A short-term power load forecasting system based on data decomposition, deep learning and weighted linear error correction with feedback mechanism
Accurate power load forecasting enables Independent System Operators (ISOs) to precisely quantify the demand patterns of users and achieve efficient management of the smart grid. However, with the increasing variety of power consumption patterns, the power load data displays increasingly irregular c...
Gespeichert in:
| Veröffentlicht in: | Applied soft computing Jg. 162; S. 111863 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.09.2024
|
| Schlagworte: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate power load forecasting enables Independent System Operators (ISOs) to precisely quantify the demand patterns of users and achieve efficient management of the smart grid. However, with the increasing variety of power consumption patterns, the power load data displays increasingly irregular characteristics, which posing great challenges for accurate load forecasting. In order to solve above problem, a novel power load forecasting system is proposed based on data denoising, customized deep learning and weighted linear error correction. Specifically, we first proposed an improved optimization algorithm IGWO-JAYA which enhanced the Grey Wolf Optimizer (GWO) algorithm by using Halton low-discrepancy sequence and the mechanism of JAYA algorithm. In data denoising, the proposed optimizer was employed to optimize the Variational Mode Decomposition (VMD), enabling data-driven intelligent denoising. The customized deep learning framework contained multi-layer Convolution Neural Network (CNN), Bi-directional Long Short-Term Memory (Bi-LSTM) and Multi-Head Attention mechanism. The effective integration of these layers can significantly improve the capacity for nonlinear fitting of deep learning. In weighted linear error correction, the IGWO-JAYA algorithm was employed to determine the appropriate weight for point forecasting values and residual forecasting values. By weighting them, the forecasting precision has been further enhanced. To verify the forecasting ability of the system, we conducted experiments on power load datasets from four states in Australia and found that it has the best performance compared with all rivals. In the discussion, we demonstrated the convergence efficiency of the IGWO-JAYA algorithm by CEC test function.
•A load forecasting system considering both accuracy and robustness is proposed.•Multi-strategy improved optimizer highly boosts the global search ability.•Data-driven data denoising strategy enabling adaptive data preprocessing.•Customized deep learning structure enhances capability of nonlinear fitting.•Weighted linear error correction further improved the forecasting accuracy. |
|---|---|
| AbstractList | Accurate power load forecasting enables Independent System Operators (ISOs) to precisely quantify the demand patterns of users and achieve efficient management of the smart grid. However, with the increasing variety of power consumption patterns, the power load data displays increasingly irregular characteristics, which posing great challenges for accurate load forecasting. In order to solve above problem, a novel power load forecasting system is proposed based on data denoising, customized deep learning and weighted linear error correction. Specifically, we first proposed an improved optimization algorithm IGWO-JAYA which enhanced the Grey Wolf Optimizer (GWO) algorithm by using Halton low-discrepancy sequence and the mechanism of JAYA algorithm. In data denoising, the proposed optimizer was employed to optimize the Variational Mode Decomposition (VMD), enabling data-driven intelligent denoising. The customized deep learning framework contained multi-layer Convolution Neural Network (CNN), Bi-directional Long Short-Term Memory (Bi-LSTM) and Multi-Head Attention mechanism. The effective integration of these layers can significantly improve the capacity for nonlinear fitting of deep learning. In weighted linear error correction, the IGWO-JAYA algorithm was employed to determine the appropriate weight for point forecasting values and residual forecasting values. By weighting them, the forecasting precision has been further enhanced. To verify the forecasting ability of the system, we conducted experiments on power load datasets from four states in Australia and found that it has the best performance compared with all rivals. In the discussion, we demonstrated the convergence efficiency of the IGWO-JAYA algorithm by CEC test function.
•A load forecasting system considering both accuracy and robustness is proposed.•Multi-strategy improved optimizer highly boosts the global search ability.•Data-driven data denoising strategy enabling adaptive data preprocessing.•Customized deep learning structure enhances capability of nonlinear fitting.•Weighted linear error correction further improved the forecasting accuracy. |
| ArticleNumber | 111863 |
| Author | Dong, Zhaochen Tian, Zhirui Lv, Shuang |
| Author_xml | – sequence: 1 givenname: Zhaochen surname: Dong fullname: Dong, Zhaochen organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China – sequence: 2 givenname: Zhirui orcidid: 0000-0001-7680-6770 surname: Tian fullname: Tian, Zhirui email: 223010081@link.cuhk.edu.cn organization: School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, China – sequence: 3 givenname: Shuang surname: Lv fullname: Lv, Shuang organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China |
| BookMark | eNp9kMtqHDEQRYVxwPYkP-CVPsA9kdQvNXhjjO0EDNkka1FdqvZo3C0Nksjg3_AXW81klYVX9YBz4Z4rdu6DJ8aupdhKIbvv-y2kgFslVLOVUuquPmOXUveqGjotz8vedrpqhqa7YFcp7UWBBqUv2fsdT7sQc5UpLvwQjhT5HMDyKURCSNn5F57eUqaFj5DI8uC5hQzcEoblEJLLLvibctKBzwTRrwR4y4_kXna5ELPz5c8pxhA5hliCV4YfXd7xiciOgK98IdyBd2n5yr5MMCf69m9u2J_Hh9_3P6rnX08_7--eK6yFyFXTSBoslk4DtQPB1OuaajWqsW8FoFR6QEUtjhpUQ-1kaxynXozY9thPI9Qbpk65GENKkSZziG6B-GakMKtVszerVbNaNSerBdL_QegyrHVyBDd_jt6eUCql_jqKJqEjj2TdasTY4D7DPwDuW5mq |
| CitedBy_id | crossref_primary_10_1016_j_compeleceng_2025_110282 crossref_primary_10_1007_s13369_025_10398_1 crossref_primary_10_1016_j_epsr_2025_111846 crossref_primary_10_1016_j_apenergy_2025_126255 crossref_primary_10_1016_j_rser_2025_115375 crossref_primary_10_1016_j_renene_2025_123277 crossref_primary_10_3390_jmse13061163 crossref_primary_10_1016_j_apenergy_2025_125330 crossref_primary_10_1016_j_rineng_2025_105606 crossref_primary_10_1016_j_asoc_2024_112311 crossref_primary_10_1016_j_jenvman_2025_124540 crossref_primary_10_1016_j_cie_2025_111022 crossref_primary_10_1016_j_apenergy_2025_125525 crossref_primary_10_1109_JIOT_2024_3525060 crossref_primary_10_1016_j_ins_2025_122523 |
| Cites_doi | 10.1016/j.renene.2023.118932 10.1016/j.energy.2023.128225 10.1016/j.aei.2017.11.002 10.1016/j.ecoinf.2023.102270 10.1016/j.engappai.2023.106698 10.1016/j.advengsoft.2013.12.007 10.1016/j.asoc.2019.105548 10.1016/j.asoc.2019.106029 10.1016/j.energy.2023.126738 10.1016/j.egyr.2023.05.090 10.1016/j.asoc.2022.109632 10.1016/j.asoc.2017.04.053 10.1016/j.apenergy.2022.120042 10.1016/j.physa.2023.129001 10.1016/j.enconman.2013.02.010 10.1016/j.engappai.2018.10.003 10.1016/j.energy.2023.128274 10.1016/j.asoc.2023.110692 10.1016/j.isatra.2021.08.030 10.1016/j.enbuild.2023.113022 10.1016/j.egyr.2023.02.061 10.1016/S0196-8904(02)00225-X 10.1016/j.eswa.2023.123088 10.1016/j.energy.2012.10.035 10.1016/j.enconman.2023.117818 10.1016/j.ins.2022.12.088 10.1016/j.ress.2022.108701 10.1016/j.asoc.2023.110335 10.1016/j.asoc.2021.107111 10.1016/j.neunet.2023.06.042 10.1016/j.apenergy.2023.121638 10.1016/j.procs.2016.05.367 10.1016/j.knosys.2022.109584 10.1016/j.knosys.2023.110476 10.1016/j.cie.2022.108364 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2024.111863 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2024_111863 S1568494624006379 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-441e9dc4949e59eaf783e32b2b750ac1289c2e5cb8a24e5fd3cbf70bc57c7fba3 |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001339183900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 03:06:04 EST 2025 Tue Nov 18 21:11:18 EST 2025 Sat Jul 13 15:31:27 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Meta-heuristic optimization algorithm Load forecast Data preprocessing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-441e9dc4949e59eaf783e32b2b750ac1289c2e5cb8a24e5fd3cbf70bc57c7fba3 |
| ORCID | 0000-0001-7680-6770 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2024_111863 crossref_citationtrail_10_1016_j_asoc_2024_111863 elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111863 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Li, Gao, Suganthan (bib33) 2023; Volume 624 Tian, Gai (bib39) 2023; 281 Yu, Niu, Gao, Wang, Sun, Li, Xu (bib21) 2023; Volume 269 Wan, Chang, AL-Bukhaiti, He (bib18) 2023; Volume 282 Hsu, Chen (bib9) 2003; Volume 44 Al-Musaylh, Deo, Adamowski, Li (bib6) 2018; Volume 35 Wang, Chen, Chen, Rehman (bib14) 2023; Volume 125 Wang, Wang, Li, Lu, Jiang (bib13) 2023; Volume 146 Abou Houran, Salman Bukhari, Zafar, Mansoor, Chen (bib30) 2023; Volume 349 Wang, Qian, Zhang, Wang, Zhang (bib37) 2024; 299 An, Zhao, Wang, Shang, Zhao (bib10) 2013; Volume 49 Tian, Gai (bib38) 2024; 245 Bharti, Poonam Redhu, Kranti Kumar, Short-term traffic flow prediction based on optimized deep learning neural network: PSO-Bi-LSTM, Physica A: Statistical Mechanics and its Applications, Volume 625, 2023, 129001, ISSN 0378-4371 Kong, Du, Xu, Xue (bib20) 2023; Volume 219 Rao (bib28) 2016; 7 Weerasinghe, Chi, Cao (bib27) 2016; Volume 80 Wang, Wang, Xu (bib2) 2019; Volume 82 Mirjalili, Mirjalili, Lewis (bib25) 2014; Volume 69 Yan-Lin He, Yanlu Gao, Yuan Xu (bib24) 2022; Volume 127 Dai, Yang, Leng (bib12) 2023; Volume 142 Brodowski, Bielecki, Filocha (bib3) 2017; Volume 58 Kottath, Singh (bib15) 2023; Volume 263 Wang, Xing, Zeng, Zhao (bib8) 2022; Volume 327 Ming-Chuan Chiu, Ke-Sin Chen (bib22) 2023; Volume 9 Nie, Jiang, Zhang (bib5) 2020; Volume 97 Zheng, Hu, Wang, Ni, Cui (bib17) 2023; Volume 9 Chang, Li, Chen, Liu, Li (bib31) 2022; Volume 226 Yang, Wang, Niu, Du (bib1) 2020; Volume 88 Pradhan, Bhende (bib29) 2019; Volume 77 Tian, Wang (bib26) 2023; Volume 215 Gao, Du, Duru, Yuen (bib16) 2021; Volume 102 . Atef, Nakata, Eltawil (bib11) 2022; Volume 170 Zeng, Hu, Zhou, Li, Liu, Liu (bib35) 2022; Volume 254 Wu, Wang, Lu, Dong, Lu (bib7) 2013; Volume 70 Dai, Zhou, Leng, Yang, Wang (bib23) 2022; Volume 130 Zhang, Liu, Yuan, Zhai, Song (bib4) 2023; Volume 268 Lin, Li, Shi, Sheng, Sun, Wang, Li (bib34) 2023 Mounir, Ouadi, Jrhilifa (bib19) 2023; Volume 288 Gao, Li, Hu, Suganthan, Yuen (bib36) 2023; Volume 166 Pradhan (10.1016/j.asoc.2024.111863_bib29) 2019; Volume 77 Wang (10.1016/j.asoc.2024.111863_bib37) 2024; 299 Tian (10.1016/j.asoc.2024.111863_bib39) 2023; 281 Wang (10.1016/j.asoc.2024.111863_bib14) 2023; Volume 125 Dai (10.1016/j.asoc.2024.111863_bib23) 2022; Volume 130 Wu (10.1016/j.asoc.2024.111863_bib7) 2013; Volume 70 Wan (10.1016/j.asoc.2024.111863_bib18) 2023; Volume 282 Hsu (10.1016/j.asoc.2024.111863_bib9) 2003; Volume 44 Dai (10.1016/j.asoc.2024.111863_bib12) 2023; Volume 142 Abou Houran (10.1016/j.asoc.2024.111863_bib30) 2023; Volume 349 Li (10.1016/j.asoc.2024.111863_bib33) 2023; Volume 624 Mounir (10.1016/j.asoc.2024.111863_bib19) 2023; Volume 288 Al-Musaylh (10.1016/j.asoc.2024.111863_bib6) 2018; Volume 35 Yu (10.1016/j.asoc.2024.111863_bib21) 2023; Volume 269 Ming-Chuan Chiu (10.1016/j.asoc.2024.111863_bib22) 2023; Volume 9 Kong (10.1016/j.asoc.2024.111863_bib20) 2023; Volume 219 Chang (10.1016/j.asoc.2024.111863_bib31) 2022; Volume 226 Mirjalili (10.1016/j.asoc.2024.111863_bib25) 2014; Volume 69 Zeng (10.1016/j.asoc.2024.111863_bib35) 2022; Volume 254 Brodowski (10.1016/j.asoc.2024.111863_bib3) 2017; Volume 58 Lin (10.1016/j.asoc.2024.111863_bib34) 2023 Nie (10.1016/j.asoc.2024.111863_bib5) 2020; Volume 97 Kottath (10.1016/j.asoc.2024.111863_bib15) 2023; Volume 263 10.1016/j.asoc.2024.111863_bib32 Zheng (10.1016/j.asoc.2024.111863_bib17) 2023; Volume 9 Wang (10.1016/j.asoc.2024.111863_bib13) 2023; Volume 146 Rao (10.1016/j.asoc.2024.111863_bib28) 2016; 7 An (10.1016/j.asoc.2024.111863_bib10) 2013; Volume 49 Wang (10.1016/j.asoc.2024.111863_bib2) 2019; Volume 82 Zhang (10.1016/j.asoc.2024.111863_bib4) 2023; Volume 268 Gao (10.1016/j.asoc.2024.111863_bib36) 2023; Volume 166 Weerasinghe (10.1016/j.asoc.2024.111863_bib27) 2016; Volume 80 Yan-Lin He (10.1016/j.asoc.2024.111863_bib24) 2022; Volume 127 Wang (10.1016/j.asoc.2024.111863_bib8) 2022; Volume 327 Yang (10.1016/j.asoc.2024.111863_bib1) 2020; Volume 88 Tian (10.1016/j.asoc.2024.111863_bib26) 2023; Volume 215 Gao (10.1016/j.asoc.2024.111863_bib16) 2021; Volume 102 Atef (10.1016/j.asoc.2024.111863_bib11) 2022; Volume 170 Tian (10.1016/j.asoc.2024.111863_bib38) 2024; 245 |
| References_xml | – reference: Bharti, Poonam Redhu, Kranti Kumar, Short-term traffic flow prediction based on optimized deep learning neural network: PSO-Bi-LSTM, Physica A: Statistical Mechanics and its Applications, Volume 625, 2023, 129001, ISSN 0378-4371, – volume: Volume 127 start-page: 350 year: 2022 end-page: 360 ident: bib24 article-title: Novel double-layer bidirectional LSTM network with improved attention mechanism for predicting energy consumption publication-title: ISA Trans. – volume: Volume 215 year: 2023 ident: bib26 article-title: A wind speed prediction system based on new data preprocessing strategy and improved multi-objective optimizer publication-title: Renew. Energy – volume: Volume 254 year: 2022 ident: bib35 article-title: Muformer: A long sequence time-series forecasting model based on modified multi head attention publication-title: Knowl. Based Syst. – volume: Volume 69 start-page: 46 year: 2014 end-page: 61 ident: bib25 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. – volume: 281 year: 2023 ident: bib39 article-title: A novel hybrid wind speed prediction framework based on multi-strategy improved optimizer and new data pre-processing system with feedback mechanism publication-title: Energy – volume: Volume 170 year: 2022 ident: bib11 article-title: A deep bi-directional long-short term memory neural network-based methodology to enhance short-term electricity load forecasting for residential applications publication-title: Comput. Ind. Eng. – volume: Volume 125 year: 2023 ident: bib14 article-title: Monthly ship price forecasting based on multivariate variational mode decomposition publication-title: Eng. Appl. Artif. Intell. – volume: 245 year: 2024 ident: bib38 article-title: Football team training algorithm: A novel sport-inspired meta-heuristic optimization algorithm for global optimization publication-title: Expert Systems with Application – volume: Volume 58 start-page: 527 year: 2017 end-page: 539 ident: bib3 article-title: A hybrid system for forecasting 24-h power load profile for Polish electric grid publication-title: Appl. Soft Comput. – year: 2023 ident: bib34 article-title: Forecasting of wind speed under wind-fire coupling scenarios by combining HS-VMD and AM-LSTM publication-title: Ecol. Inform. – volume: Volume 268 year: 2023 ident: bib4 article-title: Multifactor and multiscale method for power load forecasting publication-title: Knowl. -Based Syst. – volume: Volume 288 year: 2023 ident: bib19 article-title: Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system publication-title: Energy Build. – volume: Volume 70 start-page: 1 year: 2013 end-page: 9 ident: bib7 article-title: Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model publication-title: Energy Convers. Manag. – volume: Volume 282 year: 2023 ident: bib18 article-title: Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism publication-title: Energy – volume: Volume 226 year: 2022 ident: bib31 article-title: Efficient temporal flow Transformer accompanied with multi-head prob sparse self-attention mechanism for remaining useful life prognostics publication-title: Reliab. Eng. Syst. Saf. – volume: Volume 130 year: 2022 ident: bib23 article-title: Improving the Bi-LSTM model with XGBoost and attention mechanism: a combined approach for short-term power load prediction publication-title: Appl. Soft Comput. – volume: Volume 349 year: 2023 ident: bib30 article-title: COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications publication-title: Appl. Energy – volume: Volume 35 start-page: 1 year: 2018 end-page: 16 ident: bib6 article-title: Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia publication-title: Adv. Eng. Inform. – volume: Volume 9 start-page: 94 year: 2023 end-page: 105 ident: bib22 article-title: A hybrid CNN-GRU based probabilistic model for load forecasting from individual household to commercial building publication-title: Energy Rep. – volume: Volume 9 start-page: 199 year: 2023 end-page: 211 ident: bib17 article-title: VMD-CAT: A hybrid model for short-term wind power prediction publication-title: Energy Rep. – volume: Volume 263 year: 2023 ident: bib15 article-title: Influencer buddy optimization: algorithm and its application to electricity load and price forecasting problem publication-title: Energy – volume: Volume 166 start-page: 51 year: 2023 end-page: 69 ident: bib36 article-title: Online dynamic ensemble deep random vector functional link neural network for forecasting publication-title: Neural Netw. – volume: Volume 219 year: 2023 ident: bib20 article-title: Predicting solar radiation for space heating with thermal storage system based on temporal convolutional network-attention model publication-title: Appl. Therm. Eng. – volume: Volume 77 start-page: 212 year: 2019 end-page: 228 ident: bib29 article-title: Online load frequency control in wind integrated power systems using modified Jaya optimization publication-title: Eng. Appl. Artif. Intell. – volume: Volume 80 start-page: 772 year: 2016 end-page: 781 ident: bib27 article-title: Particle swarm optimization simulation via optimal halton sequences publication-title: Procedia Comput. Sci. – volume: Volume 624 start-page: 833 year: 2023 end-page: 848 ident: bib33 article-title: A decomposition-based hybrid ensemble CNN framework for driver fatigue recognition publication-title: Inf. Sci. – volume: Volume 146 year: 2023 ident: bib13 article-title: Short-term power load forecasting system based on rough set, information granule and multi-objective optimization publication-title: Appl. Soft Comput. – volume: Volume 49 start-page: 279 year: 2013 end-page: 288 ident: bib10 article-title: Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting publication-title: Energy – volume: Volume 102 year: 2021 ident: bib16 article-title: Time series forecasting based on echo state network and empirical wavelet transformation publication-title: Appl. Soft Comput. – volume: Volume 88 year: 2020 ident: bib1 article-title: A novel system for multi-step electricity price forecasting for electricity market management publication-title: Appl. Soft Comput. – reference: . – volume: Volume 97 year: 2020 ident: bib5 article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting publication-title: Appl. Soft Comput. – volume: 7 start-page: 19 year: 2016 end-page: 34 ident: bib28 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int. J. Ind. Eng. Comput. – volume: Volume 44 start-page: 1941 year: 2003 end-page: 1949 ident: bib9 article-title: Regional load forecasting in Taiwan––applications of artificial neural networks publication-title: Energy Convers. Manag. – volume: Volume 142 year: 2023 ident: bib12 article-title: Optimized Seq2Seq model based on multiple methods for short-term power load forecasting publication-title: Appl. Soft Comput. – volume: Volume 269 year: 2023 ident: bib21 article-title: A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism publication-title: Energy – volume: Volume 82 year: 2019 ident: bib2 article-title: A novel combined model based on hybrid optimization algorithm for electrical load forecasting publication-title: Appl. Soft Comput. – volume: Volume 327 year: 2022 ident: bib8 article-title: An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation publication-title: Appl. Energy – volume: 299 year: 2024 ident: bib37 article-title: A novel wind power forecasting system integrating time series refining, nonlinear multi-objective optimized deep learning and linear error correction publication-title: Energy Conversion and Management – volume: Volume 219 issue: Part B year: 2023 ident: 10.1016/j.asoc.2024.111863_bib20 article-title: Predicting solar radiation for space heating with thermal storage system based on temporal convolutional network-attention model publication-title: Appl. Therm. Eng. – volume: Volume 215 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib26 article-title: A wind speed prediction system based on new data preprocessing strategy and improved multi-objective optimizer publication-title: Renew. Energy doi: 10.1016/j.renene.2023.118932 – volume: 281 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib39 article-title: A novel hybrid wind speed prediction framework based on multi-strategy improved optimizer and new data pre-processing system with feedback mechanism publication-title: Energy doi: 10.1016/j.energy.2023.128225 – volume: Volume 35 start-page: 1 year: 2018 ident: 10.1016/j.asoc.2024.111863_bib6 article-title: Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2017.11.002 – year: 2023 ident: 10.1016/j.asoc.2024.111863_bib34 article-title: Forecasting of wind speed under wind-fire coupling scenarios by combining HS-VMD and AM-LSTM publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2023.102270 – volume: Volume 125 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib14 article-title: Monthly ship price forecasting based on multivariate variational mode decomposition publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106698 – volume: Volume 69 start-page: 46 year: 2014 ident: 10.1016/j.asoc.2024.111863_bib25 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: Volume 82 year: 2019 ident: 10.1016/j.asoc.2024.111863_bib2 article-title: A novel combined model based on hybrid optimization algorithm for electrical load forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105548 – volume: Volume 88 year: 2020 ident: 10.1016/j.asoc.2024.111863_bib1 article-title: A novel system for multi-step electricity price forecasting for electricity market management publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.106029 – volume: Volume 269 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib21 article-title: A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism publication-title: Energy doi: 10.1016/j.energy.2023.126738 – volume: Volume 9 start-page: 94 issue: Supplement 10 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib22 article-title: A hybrid CNN-GRU based probabilistic model for load forecasting from individual household to commercial building publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.05.090 – volume: Volume 130 year: 2022 ident: 10.1016/j.asoc.2024.111863_bib23 article-title: Improving the Bi-LSTM model with XGBoost and attention mechanism: a combined approach for short-term power load prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109632 – volume: 7 start-page: 19 issue: 1 year: 2016 ident: 10.1016/j.asoc.2024.111863_bib28 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int. J. Ind. Eng. Comput. – volume: Volume 58 start-page: 527 year: 2017 ident: 10.1016/j.asoc.2024.111863_bib3 article-title: A hybrid system for forecasting 24-h power load profile for Polish electric grid publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.04.053 – volume: Volume 327 year: 2022 ident: 10.1016/j.asoc.2024.111863_bib8 article-title: An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120042 – ident: 10.1016/j.asoc.2024.111863_bib32 doi: 10.1016/j.physa.2023.129001 – volume: Volume 70 start-page: 1 year: 2013 ident: 10.1016/j.asoc.2024.111863_bib7 article-title: Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.02.010 – volume: Volume 77 start-page: 212 year: 2019 ident: 10.1016/j.asoc.2024.111863_bib29 article-title: Online load frequency control in wind integrated power systems using modified Jaya optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.10.003 – volume: Volume 282 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib18 article-title: Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism publication-title: Energy doi: 10.1016/j.energy.2023.128274 – volume: Volume 146 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib13 article-title: Short-term power load forecasting system based on rough set, information granule and multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110692 – volume: Volume 127 start-page: 350 year: 2022 ident: 10.1016/j.asoc.2024.111863_bib24 article-title: Novel double-layer bidirectional LSTM network with improved attention mechanism for predicting energy consumption publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.08.030 – volume: Volume 288 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib19 article-title: Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system publication-title: Energy Build. doi: 10.1016/j.enbuild.2023.113022 – volume: Volume 9 start-page: 199 issue: Supplement 4 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib17 article-title: VMD-CAT: A hybrid model for short-term wind power prediction publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.02.061 – volume: Volume 44 start-page: 1941 issue: Issue 12 year: 2003 ident: 10.1016/j.asoc.2024.111863_bib9 article-title: Regional load forecasting in Taiwan––applications of artificial neural networks publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(02)00225-X – volume: Volume 97 issue: Part B year: 2020 ident: 10.1016/j.asoc.2024.111863_bib5 article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting publication-title: Appl. Soft Comput. – volume: 245 year: 2024 ident: 10.1016/j.asoc.2024.111863_bib38 article-title: Football team training algorithm: A novel sport-inspired meta-heuristic optimization algorithm for global optimization publication-title: Expert Systems with Application doi: 10.1016/j.eswa.2023.123088 – volume: Volume 49 start-page: 279 year: 2013 ident: 10.1016/j.asoc.2024.111863_bib10 article-title: Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting publication-title: Energy doi: 10.1016/j.energy.2012.10.035 – volume: Volume 263 issue: Part C year: 2023 ident: 10.1016/j.asoc.2024.111863_bib15 article-title: Influencer buddy optimization: algorithm and its application to electricity load and price forecasting problem publication-title: Energy – volume: 299 year: 2024 ident: 10.1016/j.asoc.2024.111863_bib37 article-title: A novel wind power forecasting system integrating time series refining, nonlinear multi-objective optimized deep learning and linear error correction publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2023.117818 – volume: Volume 624 start-page: 833 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib33 article-title: A decomposition-based hybrid ensemble CNN framework for driver fatigue recognition publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.12.088 – volume: Volume 226 year: 2022 ident: 10.1016/j.asoc.2024.111863_bib31 article-title: Efficient temporal flow Transformer accompanied with multi-head prob sparse self-attention mechanism for remaining useful life prognostics publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108701 – volume: Volume 142 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib12 article-title: Optimized Seq2Seq model based on multiple methods for short-term power load forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110335 – volume: Volume 102 year: 2021 ident: 10.1016/j.asoc.2024.111863_bib16 article-title: Time series forecasting based on echo state network and empirical wavelet transformation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107111 – volume: Volume 166 start-page: 51 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib36 article-title: Online dynamic ensemble deep random vector functional link neural network for forecasting publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.06.042 – volume: Volume 349 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib30 article-title: COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121638 – volume: Volume 80 start-page: 772 year: 2016 ident: 10.1016/j.asoc.2024.111863_bib27 article-title: Particle swarm optimization simulation via optimal halton sequences publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.05.367 – volume: Volume 254 year: 2022 ident: 10.1016/j.asoc.2024.111863_bib35 article-title: Muformer: A long sequence time-series forecasting model based on modified multi head attention publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.109584 – volume: Volume 268 year: 2023 ident: 10.1016/j.asoc.2024.111863_bib4 article-title: Multifactor and multiscale method for power load forecasting publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2023.110476 – volume: Volume 170 year: 2022 ident: 10.1016/j.asoc.2024.111863_bib11 article-title: A deep bi-directional long-short term memory neural network-based methodology to enhance short-term electricity load forecasting for residential applications publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108364 |
| SSID | ssj0016928 |
| Score | 2.507984 |
| Snippet | Accurate power load forecasting enables Independent System Operators (ISOs) to precisely quantify the demand patterns of users and achieve efficient management... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 111863 |
| SubjectTerms | Data preprocessing Deep learning Load forecast Meta-heuristic optimization algorithm |
| Title | A short-term power load forecasting system based on data decomposition, deep learning and weighted linear error correction with feedback mechanism |
| URI | https://dx.doi.org/10.1016/j.asoc.2024.111863 |
| Volume | 162 |
| WOSCitedRecordID | wos001339183900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ojy0hy4GUexHdfeY4SKAKGKQ0FRL9a-rKQNTuQ86O9A_GBm9uGkBSp64GJZlndieb7Mfjv-doax1xJZhMySYazyhLJVqYqFFDyulRa8FJkRtsfS10_F8XE5HvPPvd7PsBdmMyuapry44Iv_6mq8hs6mrbM3cHdnFC_gOTodj-h2PP6T40fRcoKcOqaYGy2oCVo0mwtNekKjxNLKnF395oimME2fC0gnGmlD-nIv4qJXr41ZhLYSbifjd5tIxTFETkUbmbadt5GiDh-u5bhN69Y4I0qhzqNvhvYVhyKFodat571LnACson29CtMnEWovET6dCOrltSMTdpna08m0XU87GdHGZm8na-Et-PxFOuwEWl3IPUSQcJ-IDDHZh2gXVTEely4M_hbwXe7hrC8Qy30y39_efLm69pVZr9MiBpnbWUU2KrJRORu32H5a5Bxj5f7ow9H4Y_d16pDbnr3dk_vNWE43ePVJ_kx4dkjMyX12168-YORQ84D1TPOQ3QudPcAH-kfsxwi2IAILIiAQwQ6IwIEILIhg3gCBCC6B6A0QhCBACBBCECAEDkJgIQRbCAFBCAKEoIPQY_bl3dHJ2_ex794Rq2wwWMXIsw3XiqofmZwbURdlZrJUphJJqlDIi7hKTa5kKdKhyWudKVkXA6nyQhW1FNkTttfMG_OUQS5qqmtnTCFyXNBrgYuQQieaFi8mGaoDloRXXClf2p46rMyqvzv3gEXdmIUr7HLt3XnwXOWpqaOcFQLxmnHPbvQrz9md7T_kBdtbtWvzkt1Wm9V02b7yKPwFx-e26g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+short-term+power+load+forecasting+system+based+on+data+decomposition%2C+deep+learning+and+weighted+linear+error+correction+with+feedback+mechanism&rft.jtitle=Applied+soft+computing&rft.au=Dong%2C+Zhaochen&rft.au=Tian%2C+Zhirui&rft.au=Lv%2C+Shuang&rft.date=2024-09-01&rft.issn=1568-4946&rft.volume=162&rft.spage=111863&rft_id=info:doi/10.1016%2Fj.asoc.2024.111863&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2024_111863 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |