Partitions of the set of nonnegative integers with the same representation functions
For a set of nonnegative integers S let RS(n) denote the number of unordered representations of the integer n as the sum of two different terms from S. In this paper we focus on partitions of the natural numbers into two sets affording identical representation functions. We solve a recent problem of...
Uloženo v:
| Vydáno v: | Discrete mathematics Ročník 340; číslo 6; s. 1154 - 1161 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2017
|
| Témata: | |
| ISSN: | 0012-365X, 1872-681X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | For a set of nonnegative integers S let RS(n) denote the number of unordered representations of the integer n as the sum of two different terms from S. In this paper we focus on partitions of the natural numbers into two sets affording identical representation functions. We solve a recent problem of Chen and Lev. |
|---|---|
| AbstractList | For a set of nonnegative integers S let RS(n) denote the number of unordered representations of the integer n as the sum of two different terms from S. In this paper we focus on partitions of the natural numbers into two sets affording identical representation functions. We solve a recent problem of Chen and Lev. |
| Author | Sándor, Csaba Kiss, Sándor Z. |
| Author_xml | – sequence: 1 givenname: Sándor Z. surname: Kiss fullname: Kiss, Sándor Z. email: kisspest@cs.elte.hu – sequence: 2 givenname: Csaba surname: Sándor fullname: Sándor, Csaba email: csandor@math.bme.hu |
| BookMark | eNp9kM9qwzAMxs3oYG23F9gpL5BMdmInhV1G2T8obIcOejOuLbcurVNsr2Nvv2TZaYeCQBLo90n6JmTkW4-E3FIoKFBxtyuMi7pgQOsCaBf0goxpU7NcNHQ1ImMAyvJS8NUVmcS4g64XZTMmy3cVkkuu9TFrbZa2mEVMfdlt8LhRyZ0wcz7hBkPMvlzaDkPqgFnAY8CIPqleILOfXv8qXZNLq_YRb_7ylHw8PS7nL_ni7fl1_rDIdQmQ8oozrKFBxhCFYZrP2IzzZg1mZgwoVaPRa4FcWDRIhYKSY1Wz0kJFS7tuyilpBl0d2hgDWqndcEsKyu0lBdm7I3eyd0f27kigXdAOZf_QY3AHFb7PQ_cDhN1TJ4dBRu3QazQuoE7StO4c_gPgM4Kv |
| CitedBy_id | crossref_primary_10_1007_s41980_023_00786_4 crossref_primary_10_1007_s11401_025_0012_5 crossref_primary_10_1007_s11464_022_0220_1 crossref_primary_10_1016_j_disc_2018_07_015 crossref_primary_10_1017_S0004972720000945 crossref_primary_10_1016_j_ejc_2020_103293 crossref_primary_10_1017_S0004972718001223 crossref_primary_10_1007_s10998_024_00592_3 crossref_primary_10_1017_S0004972718001107 crossref_primary_10_2478_udt_2019_0008 crossref_primary_10_1007_s10998_018_0240_5 crossref_primary_10_1007_s10998_019_00286_1 crossref_primary_10_1016_j_jnt_2024_10_007 crossref_primary_10_1017_S0013091524000907 crossref_primary_10_1016_j_jnt_2022_03_014 crossref_primary_10_1007_s10474_021_01183_1 crossref_primary_10_1007_s11401_026_0044_5 crossref_primary_10_1016_j_aam_2023_102533 crossref_primary_10_1017_S0004972722000119 crossref_primary_10_1017_S0004972717000818 crossref_primary_10_1016_j_disc_2020_111981 crossref_primary_10_1007_s11139_024_01021_2 crossref_primary_10_1007_s10998_021_00423_9 crossref_primary_10_1007_s10998_021_00428_4 crossref_primary_10_1007_s11139_024_00903_9 |
| Cites_doi | 10.1016/j.disc.2007.06.006 10.37236/1831 10.1016/j.jnt.2009.04.020 10.4064/aa103-2-3 10.1007/s11425-011-4234-5 10.1016/j.disc.2014.11.011 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.disc.2017.01.011 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1872-681X |
| EndPage | 1161 |
| ExternalDocumentID | 10_1016_j_disc_2017_01_011 S0012365X17300110 |
| GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6I. 6OB 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT VH1 WH7 WUQ XJT XOL XPP ZCG ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-452e708e22ee6d2c5929558b0d9dd0aa7edcb6e56fede16a035e4723f0413fb83 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398751100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0012-365X |
| IngestDate | Tue Nov 18 21:24:54 EST 2025 Sat Nov 29 06:17:54 EST 2025 Fri Feb 23 02:22:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Representation functions Partitions of the set of natural numbers Additive number theory |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-452e708e22ee6d2c5929558b0d9dd0aa7edcb6e56fede16a035e4723f0413fb83 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_disc_2017_01_011 crossref_primary_10_1016_j_disc_2017_01_011 elsevier_sciencedirect_doi_10_1016_j_disc_2017_01_011 |
| PublicationCentury | 2000 |
| PublicationDate | June 2017 2017-06-00 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Discrete mathematics |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chen, Wang (b4) 2003; 113 Lev (b6) 2004; 11 Tang (b9) 2008; 308 Tang (b10) 2016; 37 Chen, Tang (b3) 2009; 129 Tang, Yu (b11) 2012; 12 Chen, Lev (b2) 2016; 16 Sándor (b8) 2004; 4 Chen (b1) 2011; 54 Qu (b7) 2015; 338 Dombi (b5) 2002; 103 Lev (10.1016/j.disc.2017.01.011_b6) 2004; 11 Tang (10.1016/j.disc.2017.01.011_b11) 2012; 12 Chen (10.1016/j.disc.2017.01.011_b1) 2011; 54 Chen (10.1016/j.disc.2017.01.011_b2) 2016; 16 Tang (10.1016/j.disc.2017.01.011_b9) 2008; 308 Tang (10.1016/j.disc.2017.01.011_b10) 2016; 37 Qu (10.1016/j.disc.2017.01.011_b7) 2015; 338 Chen (10.1016/j.disc.2017.01.011_b4) 2003; 113 Dombi (10.1016/j.disc.2017.01.011_b5) 2002; 103 Chen (10.1016/j.disc.2017.01.011_b3) 2009; 129 Sándor (10.1016/j.disc.2017.01.011_b8) 2004; 4 |
| References_xml | – volume: 54 start-page: 1317 year: 2011 end-page: 1331 ident: b1 article-title: On the values of representation functions publication-title: Sci. China Math. – volume: 338 start-page: 571 year: 2015 end-page: 575 ident: b7 article-title: On the nonvanishing of representation functions of some special sequences publication-title: Discrete Math. – volume: 4 start-page: A18 year: 2004 ident: b8 article-title: Partitions of natural numbers and their representation functions publication-title: Integers – volume: 37 start-page: 41 year: 2016 end-page: 46 ident: b10 article-title: Partitions of natural numbers and their representation functions publication-title: Chinese Ann. Math. Ser. A – volume: 16 start-page: A36 year: 2016 ident: b2 article-title: Integer sets with identical representation functions publication-title: Integers – volume: 129 start-page: 2689 year: 2009 end-page: 2695 ident: b3 article-title: Partitions of natural numbers with the same representation functions publication-title: J. Number Theory – volume: 11 start-page: R78 year: 2004 ident: b6 article-title: Reconstructing integer sets from their representation functions publication-title: Electron. J. Combin. – volume: 308 start-page: 2614 year: 2008 end-page: 2616 ident: b9 article-title: Partitions of the set of natural numbers and their representation functions publication-title: Discrete Math. – volume: 12 start-page: A53 year: 2012 ident: b11 article-title: A note on partitions of natural numbers and their representation functions publication-title: Integers – volume: 113 start-page: 299 year: 2003 end-page: 303 ident: b4 article-title: On additive properties of two special sequences publication-title: Acta Arith. – volume: 103 start-page: 137 year: 2002 end-page: 146 ident: b5 article-title: Additive properties of certain sets publication-title: Acta Arith. – volume: 113 start-page: 299 year: 2003 ident: 10.1016/j.disc.2017.01.011_b4 article-title: On additive properties of two special sequences publication-title: Acta Arith. – volume: 308 start-page: 2614 year: 2008 ident: 10.1016/j.disc.2017.01.011_b9 article-title: Partitions of the set of natural numbers and their representation functions publication-title: Discrete Math. doi: 10.1016/j.disc.2007.06.006 – volume: 16 start-page: A36 year: 2016 ident: 10.1016/j.disc.2017.01.011_b2 article-title: Integer sets with identical representation functions publication-title: Integers – volume: 37 start-page: 41 year: 2016 ident: 10.1016/j.disc.2017.01.011_b10 article-title: Partitions of natural numbers and their representation functions publication-title: Chinese Ann. Math. Ser. A – volume: 4 start-page: A18 year: 2004 ident: 10.1016/j.disc.2017.01.011_b8 article-title: Partitions of natural numbers and their representation functions publication-title: Integers – volume: 11 start-page: R78 year: 2004 ident: 10.1016/j.disc.2017.01.011_b6 article-title: Reconstructing integer sets from their representation functions publication-title: Electron. J. Combin. doi: 10.37236/1831 – volume: 129 start-page: 2689 year: 2009 ident: 10.1016/j.disc.2017.01.011_b3 article-title: Partitions of natural numbers with the same representation functions publication-title: J. Number Theory doi: 10.1016/j.jnt.2009.04.020 – volume: 103 start-page: 137 year: 2002 ident: 10.1016/j.disc.2017.01.011_b5 article-title: Additive properties of certain sets publication-title: Acta Arith. doi: 10.4064/aa103-2-3 – volume: 12 start-page: A53 year: 2012 ident: 10.1016/j.disc.2017.01.011_b11 article-title: A note on partitions of natural numbers and their representation functions publication-title: Integers – volume: 54 start-page: 1317 year: 2011 ident: 10.1016/j.disc.2017.01.011_b1 article-title: On the values of representation functions publication-title: Sci. China Math. doi: 10.1007/s11425-011-4234-5 – volume: 338 start-page: 571 year: 2015 ident: 10.1016/j.disc.2017.01.011_b7 article-title: On the nonvanishing of representation functions of some special sequences publication-title: Discrete Math. doi: 10.1016/j.disc.2014.11.011 |
| SSID | ssj0001638 |
| Score | 2.3032267 |
| Snippet | For a set of nonnegative integers S let RS(n) denote the number of unordered representations of the integer n as the sum of two different terms from S. In this... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1154 |
| SubjectTerms | Additive number theory Partitions of the set of natural numbers Representation functions |
| Title | Partitions of the set of nonnegative integers with the same representation functions |
| URI | https://dx.doi.org/10.1016/j.disc.2017.01.011 |
| Volume | 340 |
| WOSCitedRecordID | wos000398751100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-681X dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0001638 issn: 0012-365X databaseCode: AIEXJ dateStart: 19950120 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBcj3UP3ULqPsn5s6GFvwUWWLct-LFvHNlgpLIWwFyPL55LSuCFJS__83lnyR7uurA-DYIwiy47vl7ufTqc7xj5JIylrWRnESA6CuLIyKGSWBhaNKejE2gqqptiEPjlJp9Ps1C-0r5pyArqu09vbbPFfRY1tKGzaOvsMcXeDYgOeo9DxiGLH4z8J_pTauvg24pUraJb7a4ppOXeJvpssEbR31_lhqZOZUwWVRb8dqR6T0esdep7CfpmhpkGqPZ53GV_7BaGZq8H-q1l_D-vyajn-fdh5cfrWxj-7MoUZeh1C3UdHtZqUkh0majrUpJHLvOQhM9SLlPRnYGPD0GVg_0N_O1fCxSFtSaa4O93kVPXq-F6y7AdGrAstbKPWLnIaI6cxchHiB6fIG1KrLB2xjaPvx9MfncEmSuoMtvtJfm-VCwN8-CSP85cBJ5lssy0_meBHDgSv2Quo37BXP3u5vGWTHg78quL4DUc40OkADryFAyc4uE4IB34fDryDwzt29vV48vlb4CtpBDYSYh3ESoIWKUgJkJTSKiTFSqWFKLOyFMZoKG2RgEoqKCFMjIgUxFpGlUCOUxVptMNG-FTwnnFIBEUaFZBIQLJfGBPhP5xm7TKMcW69y8L2_eTWp5mnaieX-d8ls8vG3TULl2Tlyd6qfe25p4mO_uWIoieu23vWXfbZZo_7AzZaL6_hA3tpb9az1fKjh9AdJI6Jsw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partitions+of+the+set+of+nonnegative+integers+with+the+same+representation+functions&rft.jtitle=Discrete+mathematics&rft.au=Kiss%2C+S%C3%A1ndor+Z.&rft.au=S%C3%A1ndor%2C+Csaba&rft.date=2017-06-01&rft.issn=0012-365X&rft.volume=340&rft.issue=6&rft.spage=1154&rft.epage=1161&rft_id=info:doi/10.1016%2Fj.disc.2017.01.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2017_01_011 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon |