easily causes the distortion problem of the prior mem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 238; S. 121812
Hauptverfasser: Xu, Shengbing, Hao, Zhifeng, Zhu, Yuanhao, Wang, Zhenyou, Xiao, Yunhao, Liu, Bo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.03.2024
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Existing pre-processing methods for the prior membership degree matrix suffer from the following issues: (1) The labeling constraints for prior membership degree matrix have an effect on the expert’s judgment on the prior membership degree, which easily causes the distortion problem of the prior membership degree labeling information; (2) There exists the problem of inconsistency between the filling information and the labeling information in the prior membership degree matrix to be filled in the missing values with zeros. To address these problems, we propose an unconstrained labeling idea for the prior membership degree matrix and the corresponding pre-processing method for the missing values by introducing the statistical characteristics of extreme value distribution and simultaneously apply it to the semi-supervised fuzzy clustering algorithm. More specifically, we focus on learning an expert preference value from the prior membership degree matrix and filling in the missing values with the expert preference value. Thus, we propose an unconstrained pre-processing method for the prior membership degree matrix by filling in missing values with an expert preference to keep the filling information consistent with the labeling information in the prior membership degree matrix as much as possible. In addition, we design a semi-supervised fuzzy clustering algorithm based on an unconstrained prior membership degree matrix with expert preference (SFCM-EP) by introducing the K-L divergence to improve the applicability, utility and running performance of semi-supervised fuzzy clustering algorithm. Our experimental results on the simulation dataset and the UCI datasets show the feasibility and effectiveness of the proposed pre-processing method of the prior membership degree matrix with encouraging results.
AbstractList Existing pre-processing methods for the prior membership degree matrix suffer from the following issues: (1) The labeling constraints for prior membership degree matrix have an effect on the expert’s judgment on the prior membership degree, which easily causes the distortion problem of the prior membership degree labeling information; (2) There exists the problem of inconsistency between the filling information and the labeling information in the prior membership degree matrix to be filled in the missing values with zeros. To address these problems, we propose an unconstrained labeling idea for the prior membership degree matrix and the corresponding pre-processing method for the missing values by introducing the statistical characteristics of extreme value distribution and simultaneously apply it to the semi-supervised fuzzy clustering algorithm. More specifically, we focus on learning an expert preference value from the prior membership degree matrix and filling in the missing values with the expert preference value. Thus, we propose an unconstrained pre-processing method for the prior membership degree matrix by filling in missing values with an expert preference to keep the filling information consistent with the labeling information in the prior membership degree matrix as much as possible. In addition, we design a semi-supervised fuzzy clustering algorithm based on an unconstrained prior membership degree matrix with expert preference (SFCM-EP) by introducing the K-L divergence to improve the applicability, utility and running performance of semi-supervised fuzzy clustering algorithm. Our experimental results on the simulation dataset and the UCI datasets show the feasibility and effectiveness of the proposed pre-processing method of the prior membership degree matrix with encouraging results.
ArticleNumber 121812
Author Zhu, Yuanhao
Liu, Bo
Xiao, Yunhao
Xu, Shengbing
Wang, Zhenyou
Hao, Zhifeng
Author_xml – sequence: 1
  givenname: Shengbing
  orcidid: 0000-0002-3914-6555
  surname: Xu
  fullname: Xu, Shengbing
  email: xushengbing@gdut.edu.cn
  organization: School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, Guangdong 51006, P.R. China
– sequence: 2
  givenname: Zhifeng
  surname: Hao
  fullname: Hao, Zhifeng
  organization: School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, Guangdong 51006, P.R. China
– sequence: 3
  givenname: Yuanhao
  orcidid: 0000-0002-4135-6113
  surname: Zhu
  fullname: Zhu, Yuanhao
  organization: School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong 510520, P.R. China
– sequence: 4
  givenname: Zhenyou
  orcidid: 0000-0002-5483-1681
  surname: Wang
  fullname: Wang, Zhenyou
  organization: School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong 510520, P.R. China
– sequence: 5
  givenname: Yunhao
  orcidid: 0000-0001-8918-1984
  surname: Xiao
  fullname: Xiao, Yunhao
  organization: School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong 510520, P.R. China
– sequence: 6
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  organization: School of Automation, Guangdong University of Technology, Guangzhou, Guangdong 510006, P.R. China
BookMark eNp9kMtOwzAQRS1UJNrCD7DyDyTYseMkEhtU8ZIqsQDWluOMW1d5VLZb2n49jsqKRVczGt0zM_fO0KQfekDonpKUEioeNin4H5VmJGMpzWhJsys0pWXBElFUbIKmpMqLhNOC36CZ9xtCaEFIMUX2Ezqb-N0W3N56aLDZnU5HrNudD-Bsv8KqXQ3OhnWHazUKhh5vnR0c7qCrwfm13eIGVg4Adyo4e8A_UY3hEFeGKAUDDnoNt-jaqNbD3V-do--X56_FW7L8eH1fPC0TzQgJCS-VEQqqWlWkzEXFFa-NqUGJrOFqnDSUaVILQTRtck5zYRgvDS0ziB1jc5Sd92o3eB_Py_hup9xRUiLHsORGjmHJMSx5DitC5T9I26CCHfrglG0vo49nFKKpvQUnvbaj4cY60EE2g72E_wLafopP
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3525362
crossref_primary_10_1016_j_trgeo_2024_101466
crossref_primary_10_1016_j_eswa_2025_129648
crossref_primary_10_1016_j_knosys_2024_111388
crossref_primary_10_3390_technologies12110234
Cites_doi 10.1007/s10489-016-0763-5
10.1109/HICSS.2014.150
10.1016/j.knosys.2012.05.016
10.1016/j.engappai.2017.01.003
10.1007/978-3-642-11456-4_35
10.1016/j.oregeorev.2016.10.002
10.1016/j.ins.2021.12.049
10.1007/s12559-019-09664-w
10.1016/j.fss.2020.03.008
10.1007/s11806-008-0094-8
10.1007/978-3-030-04212-7_34
10.1007/s11042-022-12133-6
10.1109/3477.623232
10.1007/BF01001956
10.1007/s10618-005-0019-1
10.1007/s10479-020-03768-5
10.1016/j.ins.2020.08.094
10.1109/ACCESS.2019.2929307
10.1080/02331934.2016.1209672
10.1016/j.ins.2022.06.062
10.1007/s13042-018-0790-0
10.1007/s11063-021-10564-0
10.1016/0165-0114(78)90029-5
10.1016/j.eswa.2017.12.046
10.1007/s00500-019-04114-z
10.1137/1025116
10.1016/0167-8655(85)90037-6
10.1016/j.patcog.2008.05.018
10.1007/s10115-012-0521-x
10.1016/0031-3203(95)00120-4
10.1016/j.engappai.2019.02.007
10.1016/j.rse.2017.11.021
10.1109/EUROCON52738.2021.9535541
10.1007/978-3-319-91476-3_5
10.1016/j.eswa.2022.118751
10.1214/aoms/1177698950
10.1109/HICSS.2016.173
10.1016/j.ins.2021.01.045
10.1016/j.fss.2007.03.004
10.1109/AEMCSE51986.2021.00144
10.1016/j.eswa.2021.114796
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.121812
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_121812
S095741742302314X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-48af6ae9ba9085694a4bffbea62d4a8569d13c0b660c1d54156f348f182e6f333
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001097317000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 22:29:01 EST 2025
Sat Nov 29 07:06:13 EST 2025
Fri Feb 23 02:34:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy clustering
Constraints
Missing value
Semi-supervised clustering
Prior membership degree
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-48af6ae9ba9085694a4bffbea62d4a8569d13c0b660c1d54156f348f182e6f333
ORCID 0000-0002-4135-6113
0000-0002-5483-1681
0000-0002-3914-6555
0000-0001-8918-1984
ParticipantIDs crossref_primary_10_1016_j_eswa_2023_121812
crossref_citationtrail_10_1016_j_eswa_2023_121812
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121812
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Hsaio, Chang, Li (b0125) 2019; 10
Zeng, Tong, Sang, Huang (b0225) 2013; 35
Bensaid, Hall, Bezdek, Clarke (b0020) 1996; 29
Zhu, L., Ban, T., Takahashi, T., & Inoue, D. (2018).
Hu, Meng, Shi (b0085) 2008; 11
Bagherinia, Minaei-Bidgoli, Hosseinzadeh, Parvin (b0015) 2021; 413
Gan, Yang, Zhou (b0065) 2023; 212
Goel, Tushir (b0070) 2019
Meyer-Nieberg, S., & Kropat, E. (2014).
Arshad, A., Hassam, M., Riaz, S., & Shamshirband, S. (2021).
Wang, Zhang (b0200) 2007; 158
Lai, Miyakawa, Sato (b0115) 2020; 24
Zadeh (b0220) 1978; 1
17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Cadiz, SPAIN. 10.1007/978-3-319-91476-3_5.
Özmen, Kropat, Weber (b0140) 2017; 66
Gan, Fan, Luo, Zhang (b0060) 2018; 97
MacQueen, J. (1967).
19th International Conference on Smart Technologies (IEEE EUROCON), Lviv, UKRAINE. 10.1109/EUROCON52738.2021.9535541.
Kaczmarek-Majer, Casalino, Castellano, Hryniewicz, Dominiak (b0095) 2022; 588
Qin, Ding, Wang, Wang (b0160) 2019; 11
Xiang, Nie, Zhang (b0205) 2008; 41
Han, Wang (b0080) 2021; 53
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, http://projecteuclid.org/euclid.bsmsp/1200512992.
Yue, Liu, Qian, Miao, Gao (b0215) 2022; 607
Bezdek (b0025) 1983; 25
Guo, Gan, Xia, Xu, Zhou (b0075) 2021; 176
Kuter, Akyurek, Weber (b0110) 2018; 205
National Conference on Aritficial Intelligence, Boston, Massachusetts. http://hdl.handle.net/2014/39933.
European Conference on Artificial Intelligence, Univ Lisbon, Fac Sci, Lisbon, PORTUGAL. 10.3233/978-1-60750-606-5-297.
Dempster, A. (1967). Upper and lower probabilities induced by multivalued mapping, A. of Mathematical Statistics, Ed.
2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI. 10.1109/HICSS.2016.173.
2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Changsha, China. 10.1109/AEMCSE51986.2021.00144.
Kropat, E., Weber, G.-W., & Belen, S. (2011). Dynamical Gene-Environment Networks Under Ellipsoidal Uncertainty: Set-Theoretic Regression Analysis Based on Ellipsoidal OR. In M. M. Peixoto, A. A. Pinto, & D. A. Rand (Eds.)
Kropat, E., & Meyer-Nieberg, S. (2016).
25th International Conference on Neural Information Processing (ICONIP), Siem Reap, CAMBODIA. 10.1007/978-3-030-04212-7_34.
Savku, Weber (b0170) 2022; 312
Wagstaff, K. L., Basu, S., & Davidson, I. (2006).
Chen, P., Xu, S., Cai, W., Liu, J., Xia, H., & Ailing, G. (2021).
Li, Wang, Li, Xiao, Hu, Zhao, Li (b0120) 2021; 561
Antoine, V., & Labroche, N. (2018).
Pedrycz, Waletzky (b0155) 1997; 27
Bouchachia, Pedrycz (b0030) 2006; 12
10.1214/aoms/1177698950.
Gan, Fan, Luo, Huang, Yang (b0055) 2019; 81
Pawlak (b0145) 1982; 11
Suzuki, Sunagawa, Sasaki, Katoh (b0180) 2021
Yin, Shu, Huang (b0210) 2012; 35
Tuan, Ngan, Son (b0185) 2016; 45
Vu, V.-V., Labroche, N., & Bouchon-Meunier, B. (2010).
47th Hawaii International Conference on System Sciences, Waikoloa, HI. 10.1109/HICSS.2014.150.
Gan (b0050) 2019; 7
(pp. 545-571). Springer Berlin Heidelberg. 10.1007/978-3-642-11456-4_35.
Fatehi, Asadi (b0045) 2017; 81
Salehi, Keyvanpour, Sharifi (b0165) 2021; 547
Son, Tuan (b0175) 2017; 59
Pedrycz (b0150) 1985; 3
Huan, Thong, Tuan, Hop, Thai, Minh, Son (b0090) 2022; 81
Suzuki (10.1016/j.eswa.2023.121812_b0180) 2021
Kuter (10.1016/j.eswa.2023.121812_b0110) 2018; 205
Qin (10.1016/j.eswa.2023.121812_b0160) 2019; 11
10.1016/j.eswa.2023.121812_b0190
Bagherinia (10.1016/j.eswa.2023.121812_b0015) 2021; 413
Gan (10.1016/j.eswa.2023.121812_b0065) 2023; 212
Özmen (10.1016/j.eswa.2023.121812_b0140) 2017; 66
Zadeh (10.1016/j.eswa.2023.121812_b0220) 1978; 1
Gan (10.1016/j.eswa.2023.121812_b0050) 2019; 7
Gan (10.1016/j.eswa.2023.121812_b0060) 2018; 97
Bezdek (10.1016/j.eswa.2023.121812_b0025) 1983; 25
Zeng (10.1016/j.eswa.2023.121812_b0225) 2013; 35
10.1016/j.eswa.2023.121812_b0005
Yin (10.1016/j.eswa.2023.121812_b0210) 2012; 35
10.1016/j.eswa.2023.121812_b0105
Lai (10.1016/j.eswa.2023.121812_b0115) 2020; 24
10.1016/j.eswa.2023.121812_b0100
Tuan (10.1016/j.eswa.2023.121812_b0185) 2016; 45
Bensaid (10.1016/j.eswa.2023.121812_b0020) 1996; 29
10.1016/j.eswa.2023.121812_b0040
Pedrycz (10.1016/j.eswa.2023.121812_b0150) 1985; 3
Bouchachia (10.1016/j.eswa.2023.121812_b0030) 2006; 12
Goel (10.1016/j.eswa.2023.121812_b0070) 2019
Pedrycz (10.1016/j.eswa.2023.121812_b0155) 1997; 27
Huan (10.1016/j.eswa.2023.121812_b0090) 2022; 81
Pawlak (10.1016/j.eswa.2023.121812_b0145) 1982; 11
Salehi (10.1016/j.eswa.2023.121812_b0165) 2021; 547
Kaczmarek-Majer (10.1016/j.eswa.2023.121812_b0095) 2022; 588
Yue (10.1016/j.eswa.2023.121812_b0215) 2022; 607
Li (10.1016/j.eswa.2023.121812_b0120) 2021; 561
Son (10.1016/j.eswa.2023.121812_b0175) 2017; 59
Guo (10.1016/j.eswa.2023.121812_b0075) 2021; 176
Han (10.1016/j.eswa.2023.121812_b0080) 2021; 53
Xiang (10.1016/j.eswa.2023.121812_b0205) 2008; 41
Fatehi (10.1016/j.eswa.2023.121812_b0045) 2017; 81
Savku (10.1016/j.eswa.2023.121812_b0170) 2022; 312
10.1016/j.eswa.2023.121812_b0135
Hu (10.1016/j.eswa.2023.121812_b0085) 2008; 11
Gan (10.1016/j.eswa.2023.121812_b0055) 2019; 81
10.1016/j.eswa.2023.121812_b0035
10.1016/j.eswa.2023.121812_b0010
10.1016/j.eswa.2023.121812_b0230
10.1016/j.eswa.2023.121812_b0195
Wang (10.1016/j.eswa.2023.121812_b0200) 2007; 158
Liu (10.1016/j.eswa.2023.121812_b0125) 2019; 10
10.1016/j.eswa.2023.121812_b0130
References_xml – reference: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, http://projecteuclid.org/euclid.bsmsp/1200512992.
– reference: MacQueen, J. (1967).
– reference: 25th International Conference on Neural Information Processing (ICONIP), Siem Reap, CAMBODIA. 10.1007/978-3-030-04212-7_34.
– volume: 27
  start-page: 787
  year: 1997
  end-page: 795
  ident: b0155
  article-title: Fuzzy clustering with partial supervision
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– reference: Dempster, A. (1967). Upper and lower probabilities induced by multivalued mapping, A. of Mathematical Statistics, Ed.
– volume: 24
  start-page: 3499
  year: 2020
  end-page: 3510
  ident: b0115
  article-title: Semi-supervised data clustering using particle swarm optimisation
  publication-title: Soft Computing
– volume: 25
  start-page: 442
  year: 1983
  ident: b0025
  article-title: Pattern recognition with fuzzy objective function algorithms
  publication-title: Siam Review
– volume: 81
  start-page: 245
  year: 2017
  end-page: 255
  ident: b0045
  article-title: Application of semi-supervised fuzzy c-means method in clustering multivariate geochemical data, a case study from the Dalli Cu-Au porphyry deposit in central Iran
  publication-title: Ore Geology Reviews
– volume: 45
  start-page: 402
  year: 2016
  end-page: 428
  ident: b0185
  article-title: A novel semi-supervised fuzzy clustering method based on interactive fuzzy satisficing for dental x-ray image segmentation
  publication-title: Applied Intelligence
– reference: Arshad, A., Hassam, M., Riaz, S., & Shamshirband, S. (2021).
– volume: 29
  start-page: 859
  year: 1996
  end-page: 871
  ident: b0020
  article-title: Partially supervised clustering for image segmentation
  publication-title: Pattern Recognition
– reference: European Conference on Artificial Intelligence, Univ Lisbon, Fac Sci, Lisbon, PORTUGAL. 10.3233/978-1-60750-606-5-297.
– volume: 81
  start-page: 12567
  year: 2022
  end-page: 12598
  ident: b0090
  article-title: TS3FCM: Trusted safe semi-supervised fuzzy clustering method for data partition with high confidence
  publication-title: Multimedia Tools and Applications
– reference: 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Changsha, China. 10.1109/AEMCSE51986.2021.00144.
– volume: 588
  start-page: 174
  year: 2022
  end-page: 195
  ident: b0095
  article-title: Explaining smartphone-based acoustic data in bipolar disorder: Semi-supervised fuzzy clustering and relative linguistic summaries
  publication-title: Information Sciences
– year: 2019
  ident: b0070
  article-title: Applications of Artificial Intelligence Techniques in Engineering
  publication-title: Singapore
– reference: Zhu, L., Ban, T., Takahashi, T., & Inoue, D. (2018).
– volume: 11
  start-page: 191
  year: 2008
  end-page: 196
  ident: b0085
  article-title: Fuzzy clustering validity for spatial data
  publication-title: Geo-spatial Information Science
– volume: 212
  year: 2023
  ident: b0065
  article-title: Adaptive safety-aware semi-supervised clustering
  publication-title: Expert Systems with Applications
– reference: 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI. 10.1109/HICSS.2016.173.
– volume: 66
  start-page: 2135
  year: 2017
  end-page: 2155
  ident: b0140
  article-title: Robust optimization in spline regression models for multi-model regulatory networks under polyhedral uncertainty
  publication-title: Optimization
– volume: 35
  start-page: 585
  year: 2013
  end-page: 612
  ident: b0225
  article-title: A study on semi-supervised FCM algorithm
  publication-title: Knowledge and Information Systems
– year: 2021
  ident: b0180
  article-title: Annotation Cost Reduction of Stream-based Active Learning by Automated Weak Labeling using a
  publication-title: Robot Arm 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), ELECTR NETWORK
– reference: Chen, P., Xu, S., Cai, W., Liu, J., Xia, H., & Ailing, G. (2021).
– reference: Antoine, V., & Labroche, N. (2018).
– volume: 12
  start-page: 47
  year: 2006
  end-page: 78
  ident: b0030
  article-title: Data Clustering with Partial Supervision
  publication-title: Data Mining and Knowledge Discovery
– volume: 3
  start-page: 13
  year: 1985
  end-page: 20
  ident: b0150
  article-title: Algorithms of fuzzy clustering with partial supervision
  publication-title: Pattern Recognition Letters
– volume: 59
  start-page: 186
  year: 2017
  end-page: 195
  ident: b0175
  article-title: Dental segmentation from X-ray images using semi-supervised fuzzy clustering with spatial constraints
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 176
  year: 2021
  ident: b0075
  article-title: Joint exploring of risky labeled and unlabeled samples for safe semi-supervised clustering
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 95659
  year: 2019
  end-page: 95664
  ident: b0050
  article-title: Safe Semi-Supervised Fuzzy C -Means Clustering
  publication-title: IEEE Access
– volume: 158
  start-page: 2095
  year: 2007
  end-page: 2117
  ident: b0200
  article-title: On fuzzy cluster validity indices
  publication-title: Fuzzy Sets and Systems
– reference: . 10.1214/aoms/1177698950.
– reference: (pp. 545-571). Springer Berlin Heidelberg. 10.1007/978-3-642-11456-4_35.
– reference: Meyer-Nieberg, S., & Kropat, E. (2014).
– reference: 47th Hawaii International Conference on System Sciences, Waikoloa, HI. 10.1109/HICSS.2014.150.
– reference: Vu, V.-V., Labroche, N., & Bouchon-Meunier, B. (2010).
– volume: 312
  start-page: 1171
  year: 2022
  end-page: 1196
  ident: b0170
  article-title: Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market
  publication-title: Ann. Oper. Res.
– reference: Kropat, E., & Meyer-Nieberg, S. (2016).
– reference: Kropat, E., Weber, G.-W., & Belen, S. (2011). Dynamical Gene-Environment Networks Under Ellipsoidal Uncertainty: Set-Theoretic Regression Analysis Based on Ellipsoidal OR. In M. M. Peixoto, A. A. Pinto, & D. A. Rand (Eds.),
– reference: 19th International Conference on Smart Technologies (IEEE EUROCON), Lviv, UKRAINE. 10.1109/EUROCON52738.2021.9535541.
– volume: 53
  start-page: 3561
  year: 2021
  end-page: 3572
  ident: b0080
  article-title: Semi-Supervised Clustering for Financial Risk Analysis
  publication-title: Neural Processing Letters
– volume: 10
  start-page: 1123
  year: 2019
  end-page: 1138
  ident: b0125
  article-title: Clustering data with partial background information
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 205
  start-page: 236
  year: 2018
  end-page: 252
  ident: b0110
  article-title: Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines
  publication-title: Remote Sensing of Environment
– reference: Wagstaff, K. L., Basu, S., & Davidson, I. (2006).
– reference: 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Cadiz, SPAIN. 10.1007/978-3-319-91476-3_5.
– volume: 35
  start-page: 304
  year: 2012
  end-page: 311
  ident: b0210
  article-title: Semi-supervised fuzzy clustering with metric learning and entropy regularization
  publication-title: Knowledge-Based Systems
– volume: 97
  start-page: 384
  year: 2018
  end-page: 393
  ident: b0060
  article-title: Local homogeneous consistent safe semi-supervised clustering
  publication-title: Expert Systems with Applications
– volume: 547
  start-page: 667
  year: 2021
  end-page: 688
  ident: b0165
  article-title: SMKFC-ER: Semi-supervised multiple kernel fuzzy clustering based on entropy and relative entropy
  publication-title: Information Sciences
– volume: 561
  start-page: 286
  year: 2021
  end-page: 303
  ident: b0120
  article-title: Learning adaptive criteria weights for active semi-supervised learning
  publication-title: Information Sciences
– reference: National Conference on Aritficial Intelligence, Boston, Massachusetts. http://hdl.handle.net/2014/39933.
– volume: 413
  start-page: 1
  year: 2021
  end-page: 28
  ident: b0015
  article-title: Reliability-based fuzzy clustering ensemble
  publication-title: Fuzzy Sets and Systems
– volume: 81
  start-page: 107
  year: 2019
  end-page: 116
  ident: b0055
  article-title: Confidence-weighted safe semi-supervised clustering
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 607
  start-page: 1372
  year: 2022
  end-page: 1390
  ident: b0215
  article-title: Semi-supervised shadowed sets for three-way classification on partial labeled data
  publication-title: Information Sciences
– volume: 1
  start-page: 3
  year: 1978
  end-page: 28
  ident: b0220
  article-title: Fuzzy sets as a basis for a theory of possibility
  publication-title: Fuzzy Sets and Systems
– volume: 11
  start-page: 341
  year: 1982
  end-page: 356
  ident: b0145
  article-title: Rough sets
  publication-title: International journal of computer & information sciences
– volume: 41
  start-page: 3600
  year: 2008
  end-page: 3612
  ident: b0205
  article-title: Learning a Mahalanobis distance metric for data clustering and classification
  publication-title: Pattern Recognition
– volume: 11
  start-page: 599
  year: 2019
  end-page: 612
  ident: b0160
  article-title: Research Progress on Semi-Supervised Clustering
  publication-title: Cognitive Computation
– volume: 45
  start-page: 402
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2023.121812_b0185
  article-title: A novel semi-supervised fuzzy clustering method based on interactive fuzzy satisficing for dental x-ray image segmentation
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-016-0763-5
– ident: 10.1016/j.eswa.2023.121812_b0195
– ident: 10.1016/j.eswa.2023.121812_b0135
  doi: 10.1109/HICSS.2014.150
– volume: 35
  start-page: 304
  year: 2012
  ident: 10.1016/j.eswa.2023.121812_b0210
  article-title: Semi-supervised fuzzy clustering with metric learning and entropy regularization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2012.05.016
– volume: 59
  start-page: 186
  year: 2017
  ident: 10.1016/j.eswa.2023.121812_b0175
  article-title: Dental segmentation from X-ray images using semi-supervised fuzzy clustering with spatial constraints
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2017.01.003
– ident: 10.1016/j.eswa.2023.121812_b0105
  doi: 10.1007/978-3-642-11456-4_35
– volume: 81
  start-page: 245
  year: 2017
  ident: 10.1016/j.eswa.2023.121812_b0045
  article-title: Application of semi-supervised fuzzy c-means method in clustering multivariate geochemical data, a case study from the Dalli Cu-Au porphyry deposit in central Iran
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2016.10.002
– volume: 588
  start-page: 174
  year: 2022
  ident: 10.1016/j.eswa.2023.121812_b0095
  article-title: Explaining smartphone-based acoustic data in bipolar disorder: Semi-supervised fuzzy clustering and relative linguistic summaries
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.12.049
– volume: 11
  start-page: 599
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2023.121812_b0160
  article-title: Research Progress on Semi-Supervised Clustering
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-019-09664-w
– ident: 10.1016/j.eswa.2023.121812_b0130
– volume: 413
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.121812_b0015
  article-title: Reliability-based fuzzy clustering ensemble
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2020.03.008
– volume: 11
  start-page: 191
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2023.121812_b0085
  article-title: Fuzzy clustering validity for spatial data
  publication-title: Geo-spatial Information Science
  doi: 10.1007/s11806-008-0094-8
– ident: 10.1016/j.eswa.2023.121812_b0230
  doi: 10.1007/978-3-030-04212-7_34
– volume: 81
  start-page: 12567
  issue: 9
  year: 2022
  ident: 10.1016/j.eswa.2023.121812_b0090
  article-title: TS3FCM: Trusted safe semi-supervised fuzzy clustering method for data partition with high confidence
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-022-12133-6
– volume: 27
  start-page: 787
  issue: 5
  year: 1997
  ident: 10.1016/j.eswa.2023.121812_b0155
  article-title: Fuzzy clustering with partial supervision
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/3477.623232
– volume: 11
  start-page: 341
  year: 1982
  ident: 10.1016/j.eswa.2023.121812_b0145
  article-title: Rough sets
  publication-title: International journal of computer & information sciences
  doi: 10.1007/BF01001956
– year: 2019
  ident: 10.1016/j.eswa.2023.121812_b0070
  article-title: A Semi-supervised Clustering for Incomplete Data Applications of Artificial Intelligence Techniques in Engineering
  publication-title: Singapore
– volume: 12
  start-page: 47
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2023.121812_b0030
  article-title: Data Clustering with Partial Supervision
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-005-0019-1
– volume: 312
  start-page: 1171
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2023.121812_b0170
  article-title: Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-020-03768-5
– volume: 547
  start-page: 667
  issue: 8
  year: 2021
  ident: 10.1016/j.eswa.2023.121812_b0165
  article-title: SMKFC-ER: Semi-supervised multiple kernel fuzzy clustering based on entropy and relative entropy
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.08.094
– volume: 7
  start-page: 95659
  year: 2019
  ident: 10.1016/j.eswa.2023.121812_b0050
  article-title: Safe Semi-Supervised Fuzzy C -Means Clustering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929307
– volume: 66
  start-page: 2135
  issue: 12
  year: 2017
  ident: 10.1016/j.eswa.2023.121812_b0140
  article-title: Robust optimization in spline regression models for multi-model regulatory networks under polyhedral uncertainty
  publication-title: Optimization
  doi: 10.1080/02331934.2016.1209672
– volume: 607
  start-page: 1372
  year: 2022
  ident: 10.1016/j.eswa.2023.121812_b0215
  article-title: Semi-supervised shadowed sets for three-way classification on partial labeled data
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.06.062
– volume: 10
  start-page: 1123
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2023.121812_b0125
  article-title: Clustering data with partial background information
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-018-0790-0
– volume: 53
  start-page: 3561
  issue: 5
  year: 2021
  ident: 10.1016/j.eswa.2023.121812_b0080
  article-title: Semi-Supervised Clustering for Financial Risk Analysis
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-021-10564-0
– volume: 1
  start-page: 3
  issue: 1
  year: 1978
  ident: 10.1016/j.eswa.2023.121812_b0220
  article-title: Fuzzy sets as a basis for a theory of possibility
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(78)90029-5
– volume: 97
  start-page: 384
  year: 2018
  ident: 10.1016/j.eswa.2023.121812_b0060
  article-title: Local homogeneous consistent safe semi-supervised clustering
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.12.046
– volume: 24
  start-page: 3499
  issue: 5
  year: 2020
  ident: 10.1016/j.eswa.2023.121812_b0115
  article-title: Semi-supervised data clustering using particle swarm optimisation
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-04114-z
– volume: 25
  start-page: 442
  issue: 3
  year: 1983
  ident: 10.1016/j.eswa.2023.121812_b0025
  article-title: Pattern recognition with fuzzy objective function algorithms
  publication-title: Siam Review
  doi: 10.1137/1025116
– volume: 3
  start-page: 13
  issue: 1
  year: 1985
  ident: 10.1016/j.eswa.2023.121812_b0150
  article-title: Algorithms of fuzzy clustering with partial supervision
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(85)90037-6
– volume: 41
  start-page: 3600
  issue: 12
  year: 2008
  ident: 10.1016/j.eswa.2023.121812_b0205
  article-title: Learning a Mahalanobis distance metric for data clustering and classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2008.05.018
– volume: 35
  start-page: 585
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2023.121812_b0225
  article-title: A study on semi-supervised FCM algorithm
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-012-0521-x
– volume: 29
  start-page: 859
  issue: 5
  year: 1996
  ident: 10.1016/j.eswa.2023.121812_b0020
  article-title: Partially supervised clustering for image segmentation
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(95)00120-4
– volume: 81
  start-page: 107
  year: 2019
  ident: 10.1016/j.eswa.2023.121812_b0055
  article-title: Confidence-weighted safe semi-supervised clustering
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.02.007
– volume: 205
  start-page: 236
  year: 2018
  ident: 10.1016/j.eswa.2023.121812_b0110
  article-title: Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2017.11.021
– ident: 10.1016/j.eswa.2023.121812_b0010
  doi: 10.1109/EUROCON52738.2021.9535541
– ident: 10.1016/j.eswa.2023.121812_b0005
  doi: 10.1007/978-3-319-91476-3_5
– volume: 212
  year: 2023
  ident: 10.1016/j.eswa.2023.121812_b0065
  article-title: Adaptive safety-aware semi-supervised clustering
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118751
– ident: 10.1016/j.eswa.2023.121812_b0040
  doi: 10.1214/aoms/1177698950
– ident: 10.1016/j.eswa.2023.121812_b0100
  doi: 10.1109/HICSS.2016.173
– volume: 561
  start-page: 286
  year: 2021
  ident: 10.1016/j.eswa.2023.121812_b0120
  article-title: Learning adaptive criteria weights for active semi-supervised learning
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.01.045
– year: 2021
  ident: 10.1016/j.eswa.2023.121812_b0180
  article-title: Annotation Cost Reduction of Stream-based Active Learning by Automated Weak Labeling using a
– ident: 10.1016/j.eswa.2023.121812_b0190
– volume: 158
  start-page: 2095
  issue: 19
  year: 2007
  ident: 10.1016/j.eswa.2023.121812_b0200
  article-title: On fuzzy cluster validity indices
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2007.03.004
– ident: 10.1016/j.eswa.2023.121812_b0035
  doi: 10.1109/AEMCSE51986.2021.00144
– volume: 176
  year: 2021
  ident: 10.1016/j.eswa.2023.121812_b0075
  article-title: Joint exploring of risky labeled and unlabeled samples for safe semi-supervised clustering
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114796
SSID ssj0017007
Score 2.4812143
Snippet Existing pre-processing methods for the prior membership degree matrix suffer from the following issues: (1) The labeling constraints for prior membership...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121812
SubjectTerms Constraints
Fuzzy clustering
Missing value
Prior membership degree
Semi-supervised clustering
Title Semi-supervised fuzzy clustering algorithm based on prior membership degree matrix with expert preference
URI https://dx.doi.org/10.1016/j.eswa.2023.121812
Volume 238
WOSCitedRecordID wos001097317000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKx4EL32jjSz5wqzI1sRs7xwkNAYcJaUMqvUSO46yZ2qRKk9Htyj-OX17cdANNgMTFitw4rvx-en7--X0Q8k5LnyluMi_RXHlchdpLhE48pbKIC6EF01hsQpycyOk0-jIY_HCxMJcLURRys4lW_1XUts8KG0Jn_0Lc24_aDvtshW5bK3bb_pHgT80y99bNCpTA2pqTWXN9fTXSiwZSIrQhiYvzssrr-XIEW1gK1wWrKi-r0dJAdZDWfSs19hwOvq11lW-QrG1rAdSQVKALEbxB6uOPmBfaRczt3I07uU6blm6dm-I8cZtmq_9axnY2zzPT987m7dvfGlXMVdlT_6ieZvYjV2WzS1sEHPy2MHATuTQXT9M7LyEpKTzuY92eQ4MqWQrmhQLrKDqdHWBKmF_0P1IRF4dm_R2SSgUMsmfIzlH7Zl7tU5gM5gqgbpLPp_fIXiAmkRySvaNPx9PP28soMcaoe_fnutgrdBO8PdPv7Zsdm-XsMXnYHTboEYLkCRmY4il55Ap50E6vPyP5LczQFjO0xwzdYoa2mKFlQVvM0B4zFDFDETMUIEARM7THzHPy9cPx2fuPXleDw9NsPK49LlUWKhMlKrLGeRhxxZMsS4wKg5Qr6El9psdJGI61n06ADsgYl5k9thr7xNgLMizKwuwTyqzSClNrEWoOrUxYpGBDMUYmqZbmgPhu5WLdJaiHOimL2HkiXsSw2jGsdoyrfUBG2zErTM9y59sTJ5C4MzDRcIwtfu4Y9_Ifx70iD3rovybDumrMG3JfX9b5unrbwewnifqnWQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+fuzzy+clustering+algorithm+based+on+prior+membership+degree+matrix+with+expert+preference&rft.jtitle=Expert+systems+with+applications&rft.au=Xu%2C+Shengbing&rft.au=Hao%2C+Zhifeng&rft.au=Zhu%2C+Yuanhao&rft.au=Wang%2C+Zhenyou&rft.date=2024-03-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=238&rft_id=info:doi/10.1016%2Fj.eswa.2023.121812&rft.externalDocID=S095741742302314X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon