A PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock market indices

This paper presents an integrated functional link interval type-2 fuzzy neural system (FLIT2FNS) for predicting the stock market indices. The hybrid model uses a TSK (Takagi–Sugano–Kang) type fuzzy rule base that employs type-2 fuzzy sets in the antecedent parts and the outputs from the Functional L...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 12; no. 2; pp. 931 - 941
Main Authors: Chakravarty, S., Dash, P.K.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.02.2012
Subjects:
ISSN:1568-4946, 1872-9681
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents an integrated functional link interval type-2 fuzzy neural system (FLIT2FNS) for predicting the stock market indices. The hybrid model uses a TSK (Takagi–Sugano–Kang) type fuzzy rule base that employs type-2 fuzzy sets in the antecedent parts and the outputs from the Functional Link Artificial Neural Network (FLANN) in the consequent parts. Two other approaches, namely the integrated FLANN and type-1 fuzzy logic system and Local Linear Wavelet Neural Network (LLWNN) are also presented for a comparative study. Backpropagation and particle swarm optimization (PSO) learning algorithms have been used independently to optimize the parameters of all the forecasting models. To test the model performance, three well known stock market indices like the Standard's & Poor's 500 (S&P 500), Bombay stock exchange (BSE), and Dow Jones industrial average (DJIA) are used. The mean absolute percentage error (MAPE) and root mean square error (RMSE) are used to find out the performance of all the three models. Finally, it is observed that out of three methods, FLIT2FNS performs the best irrespective of the time horizons spanning from 1 day to 1 month.
AbstractList This paper presents an integrated functional link interval type-2 fuzzy neural system (FLIT2FNS) for predicting the stock market indices. The hybrid model uses a TSK (Takagi–Sugano–Kang) type fuzzy rule base that employs type-2 fuzzy sets in the antecedent parts and the outputs from the Functional Link Artificial Neural Network (FLANN) in the consequent parts. Two other approaches, namely the integrated FLANN and type-1 fuzzy logic system and Local Linear Wavelet Neural Network (LLWNN) are also presented for a comparative study. Backpropagation and particle swarm optimization (PSO) learning algorithms have been used independently to optimize the parameters of all the forecasting models. To test the model performance, three well known stock market indices like the Standard's & Poor's 500 (S&P 500), Bombay stock exchange (BSE), and Dow Jones industrial average (DJIA) are used. The mean absolute percentage error (MAPE) and root mean square error (RMSE) are used to find out the performance of all the three models. Finally, it is observed that out of three methods, FLIT2FNS performs the best irrespective of the time horizons spanning from 1 day to 1 month.
Author Chakravarty, S.
Dash, P.K.
Author_xml – sequence: 1
  givenname: S.
  surname: Chakravarty
  fullname: Chakravarty, S.
  organization: Regional College of Management Autonomous, Bhubaneswar, India
– sequence: 2
  givenname: P.K.
  surname: Dash
  fullname: Dash, P.K.
  email: dashpk13@yahoo.com, pkdash.india@gmail.com
  organization: Siksha ‘O’ Anusandhan University, India
BookMark eNp9kMtqAjEUhkOxULV9ga7yAjNNMnfoRqQ3ECy0XYdM5kSiYyJJFManbwa76sLVORzO98P_zdDEWAMIPVKSUkLLp20qvJUpI5SmpEkJzW7QlNYVS5qyppO4F2Wd5E1e3qGZ91sSoYbVU3Rc4M-vNW6Fhw5rE2DjRIirOhoZtDWix702O2wgYGEuL-4Ur2E4QMLi3_k84N5utMR-8AH2WFmHDw46HQPMBvtg5Q7vhdvFCG3iGfw9ulWi9_DwN-fo5_Xle_merNZvH8vFKpEZISHJcyYalnWkIkJlhWpZKVQtO6B1IRi0TCpJS9VKJpgiRQZM1SUpac6qjHVVm81RfcmVznrvQHGpgxh7BSd0zynhoz6-5aM-PurjpOFRX0TZP_TgdGwxXIeeLxDEUicNjnupwcgow4EMvLP6Gv4LaC-NxA
CitedBy_id crossref_primary_10_1016_j_swevo_2014_07_003
crossref_primary_10_12677_SA_2019_86097
crossref_primary_10_1016_j_asoc_2015_06_040
crossref_primary_10_1016_j_jksuci_2017_09_006
crossref_primary_10_1016_j_sbspro_2013_12_962
crossref_primary_10_1007_s40866_023_00181_2
crossref_primary_10_1016_j_eswa_2017_02_044
crossref_primary_10_1155_2021_7390887
crossref_primary_10_3233_KES_200028
crossref_primary_10_1109_ACCESS_2017_2750399
crossref_primary_10_1007_s40815_019_00701_2
crossref_primary_10_1007_s00521_017_3248_5
crossref_primary_10_1007_s00521_021_06580_9
crossref_primary_10_1016_j_asoc_2020_106581
crossref_primary_10_1007_s10462_019_09754_z
crossref_primary_10_1016_j_ins_2014_02_092
crossref_primary_10_1016_j_knosys_2018_04_014
crossref_primary_10_1007_s00500_019_04465_7
crossref_primary_10_1007_s12065_019_00295_6
crossref_primary_10_1007_s00500_014_1584_2
crossref_primary_10_1016_j_asoc_2015_02_016
crossref_primary_10_1016_j_neucom_2015_04_044
crossref_primary_10_1016_j_mtcomm_2024_108901
crossref_primary_10_1088_1742_6596_2033_1_012003
crossref_primary_10_3390_jrfm14110526
crossref_primary_10_1002_for_2734
crossref_primary_10_3233_KES_160331
crossref_primary_10_1007_s12065_021_00592_z
crossref_primary_10_1016_j_asoc_2016_03_023
crossref_primary_10_1016_j_asoc_2022_109089
crossref_primary_10_1016_j_asoc_2014_05_017
crossref_primary_10_1007_s10614_021_10130_9
crossref_primary_10_1155_2020_1479507
crossref_primary_10_1109_TFUZZ_2020_2986995
crossref_primary_10_1016_j_asoc_2012_11_004
crossref_primary_10_1007_s00500_017_2644_1
crossref_primary_10_1016_j_cosrev_2019_08_001
crossref_primary_10_3233_IDT_160257
crossref_primary_10_3390_rs10050710
crossref_primary_10_1007_s42979_024_02902_5
crossref_primary_10_1007_s11135_025_02181_z
crossref_primary_10_1016_j_asoc_2020_106241
crossref_primary_10_1016_j_eswa_2016_01_016
crossref_primary_10_3390_su10103702
crossref_primary_10_1016_j_ijar_2015_02_001
crossref_primary_10_1016_j_jksuci_2013_12_005
crossref_primary_10_1007_s40010_020_00707_8
crossref_primary_10_1016_j_asoc_2016_01_047
crossref_primary_10_1007_s00521_015_1946_4
crossref_primary_10_1016_j_asoc_2013_06_012
crossref_primary_10_1007_s40815_023_01637_4
crossref_primary_10_1108_QRFM_01_2019_0004
crossref_primary_10_1007_s12530_016_9157_5
crossref_primary_10_1186_s10033_020_00525_4
crossref_primary_10_1007_s11063_017_9646_y
crossref_primary_10_1007_s11071_025_11533_1
crossref_primary_10_3233_IFS_151573
crossref_primary_10_4018_jsds_2013010105
crossref_primary_10_1007_s40998_022_00481_w
crossref_primary_10_1007_s12530_018_9221_4
crossref_primary_10_1186_s40854_018_0104_2
crossref_primary_10_1007_s12652_021_03182_0
crossref_primary_10_1007_s11431_014_5699_6
crossref_primary_10_1007_s11633_018_1113_3
crossref_primary_10_1049_iet_cta_2013_0667
crossref_primary_10_1109_TSMC_2021_3061389
crossref_primary_10_1007_s11831_022_09849_x
crossref_primary_10_1016_j_asoc_2015_07_008
crossref_primary_10_1016_j_neucom_2014_03_051
Cites_doi 10.1177/097265270600500305
10.1007/s005210200021
10.3923/itj.2005.289.292
10.1016/j.neucom.2005.02.006
10.1109/TFUZZ.2006.889765
10.1016/j.eswa.2008.07.006
10.1109/91.873577
10.1109/TFUZZ.2008.925907
10.1109/TFUZZ.2006.879986
10.1016/j.eswa.2007.09.034
10.1016/S0020-0255(00)00068-2
10.1016/j.eswa.2008.08.008
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright_xml – notice: 2011 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2011.09.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 941
ExternalDocumentID 10_1016_j_asoc_2011_09_013
S1568494611003930
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-442a923d070af35fb26af8cde185a2eb2cfc16fbc2a2f053e2f8606142732d7b3
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298631400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 02:08:17 EST 2025
Tue Nov 18 21:00:18 EST 2025
Fri Feb 23 02:27:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Functional Link Artificial Neural Network
Interval Type-2FLS
Backpropagation learning algorithm
Particle swarm optimization
Fuzzy logic system
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-442a923d070af35fb26af8cde185a2eb2cfc16fbc2a2f053e2f8606142732d7b3
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2011_09_013
crossref_primary_10_1016_j_asoc_2011_09_013
elsevier_sciencedirect_doi_10_1016_j_asoc_2011_09_013
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Wang, Liang, Che (bib0150) 2008
Castro, Castillo, Melin, Rodriguez-Diaz (bib0110) 2007
Ozge, Turksen (bib0120) 2007; 15
Dutta, Jha, Laha, Mohan (bib0025) 2006; 5
Chodhury, Garg (bib0030) 2008
J.C. Roxana, V.M.B.R. Marley, T. Ricardo, Hierarchical type-2 neuro-fuzzy BSP model, in: Eighth International Conference on Hybrid Intelligent Systems, IEEE, (2008), 978-0-7695-3326, DOI 10.1109/113.
Liang, Mendel (bib0105) 2000; 8
H. Fu-Yuan, Integration of an improved particle swarm optimization algorithm and fuzzy neural network for Shanghai stock market prediction, in: Workshop on Power Electronics and Intelligent Transportation System, IEEE, (2008), 978-07695-3342, 242–247.
Huang (bib0080) 2008
Majhi, Panda, Sahoo (bib0050) 2009; 36
Begian, Melek, Mendel (bib0130) 2008
Majhi, Shalabi, Fathi (bib0045) 2005; 4
Fazel Zarandi, Rezaee, Turksen, Neshat (bib0115) 2009; 36
Sexton, Gupta (bib0160) 2000; 129
Stock Exchange – Stock Exchange Evolution Larson&Holz.htm.
Chang, Fan, Chen (bib0060) 2007
Kuo, Horng, Chen, Run, Kao, Chen, Lai, Lin (bib0085) 2009
Eberhart, Kennedy (bib0145) 1995
Mendel, John, Liu (bib0125) 2006; 14
Castillo, Melin, Kacprzyk, Pedrycz (bib0100) 2007
George, Valavanis (bib0090) 2009; 36
Chokri (bib0075) 2006
Jang, Sun, Mizutani (bib0135) 2005
V. Kodogiannis, A. Lolis, Forecasting Financial Time Series Neural Network and Fuzzy System Based Technique, Springer-Verlag, Neural Computing & Applications 11 (2002) 90–102.
Juang, Tsao (bib0140) 2008; 16
Yu, Zhang (bib0070) 2005; 35
Yu, Wang, Keung (bib0020) 2005
Cheng, Chen, Teoh (bib0065) 2007
Chen, Dong, Zhao (bib0040) 2005
Abdoh, Jouhare (bib0005) 1996; 13
Ravichandran, Thirunavukarasu, Nallaswamy, Babu (bib0010) 2007; 3
Y. Chen, B. Yang, J. Dong, Time series prediction using a local linear wavelet neural network, Neurocomputing, Elsevier 69 (2006) 449–465
Eberhart (10.1016/j.asoc.2011.09.013_bib0145) 1995
Begian (10.1016/j.asoc.2011.09.013_bib0130) 2008
Liang (10.1016/j.asoc.2011.09.013_bib0105) 2000; 8
Sexton (10.1016/j.asoc.2011.09.013_bib0160) 2000; 129
Mendel (10.1016/j.asoc.2011.09.013_bib0125) 2006; 14
Chokri (10.1016/j.asoc.2011.09.013_bib0075) 2006
Ravichandran (10.1016/j.asoc.2011.09.013_bib0010) 2007; 3
Ozge (10.1016/j.asoc.2011.09.013_bib0120) 2007; 15
George (10.1016/j.asoc.2011.09.013_bib0090) 2009; 36
Juang (10.1016/j.asoc.2011.09.013_bib0140) 2008; 16
Majhi (10.1016/j.asoc.2011.09.013_bib0045) 2005; 4
Jang (10.1016/j.asoc.2011.09.013_bib0135) 2005
Yu (10.1016/j.asoc.2011.09.013_bib0020) 2005
Yu (10.1016/j.asoc.2011.09.013_bib0070) 2005; 35
Kuo (10.1016/j.asoc.2011.09.013_bib0085) 2009
Dutta (10.1016/j.asoc.2011.09.013_bib0025) 2006; 5
10.1016/j.asoc.2011.09.013_bib0015
Castro (10.1016/j.asoc.2011.09.013_bib0110) 2007
10.1016/j.asoc.2011.09.013_bib0035
Castillo (10.1016/j.asoc.2011.09.013_bib0100) 2007
10.1016/j.asoc.2011.09.013_bib0155
10.1016/j.asoc.2011.09.013_bib0055
Chen (10.1016/j.asoc.2011.09.013_bib0040) 2005
Majhi (10.1016/j.asoc.2011.09.013_bib0050) 2009; 36
Fazel Zarandi (10.1016/j.asoc.2011.09.013_bib0115) 2009; 36
Zhang (10.1016/j.asoc.2011.09.013_bib0150) 2008
Chang (10.1016/j.asoc.2011.09.013_bib0060) 2007
Huang (10.1016/j.asoc.2011.09.013_bib0080) 2008
Chodhury (10.1016/j.asoc.2011.09.013_bib0030) 2008
10.1016/j.asoc.2011.09.013_bib0095
Cheng (10.1016/j.asoc.2011.09.013_bib0065) 2007
Abdoh (10.1016/j.asoc.2011.09.013_bib0005) 1996; 13
References_xml – volume: 13
  year: 1996
  ident: bib0005
  article-title: The investigation of efficiency of stock price index of T.S.E.
  publication-title: Journal of Financial Research
– year: 2006
  ident: bib0075
  article-title: Neuro-fuzzy network based on extended Kalman filtering for financial time series
  publication-title: Proceeding of World Academy of Science, Engineering and Technology, vol. 15
– year: 2007
  ident: bib0060
  article-title: Financial time series data forecasting by wavelet and TSK fuzzy rule based system
  publication-title: Institute of Electrical and Electronics Engineers, Fourth International Conference on Fuzzy Systems and Knowledge Discovery
– year: 2008
  ident: bib0130
  article-title: Parametric design of stable type-2 TSK fuzzy system
  publication-title: IEEE
– year: 2007
  ident: bib0110
  article-title: Hybrid learning algorithm for interval type-2 fuzzy neural networks
  publication-title: International Conference on Granular Computing, IEEE
– volume: 35
  start-page: 244
  year: 2005
  end-page: 249
  ident: bib0070
  article-title: Evolutionary fuzzy neural networks for hybrid financial prediction
  publication-title: Institute of Electrical and Electronics Engineers Transaction on Systems Man and Cybernetics
– reference: Y. Chen, B. Yang, J. Dong, Time series prediction using a local linear wavelet neural network, Neurocomputing, Elsevier 69 (2006) 449–465
– start-page: 1646
  year: 2005
  end-page: 1650
  ident: bib0040
  article-title: Stock index modeling using EDA based local linear wavelet neural network
  publication-title: IEEE, In Proceedings of International Conference on Neural Networks and Brain, vol. 3
– reference: V. Kodogiannis, A. Lolis, Forecasting Financial Time Series Neural Network and Fuzzy System Based Technique, Springer-Verlag, Neural Computing & Applications 11 (2002) 90–102.
– start-page: 3022
  year: 2008
  end-page: 3027
  ident: bib0150
  article-title: Chaotic time series forecasting based on fuzzy adaptive PSO for feed forward neural network training
  publication-title: The 9th International Conference for Young Computer Scientists, IEEE
– reference: Stock Exchange – Stock Exchange Evolution Larson&Holz.htm.
– volume: 129
  start-page: 45
  year: 2000
  end-page: 59
  ident: bib0160
  article-title: Comparative evaluation of genetic algorithm and backpropagation for training neural network
  publication-title: Information Sciences
– year: 2007
  ident: bib0100
  article-title: Type-2 fuzzy logic: theory and application
  publication-title: International Conference on Granular Computing, IEEE
– volume: 36
  start-page: 139
  year: 2009
  end-page: 154
  ident: bib0115
  article-title: A type-2 fuzzy rule-based expert system model for stock price analysis
  publication-title: Expert Systems with Applications
– volume: 14
  year: 2006
  ident: bib0125
  article-title: Interval type 2 fuzzy logic systems made simple
  publication-title: IEEE Transaction on Fuzzy Systems
– year: 2005
  ident: bib0020
  article-title: Mining Stock Market Tendency using GA-Based Support Vector Machine
– volume: 36
  start-page: 6800
  year: 2009
  end-page: 6808
  ident: bib0050
  article-title: Development and performance evaluation of FLANN based model for forecasting stock market
  publication-title: Expert Systems with Applications
– volume: 36
  start-page: 5932
  year: 2009
  end-page: 5941
  ident: bib0090
  article-title: Surveying stock market forecasting techniques – Part 11: soft computing methods
  publication-title: Expert Systems with Applications
– reference: H. Fu-Yuan, Integration of an improved particle swarm optimization algorithm and fuzzy neural network for Shanghai stock market prediction, in: Workshop on Power Electronics and Intelligent Transportation System, IEEE, (2008), 978-07695-3342, 242–247.
– year: 2008
  ident: bib0080
  article-title: Forecasting stock price using a genetic fuzzy neural network
  publication-title: International Conference on Computer Science and Information Technology
– volume: 8
  start-page: 535
  year: 2000
  end-page: 550
  ident: bib0105
  article-title: Interval type-2 fuzzy logic systems: theory and design
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 4
  start-page: 289
  year: 2005
  end-page: 292
  ident: bib0045
  article-title: FLANN based forecasting of S&P 500 index
  publication-title: Information Technology Journal
– year: 1995
  ident: bib0145
  article-title: A new optimizer using particle swarm theory
  publication-title: Sixth International Symposium on Micro Machine and Human Science
– volume: 5
  start-page: 3
  year: 2006
  ident: bib0025
  article-title: Artificial neural network models for forecasting stock price index in the bombay stock exchange
  publication-title: Journal of Emerging Market Finance
– year: 2005
  ident: bib0135
  article-title: Neuro-Fuzzy and Soft Computing
– year: 2007
  ident: bib0065
  article-title: Multiple-period modified fuzzy time series for forecasting TAIEX
  publication-title: Institute of Electrical and Electronics Engineers, Fourth International Conference on Fuzzy systems and Knowledge Discovery
– volume: 3
  start-page: 44
  year: 2007
  end-page: 54
  ident: bib0010
  article-title: Estimation on return on investment in share market through ANN
  publication-title: Journal of Theoretical and Applied Information Technology
– year: 2008
  ident: bib0030
  article-title: A hybrid machine learning system for stock market forecasting
  publication-title: Proceeding of World Academy of Science, Engineering and Technology, vol. 29
– start-page: 1494
  year: 2009
  end-page: 1502
  ident: bib0085
  article-title: Forecasting TAIFEX based on fuzzy time series and particle swarm optimization
  publication-title: Expert System with Applications, Elsevier
– volume: 16
  start-page: 1411
  year: 2008
  end-page: 1424
  ident: bib0140
  article-title: A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning
  publication-title: IEEE Transaction on Fuzzy Systems
– volume: 15
  start-page: 90
  year: 2007
  end-page: 106
  ident: bib0120
  article-title: Discrete interval type 2 fuzzy system models using uncertainty in learning parameters
  publication-title: IEEE Transaction on Fuzzy Systems
– reference: J.C. Roxana, V.M.B.R. Marley, T. Ricardo, Hierarchical type-2 neuro-fuzzy BSP model, in: Eighth International Conference on Hybrid Intelligent Systems, IEEE, (2008), 978-0-7695-3326, DOI 10.1109/113.
– volume: 5
  start-page: 3
  year: 2006
  ident: 10.1016/j.asoc.2011.09.013_bib0025
  article-title: Artificial neural network models for forecasting stock price index in the bombay stock exchange
  publication-title: Journal of Emerging Market Finance
  doi: 10.1177/097265270600500305
– ident: 10.1016/j.asoc.2011.09.013_bib0015
  doi: 10.1007/s005210200021
– ident: 10.1016/j.asoc.2011.09.013_bib0055
– volume: 4
  start-page: 289
  issue: 3
  year: 2005
  ident: 10.1016/j.asoc.2011.09.013_bib0045
  article-title: FLANN based forecasting of S&P 500 index
  publication-title: Information Technology Journal
  doi: 10.3923/itj.2005.289.292
– year: 2006
  ident: 10.1016/j.asoc.2011.09.013_bib0075
  article-title: Neuro-fuzzy network based on extended Kalman filtering for financial time series
– ident: 10.1016/j.asoc.2011.09.013_bib0035
  doi: 10.1016/j.neucom.2005.02.006
– year: 2007
  ident: 10.1016/j.asoc.2011.09.013_bib0065
  article-title: Multiple-period modified fuzzy time series for forecasting TAIEX
– volume: 15
  start-page: 90
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2011.09.013_bib0120
  article-title: Discrete interval type 2 fuzzy system models using uncertainty in learning parameters
  publication-title: IEEE Transaction on Fuzzy Systems
  doi: 10.1109/TFUZZ.2006.889765
– year: 2005
  ident: 10.1016/j.asoc.2011.09.013_bib0135
– volume: 13
  issue: 11–12
  year: 1996
  ident: 10.1016/j.asoc.2011.09.013_bib0005
  article-title: The investigation of efficiency of stock price index of T.S.E.
  publication-title: Journal of Financial Research
– volume: 3
  start-page: 44
  year: 2007
  ident: 10.1016/j.asoc.2011.09.013_bib0010
  article-title: Estimation on return on investment in share market through ANN
  publication-title: Journal of Theoretical and Applied Information Technology
– year: 2008
  ident: 10.1016/j.asoc.2011.09.013_bib0030
  article-title: A hybrid machine learning system for stock market forecasting
– volume: 35
  start-page: 244
  issue: 2
  year: 2005
  ident: 10.1016/j.asoc.2011.09.013_bib0070
  article-title: Evolutionary fuzzy neural networks for hybrid financial prediction
  publication-title: Institute of Electrical and Electronics Engineers Transaction on Systems Man and Cybernetics
– volume: 36
  start-page: 5932
  year: 2009
  ident: 10.1016/j.asoc.2011.09.013_bib0090
  article-title: Surveying stock market forecasting techniques – Part 11: soft computing methods
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.07.006
– start-page: 1646
  year: 2005
  ident: 10.1016/j.asoc.2011.09.013_bib0040
  article-title: Stock index modeling using EDA based local linear wavelet neural network
– year: 1995
  ident: 10.1016/j.asoc.2011.09.013_bib0145
  article-title: A new optimizer using particle swarm theory
– year: 2005
  ident: 10.1016/j.asoc.2011.09.013_bib0020
– year: 2008
  ident: 10.1016/j.asoc.2011.09.013_bib0130
  article-title: Parametric design of stable type-2 TSK fuzzy system
  publication-title: IEEE
– start-page: 1494
  year: 2009
  ident: 10.1016/j.asoc.2011.09.013_bib0085
  article-title: Forecasting TAIFEX based on fuzzy time series and particle swarm optimization
  publication-title: Expert System with Applications, Elsevier
– volume: 8
  start-page: 535
  issue: 5
  year: 2000
  ident: 10.1016/j.asoc.2011.09.013_bib0105
  article-title: Interval type-2 fuzzy logic systems: theory and design
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.873577
– ident: 10.1016/j.asoc.2011.09.013_bib0155
– year: 2008
  ident: 10.1016/j.asoc.2011.09.013_bib0080
  article-title: Forecasting stock price using a genetic fuzzy neural network
– year: 2007
  ident: 10.1016/j.asoc.2011.09.013_bib0100
  article-title: Type-2 fuzzy logic: theory and application
– volume: 16
  start-page: 1411
  issue: 6
  year: 2008
  ident: 10.1016/j.asoc.2011.09.013_bib0140
  article-title: A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning
  publication-title: IEEE Transaction on Fuzzy Systems
  doi: 10.1109/TFUZZ.2008.925907
– year: 2007
  ident: 10.1016/j.asoc.2011.09.013_bib0060
  article-title: Financial time series data forecasting by wavelet and TSK fuzzy rule based system
– volume: 14
  issue: 6
  year: 2006
  ident: 10.1016/j.asoc.2011.09.013_bib0125
  article-title: Interval type 2 fuzzy logic systems made simple
  publication-title: IEEE Transaction on Fuzzy Systems
  doi: 10.1109/TFUZZ.2006.879986
– volume: 36
  start-page: 139
  year: 2009
  ident: 10.1016/j.asoc.2011.09.013_bib0115
  article-title: A type-2 fuzzy rule-based expert system model for stock price analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.09.034
– ident: 10.1016/j.asoc.2011.09.013_bib0095
– year: 2007
  ident: 10.1016/j.asoc.2011.09.013_bib0110
  article-title: Hybrid learning algorithm for interval type-2 fuzzy neural networks
– volume: 129
  start-page: 45
  year: 2000
  ident: 10.1016/j.asoc.2011.09.013_bib0160
  article-title: Comparative evaluation of genetic algorithm and backpropagation for training neural network
  publication-title: Information Sciences
  doi: 10.1016/S0020-0255(00)00068-2
– volume: 36
  start-page: 6800
  year: 2009
  ident: 10.1016/j.asoc.2011.09.013_bib0050
  article-title: Development and performance evaluation of FLANN based model for forecasting stock market
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.08.008
– start-page: 3022
  year: 2008
  ident: 10.1016/j.asoc.2011.09.013_bib0150
  article-title: Chaotic time series forecasting based on fuzzy adaptive PSO for feed forward neural network training
SSID ssj0016928
Score 2.3167567
Snippet This paper presents an integrated functional link interval type-2 fuzzy neural system (FLIT2FNS) for predicting the stock market indices. The hybrid model uses...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 931
SubjectTerms Backpropagation learning algorithm
Functional Link Artificial Neural Network
Fuzzy logic system
Interval Type-2FLS
Particle swarm optimization
Title A PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock market indices
URI https://dx.doi.org/10.1016/j.asoc.2011.09.013
Volume 12
WOSCitedRecordID wos000298631400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZuoe9bN0X69aOe9ibsbGlxLIew2jZF12hHeTNyJIFK60XEid0fdm_vtOH7awdZRvsxQRjJbLul7vT6Xd3hLxRGTcZpVWMvrWK0UKrWDBJY6Flpg1jlGvXteQTPz4u5nNxMhr96HJhNhe8aYqrK7H4r6LGeyhsmzr7F-LuvxRv4GcUOl5R7Hj9I8HPopPTz5G1TnooBqEja8BC3M8e2kZN3YbKS5b0aCnnuCONKT53ff09choxlHl2TMTF0p7otD76gDo0unTp0pE98laBh9gVsw2O7Qo1vKOsr9vOPvY8gg1O3LPMkiFWvvIhnuRjsh2LsKSOX3gdt5NkvE7Ni3giQqSx9vcKjnjIfbeWXhHTLcDRLa0qgqHwBlr4Slm3dL8PQ5wnEmEdarOKJPWZrjdqap_aOdkp2YJ5TLD0HtmhfCqKMdmZvT-cf-gPonLh2vP27xDyrjxF8OYv_d632fJXznbJw7DRgJkHyGMyqpsn5FHXxAOCTn9K1jNAvIDDCwx4gQEvYPECiBdAvECHF_B4AYcXcHgBjxdAvMCAF3B4AY8XCHh5Rr4cHZ69fReHXhyxYmnaxpMJlbgX0GghpGFTU9FcmkLpGv09SeuKKqOy3FSKSmpQsdfUFLmNNqB7TDWv2HMybr419QsCWZ1VUlZZypWeMCaLjLGK2w4lnHEj8j2SdatYqlCo3vZLuSg7RuJ5aVe-tCtfpqLEld8jUT9m4cu03Pn0tBNOGRxN70CWiKU7xr38x3GvyIPh37JPxu1yXR-Q-2rTfl0tXwfI_QQlZaPv
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+PSO+based+integrated+functional+link+net+and+interval+type-2+fuzzy+logic+system+for+predicting+stock+market+indices&rft.jtitle=Applied+soft+computing&rft.au=Chakravarty%2C+S.&rft.au=Dash%2C+P.K.&rft.date=2012-02-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=12&rft.issue=2&rft.spage=931&rft.epage=941&rft_id=info:doi/10.1016%2Fj.asoc.2011.09.013&rft.externalDocID=S1568494611003930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon