A short-term power load forecasting system based on data decomposition, deep learning and weighted linear error correction with feedback mechanism

Accurate power load forecasting enables Independent System Operators (ISOs) to precisely quantify the demand patterns of users and achieve efficient management of the smart grid. However, with the increasing variety of power consumption patterns, the power load data displays increasingly irregular c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 162; S. 111863
Hauptverfasser: Dong, Zhaochen, Tian, Zhirui, Lv, Shuang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.09.2024
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate power load forecasting enables Independent System Operators (ISOs) to precisely quantify the demand patterns of users and achieve efficient management of the smart grid. However, with the increasing variety of power consumption patterns, the power load data displays increasingly irregular characteristics, which posing great challenges for accurate load forecasting. In order to solve above problem, a novel power load forecasting system is proposed based on data denoising, customized deep learning and weighted linear error correction. Specifically, we first proposed an improved optimization algorithm IGWO-JAYA which enhanced the Grey Wolf Optimizer (GWO) algorithm by using Halton low-discrepancy sequence and the mechanism of JAYA algorithm. In data denoising, the proposed optimizer was employed to optimize the Variational Mode Decomposition (VMD), enabling data-driven intelligent denoising. The customized deep learning framework contained multi-layer Convolution Neural Network (CNN), Bi-directional Long Short-Term Memory (Bi-LSTM) and Multi-Head Attention mechanism. The effective integration of these layers can significantly improve the capacity for nonlinear fitting of deep learning. In weighted linear error correction, the IGWO-JAYA algorithm was employed to determine the appropriate weight for point forecasting values and residual forecasting values. By weighting them, the forecasting precision has been further enhanced. To verify the forecasting ability of the system, we conducted experiments on power load datasets from four states in Australia and found that it has the best performance compared with all rivals. In the discussion, we demonstrated the convergence efficiency of the IGWO-JAYA algorithm by CEC test function. •A load forecasting system considering both accuracy and robustness is proposed.•Multi-strategy improved optimizer highly boosts the global search ability.•Data-driven data denoising strategy enabling adaptive data preprocessing.•Customized deep learning structure enhances capability of nonlinear fitting.•Weighted linear error correction further improved the forecasting accuracy.
AbstractList Accurate power load forecasting enables Independent System Operators (ISOs) to precisely quantify the demand patterns of users and achieve efficient management of the smart grid. However, with the increasing variety of power consumption patterns, the power load data displays increasingly irregular characteristics, which posing great challenges for accurate load forecasting. In order to solve above problem, a novel power load forecasting system is proposed based on data denoising, customized deep learning and weighted linear error correction. Specifically, we first proposed an improved optimization algorithm IGWO-JAYA which enhanced the Grey Wolf Optimizer (GWO) algorithm by using Halton low-discrepancy sequence and the mechanism of JAYA algorithm. In data denoising, the proposed optimizer was employed to optimize the Variational Mode Decomposition (VMD), enabling data-driven intelligent denoising. The customized deep learning framework contained multi-layer Convolution Neural Network (CNN), Bi-directional Long Short-Term Memory (Bi-LSTM) and Multi-Head Attention mechanism. The effective integration of these layers can significantly improve the capacity for nonlinear fitting of deep learning. In weighted linear error correction, the IGWO-JAYA algorithm was employed to determine the appropriate weight for point forecasting values and residual forecasting values. By weighting them, the forecasting precision has been further enhanced. To verify the forecasting ability of the system, we conducted experiments on power load datasets from four states in Australia and found that it has the best performance compared with all rivals. In the discussion, we demonstrated the convergence efficiency of the IGWO-JAYA algorithm by CEC test function. •A load forecasting system considering both accuracy and robustness is proposed.•Multi-strategy improved optimizer highly boosts the global search ability.•Data-driven data denoising strategy enabling adaptive data preprocessing.•Customized deep learning structure enhances capability of nonlinear fitting.•Weighted linear error correction further improved the forecasting accuracy.
ArticleNumber 111863
Author Dong, Zhaochen
Tian, Zhirui
Lv, Shuang
Author_xml – sequence: 1
  givenname: Zhaochen
  surname: Dong
  fullname: Dong, Zhaochen
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 2
  givenname: Zhirui
  orcidid: 0000-0001-7680-6770
  surname: Tian
  fullname: Tian, Zhirui
  email: 223010081@link.cuhk.edu.cn
  organization: School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, China
– sequence: 3
  givenname: Shuang
  surname: Lv
  fullname: Lv, Shuang
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
BookMark eNp9kMtqHDEQRYVxwPYkP-CVPsA9kdQvNXhjjO0EDNkka1FdqvZo3C0Nksjg3_AXW81klYVX9YBz4Z4rdu6DJ8aupdhKIbvv-y2kgFslVLOVUuquPmOXUveqGjotz8vedrpqhqa7YFcp7UWBBqUv2fsdT7sQc5UpLvwQjhT5HMDyKURCSNn5F57eUqaFj5DI8uC5hQzcEoblEJLLLvibctKBzwTRrwR4y4_kXna5ELPz5c8pxhA5hliCV4YfXd7xiciOgK98IdyBd2n5yr5MMCf69m9u2J_Hh9_3P6rnX08_7--eK6yFyFXTSBoslk4DtQPB1OuaajWqsW8FoFR6QEUtjhpUQ-1kaxynXozY9thPI9Qbpk65GENKkSZziG6B-GakMKtVszerVbNaNSerBdL_QegyrHVyBDd_jt6eUCql_jqKJqEjj2TdasTY4D7DPwDuW5mq
CitedBy_id crossref_primary_10_1016_j_compeleceng_2025_110282
crossref_primary_10_1007_s13369_025_10398_1
crossref_primary_10_1016_j_epsr_2025_111846
crossref_primary_10_1016_j_apenergy_2025_126255
crossref_primary_10_1016_j_rser_2025_115375
crossref_primary_10_1016_j_renene_2025_123277
crossref_primary_10_3390_jmse13061163
crossref_primary_10_1016_j_apenergy_2025_125330
crossref_primary_10_1016_j_rineng_2025_105606
crossref_primary_10_1016_j_asoc_2024_112311
crossref_primary_10_1016_j_jenvman_2025_124540
crossref_primary_10_1016_j_cie_2025_111022
crossref_primary_10_1016_j_apenergy_2025_125525
crossref_primary_10_1109_JIOT_2024_3525060
crossref_primary_10_1016_j_ins_2025_122523
Cites_doi 10.1016/j.renene.2023.118932
10.1016/j.energy.2023.128225
10.1016/j.aei.2017.11.002
10.1016/j.ecoinf.2023.102270
10.1016/j.engappai.2023.106698
10.1016/j.advengsoft.2013.12.007
10.1016/j.asoc.2019.105548
10.1016/j.asoc.2019.106029
10.1016/j.energy.2023.126738
10.1016/j.egyr.2023.05.090
10.1016/j.asoc.2022.109632
10.1016/j.asoc.2017.04.053
10.1016/j.apenergy.2022.120042
10.1016/j.physa.2023.129001
10.1016/j.enconman.2013.02.010
10.1016/j.engappai.2018.10.003
10.1016/j.energy.2023.128274
10.1016/j.asoc.2023.110692
10.1016/j.isatra.2021.08.030
10.1016/j.enbuild.2023.113022
10.1016/j.egyr.2023.02.061
10.1016/S0196-8904(02)00225-X
10.1016/j.eswa.2023.123088
10.1016/j.energy.2012.10.035
10.1016/j.enconman.2023.117818
10.1016/j.ins.2022.12.088
10.1016/j.ress.2022.108701
10.1016/j.asoc.2023.110335
10.1016/j.asoc.2021.107111
10.1016/j.neunet.2023.06.042
10.1016/j.apenergy.2023.121638
10.1016/j.procs.2016.05.367
10.1016/j.knosys.2022.109584
10.1016/j.knosys.2023.110476
10.1016/j.cie.2022.108364
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2024.111863
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2024_111863
S1568494624006379
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-441e9dc4949e59eaf783e32b2b750ac1289c2e5cb8a24e5fd3cbf70bc57c7fba3
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001339183900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:06:04 EST 2025
Tue Nov 18 21:11:18 EST 2025
Sat Jul 13 15:31:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Meta-heuristic optimization algorithm
Load forecast
Data preprocessing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-441e9dc4949e59eaf783e32b2b750ac1289c2e5cb8a24e5fd3cbf70bc57c7fba3
ORCID 0000-0001-7680-6770
ParticipantIDs crossref_primary_10_1016_j_asoc_2024_111863
crossref_citationtrail_10_1016_j_asoc_2024_111863
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111863
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Gao, Suganthan (bib33) 2023; Volume 624
Tian, Gai (bib39) 2023; 281
Yu, Niu, Gao, Wang, Sun, Li, Xu (bib21) 2023; Volume 269
Wan, Chang, AL-Bukhaiti, He (bib18) 2023; Volume 282
Hsu, Chen (bib9) 2003; Volume 44
Al-Musaylh, Deo, Adamowski, Li (bib6) 2018; Volume 35
Wang, Chen, Chen, Rehman (bib14) 2023; Volume 125
Wang, Wang, Li, Lu, Jiang (bib13) 2023; Volume 146
Abou Houran, Salman Bukhari, Zafar, Mansoor, Chen (bib30) 2023; Volume 349
Wang, Qian, Zhang, Wang, Zhang (bib37) 2024; 299
An, Zhao, Wang, Shang, Zhao (bib10) 2013; Volume 49
Tian, Gai (bib38) 2024; 245
Bharti, Poonam Redhu, Kranti Kumar, Short-term traffic flow prediction based on optimized deep learning neural network: PSO-Bi-LSTM, Physica A: Statistical Mechanics and its Applications, Volume 625, 2023, 129001, ISSN 0378-4371
Kong, Du, Xu, Xue (bib20) 2023; Volume 219
Rao (bib28) 2016; 7
Weerasinghe, Chi, Cao (bib27) 2016; Volume 80
Wang, Wang, Xu (bib2) 2019; Volume 82
Mirjalili, Mirjalili, Lewis (bib25) 2014; Volume 69
Yan-Lin He, Yanlu Gao, Yuan Xu (bib24) 2022; Volume 127
Dai, Yang, Leng (bib12) 2023; Volume 142
Brodowski, Bielecki, Filocha (bib3) 2017; Volume 58
Kottath, Singh (bib15) 2023; Volume 263
Wang, Xing, Zeng, Zhao (bib8) 2022; Volume 327
Ming-Chuan Chiu, Ke-Sin Chen (bib22) 2023; Volume 9
Nie, Jiang, Zhang (bib5) 2020; Volume 97
Zheng, Hu, Wang, Ni, Cui (bib17) 2023; Volume 9
Chang, Li, Chen, Liu, Li (bib31) 2022; Volume 226
Yang, Wang, Niu, Du (bib1) 2020; Volume 88
Pradhan, Bhende (bib29) 2019; Volume 77
Tian, Wang (bib26) 2023; Volume 215
Gao, Du, Duru, Yuen (bib16) 2021; Volume 102
.
Atef, Nakata, Eltawil (bib11) 2022; Volume 170
Zeng, Hu, Zhou, Li, Liu, Liu (bib35) 2022; Volume 254
Wu, Wang, Lu, Dong, Lu (bib7) 2013; Volume 70
Dai, Zhou, Leng, Yang, Wang (bib23) 2022; Volume 130
Zhang, Liu, Yuan, Zhai, Song (bib4) 2023; Volume 268
Lin, Li, Shi, Sheng, Sun, Wang, Li (bib34) 2023
Mounir, Ouadi, Jrhilifa (bib19) 2023; Volume 288
Gao, Li, Hu, Suganthan, Yuen (bib36) 2023; Volume 166
Pradhan (10.1016/j.asoc.2024.111863_bib29) 2019; Volume 77
Wang (10.1016/j.asoc.2024.111863_bib37) 2024; 299
Tian (10.1016/j.asoc.2024.111863_bib39) 2023; 281
Wang (10.1016/j.asoc.2024.111863_bib14) 2023; Volume 125
Dai (10.1016/j.asoc.2024.111863_bib23) 2022; Volume 130
Wu (10.1016/j.asoc.2024.111863_bib7) 2013; Volume 70
Wan (10.1016/j.asoc.2024.111863_bib18) 2023; Volume 282
Hsu (10.1016/j.asoc.2024.111863_bib9) 2003; Volume 44
Dai (10.1016/j.asoc.2024.111863_bib12) 2023; Volume 142
Abou Houran (10.1016/j.asoc.2024.111863_bib30) 2023; Volume 349
Li (10.1016/j.asoc.2024.111863_bib33) 2023; Volume 624
Mounir (10.1016/j.asoc.2024.111863_bib19) 2023; Volume 288
Al-Musaylh (10.1016/j.asoc.2024.111863_bib6) 2018; Volume 35
Yu (10.1016/j.asoc.2024.111863_bib21) 2023; Volume 269
Ming-Chuan Chiu (10.1016/j.asoc.2024.111863_bib22) 2023; Volume 9
Kong (10.1016/j.asoc.2024.111863_bib20) 2023; Volume 219
Chang (10.1016/j.asoc.2024.111863_bib31) 2022; Volume 226
Mirjalili (10.1016/j.asoc.2024.111863_bib25) 2014; Volume 69
Zeng (10.1016/j.asoc.2024.111863_bib35) 2022; Volume 254
Brodowski (10.1016/j.asoc.2024.111863_bib3) 2017; Volume 58
Lin (10.1016/j.asoc.2024.111863_bib34) 2023
Nie (10.1016/j.asoc.2024.111863_bib5) 2020; Volume 97
Kottath (10.1016/j.asoc.2024.111863_bib15) 2023; Volume 263
10.1016/j.asoc.2024.111863_bib32
Zheng (10.1016/j.asoc.2024.111863_bib17) 2023; Volume 9
Wang (10.1016/j.asoc.2024.111863_bib13) 2023; Volume 146
Rao (10.1016/j.asoc.2024.111863_bib28) 2016; 7
An (10.1016/j.asoc.2024.111863_bib10) 2013; Volume 49
Wang (10.1016/j.asoc.2024.111863_bib2) 2019; Volume 82
Zhang (10.1016/j.asoc.2024.111863_bib4) 2023; Volume 268
Gao (10.1016/j.asoc.2024.111863_bib36) 2023; Volume 166
Weerasinghe (10.1016/j.asoc.2024.111863_bib27) 2016; Volume 80
Yan-Lin He (10.1016/j.asoc.2024.111863_bib24) 2022; Volume 127
Wang (10.1016/j.asoc.2024.111863_bib8) 2022; Volume 327
Yang (10.1016/j.asoc.2024.111863_bib1) 2020; Volume 88
Tian (10.1016/j.asoc.2024.111863_bib26) 2023; Volume 215
Gao (10.1016/j.asoc.2024.111863_bib16) 2021; Volume 102
Atef (10.1016/j.asoc.2024.111863_bib11) 2022; Volume 170
Tian (10.1016/j.asoc.2024.111863_bib38) 2024; 245
References_xml – reference: Bharti, Poonam Redhu, Kranti Kumar, Short-term traffic flow prediction based on optimized deep learning neural network: PSO-Bi-LSTM, Physica A: Statistical Mechanics and its Applications, Volume 625, 2023, 129001, ISSN 0378-4371,
– volume: Volume 127
  start-page: 350
  year: 2022
  end-page: 360
  ident: bib24
  article-title: Novel double-layer bidirectional LSTM network with improved attention mechanism for predicting energy consumption
  publication-title: ISA Trans.
– volume: Volume 215
  year: 2023
  ident: bib26
  article-title: A wind speed prediction system based on new data preprocessing strategy and improved multi-objective optimizer
  publication-title: Renew. Energy
– volume: Volume 254
  year: 2022
  ident: bib35
  article-title: Muformer: A long sequence time-series forecasting model based on modified multi head attention
  publication-title: Knowl. Based Syst.
– volume: Volume 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib25
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
– volume: 281
  year: 2023
  ident: bib39
  article-title: A novel hybrid wind speed prediction framework based on multi-strategy improved optimizer and new data pre-processing system with feedback mechanism
  publication-title: Energy
– volume: Volume 170
  year: 2022
  ident: bib11
  article-title: A deep bi-directional long-short term memory neural network-based methodology to enhance short-term electricity load forecasting for residential applications
  publication-title: Comput. Ind. Eng.
– volume: Volume 125
  year: 2023
  ident: bib14
  article-title: Monthly ship price forecasting based on multivariate variational mode decomposition
  publication-title: Eng. Appl. Artif. Intell.
– volume: 245
  year: 2024
  ident: bib38
  article-title: Football team training algorithm: A novel sport-inspired meta-heuristic optimization algorithm for global optimization
  publication-title: Expert Systems with Application
– volume: Volume 58
  start-page: 527
  year: 2017
  end-page: 539
  ident: bib3
  article-title: A hybrid system for forecasting 24-h power load profile for Polish electric grid
  publication-title: Appl. Soft Comput.
– year: 2023
  ident: bib34
  article-title: Forecasting of wind speed under wind-fire coupling scenarios by combining HS-VMD and AM-LSTM
  publication-title: Ecol. Inform.
– volume: Volume 268
  year: 2023
  ident: bib4
  article-title: Multifactor and multiscale method for power load forecasting
  publication-title: Knowl. -Based Syst.
– volume: Volume 288
  year: 2023
  ident: bib19
  article-title: Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system
  publication-title: Energy Build.
– volume: Volume 70
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib7
  article-title: Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model
  publication-title: Energy Convers. Manag.
– volume: Volume 282
  year: 2023
  ident: bib18
  article-title: Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism
  publication-title: Energy
– volume: Volume 226
  year: 2022
  ident: bib31
  article-title: Efficient temporal flow Transformer accompanied with multi-head prob sparse self-attention mechanism for remaining useful life prognostics
  publication-title: Reliab. Eng. Syst. Saf.
– volume: Volume 130
  year: 2022
  ident: bib23
  article-title: Improving the Bi-LSTM model with XGBoost and attention mechanism: a combined approach for short-term power load prediction
  publication-title: Appl. Soft Comput.
– volume: Volume 349
  year: 2023
  ident: bib30
  article-title: COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications
  publication-title: Appl. Energy
– volume: Volume 35
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib6
  article-title: Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia
  publication-title: Adv. Eng. Inform.
– volume: Volume 9
  start-page: 94
  year: 2023
  end-page: 105
  ident: bib22
  article-title: A hybrid CNN-GRU based probabilistic model for load forecasting from individual household to commercial building
  publication-title: Energy Rep.
– volume: Volume 9
  start-page: 199
  year: 2023
  end-page: 211
  ident: bib17
  article-title: VMD-CAT: A hybrid model for short-term wind power prediction
  publication-title: Energy Rep.
– volume: Volume 263
  year: 2023
  ident: bib15
  article-title: Influencer buddy optimization: algorithm and its application to electricity load and price forecasting problem
  publication-title: Energy
– volume: Volume 166
  start-page: 51
  year: 2023
  end-page: 69
  ident: bib36
  article-title: Online dynamic ensemble deep random vector functional link neural network for forecasting
  publication-title: Neural Netw.
– volume: Volume 219
  year: 2023
  ident: bib20
  article-title: Predicting solar radiation for space heating with thermal storage system based on temporal convolutional network-attention model
  publication-title: Appl. Therm. Eng.
– volume: Volume 77
  start-page: 212
  year: 2019
  end-page: 228
  ident: bib29
  article-title: Online load frequency control in wind integrated power systems using modified Jaya optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: Volume 80
  start-page: 772
  year: 2016
  end-page: 781
  ident: bib27
  article-title: Particle swarm optimization simulation via optimal halton sequences
  publication-title: Procedia Comput. Sci.
– volume: Volume 624
  start-page: 833
  year: 2023
  end-page: 848
  ident: bib33
  article-title: A decomposition-based hybrid ensemble CNN framework for driver fatigue recognition
  publication-title: Inf. Sci.
– volume: Volume 146
  year: 2023
  ident: bib13
  article-title: Short-term power load forecasting system based on rough set, information granule and multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: Volume 49
  start-page: 279
  year: 2013
  end-page: 288
  ident: bib10
  article-title: Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting
  publication-title: Energy
– volume: Volume 102
  year: 2021
  ident: bib16
  article-title: Time series forecasting based on echo state network and empirical wavelet transformation
  publication-title: Appl. Soft Comput.
– volume: Volume 88
  year: 2020
  ident: bib1
  article-title: A novel system for multi-step electricity price forecasting for electricity market management
  publication-title: Appl. Soft Comput.
– reference: .
– volume: Volume 97
  year: 2020
  ident: bib5
  article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 19
  year: 2016
  end-page: 34
  ident: bib28
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int. J. Ind. Eng. Comput.
– volume: Volume 44
  start-page: 1941
  year: 2003
  end-page: 1949
  ident: bib9
  article-title: Regional load forecasting in Taiwan––applications of artificial neural networks
  publication-title: Energy Convers. Manag.
– volume: Volume 142
  year: 2023
  ident: bib12
  article-title: Optimized Seq2Seq model based on multiple methods for short-term power load forecasting
  publication-title: Appl. Soft Comput.
– volume: Volume 269
  year: 2023
  ident: bib21
  article-title: A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism
  publication-title: Energy
– volume: Volume 82
  year: 2019
  ident: bib2
  article-title: A novel combined model based on hybrid optimization algorithm for electrical load forecasting
  publication-title: Appl. Soft Comput.
– volume: Volume 327
  year: 2022
  ident: bib8
  article-title: An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation
  publication-title: Appl. Energy
– volume: 299
  year: 2024
  ident: bib37
  article-title: A novel wind power forecasting system integrating time series refining, nonlinear multi-objective optimized deep learning and linear error correction
  publication-title: Energy Conversion and Management
– volume: Volume 219
  issue: Part B
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib20
  article-title: Predicting solar radiation for space heating with thermal storage system based on temporal convolutional network-attention model
  publication-title: Appl. Therm. Eng.
– volume: Volume 215
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib26
  article-title: A wind speed prediction system based on new data preprocessing strategy and improved multi-objective optimizer
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.118932
– volume: 281
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib39
  article-title: A novel hybrid wind speed prediction framework based on multi-strategy improved optimizer and new data pre-processing system with feedback mechanism
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128225
– volume: Volume 35
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2024.111863_bib6
  article-title: Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2017.11.002
– year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib34
  article-title: Forecasting of wind speed under wind-fire coupling scenarios by combining HS-VMD and AM-LSTM
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2023.102270
– volume: Volume 125
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib14
  article-title: Monthly ship price forecasting based on multivariate variational mode decomposition
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106698
– volume: Volume 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.asoc.2024.111863_bib25
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: Volume 82
  year: 2019
  ident: 10.1016/j.asoc.2024.111863_bib2
  article-title: A novel combined model based on hybrid optimization algorithm for electrical load forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105548
– volume: Volume 88
  year: 2020
  ident: 10.1016/j.asoc.2024.111863_bib1
  article-title: A novel system for multi-step electricity price forecasting for electricity market management
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106029
– volume: Volume 269
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib21
  article-title: A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126738
– volume: Volume 9
  start-page: 94
  issue: Supplement 10
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib22
  article-title: A hybrid CNN-GRU based probabilistic model for load forecasting from individual household to commercial building
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.05.090
– volume: Volume 130
  year: 2022
  ident: 10.1016/j.asoc.2024.111863_bib23
  article-title: Improving the Bi-LSTM model with XGBoost and attention mechanism: a combined approach for short-term power load prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109632
– volume: 7
  start-page: 19
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2024.111863_bib28
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int. J. Ind. Eng. Comput.
– volume: Volume 58
  start-page: 527
  year: 2017
  ident: 10.1016/j.asoc.2024.111863_bib3
  article-title: A hybrid system for forecasting 24-h power load profile for Polish electric grid
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.04.053
– volume: Volume 327
  year: 2022
  ident: 10.1016/j.asoc.2024.111863_bib8
  article-title: An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120042
– ident: 10.1016/j.asoc.2024.111863_bib32
  doi: 10.1016/j.physa.2023.129001
– volume: Volume 70
  start-page: 1
  year: 2013
  ident: 10.1016/j.asoc.2024.111863_bib7
  article-title: Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.02.010
– volume: Volume 77
  start-page: 212
  year: 2019
  ident: 10.1016/j.asoc.2024.111863_bib29
  article-title: Online load frequency control in wind integrated power systems using modified Jaya optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.10.003
– volume: Volume 282
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib18
  article-title: Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128274
– volume: Volume 146
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib13
  article-title: Short-term power load forecasting system based on rough set, information granule and multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110692
– volume: Volume 127
  start-page: 350
  year: 2022
  ident: 10.1016/j.asoc.2024.111863_bib24
  article-title: Novel double-layer bidirectional LSTM network with improved attention mechanism for predicting energy consumption
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.08.030
– volume: Volume 288
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib19
  article-title: Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.113022
– volume: Volume 9
  start-page: 199
  issue: Supplement 4
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib17
  article-title: VMD-CAT: A hybrid model for short-term wind power prediction
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.02.061
– volume: Volume 44
  start-page: 1941
  issue: Issue 12
  year: 2003
  ident: 10.1016/j.asoc.2024.111863_bib9
  article-title: Regional load forecasting in Taiwan––applications of artificial neural networks
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(02)00225-X
– volume: Volume 97
  issue: Part B
  year: 2020
  ident: 10.1016/j.asoc.2024.111863_bib5
  article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting
  publication-title: Appl. Soft Comput.
– volume: 245
  year: 2024
  ident: 10.1016/j.asoc.2024.111863_bib38
  article-title: Football team training algorithm: A novel sport-inspired meta-heuristic optimization algorithm for global optimization
  publication-title: Expert Systems with Application
  doi: 10.1016/j.eswa.2023.123088
– volume: Volume 49
  start-page: 279
  year: 2013
  ident: 10.1016/j.asoc.2024.111863_bib10
  article-title: Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2012.10.035
– volume: Volume 263
  issue: Part C
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib15
  article-title: Influencer buddy optimization: algorithm and its application to electricity load and price forecasting problem
  publication-title: Energy
– volume: 299
  year: 2024
  ident: 10.1016/j.asoc.2024.111863_bib37
  article-title: A novel wind power forecasting system integrating time series refining, nonlinear multi-objective optimized deep learning and linear error correction
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2023.117818
– volume: Volume 624
  start-page: 833
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib33
  article-title: A decomposition-based hybrid ensemble CNN framework for driver fatigue recognition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.12.088
– volume: Volume 226
  year: 2022
  ident: 10.1016/j.asoc.2024.111863_bib31
  article-title: Efficient temporal flow Transformer accompanied with multi-head prob sparse self-attention mechanism for remaining useful life prognostics
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108701
– volume: Volume 142
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib12
  article-title: Optimized Seq2Seq model based on multiple methods for short-term power load forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110335
– volume: Volume 102
  year: 2021
  ident: 10.1016/j.asoc.2024.111863_bib16
  article-title: Time series forecasting based on echo state network and empirical wavelet transformation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107111
– volume: Volume 166
  start-page: 51
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib36
  article-title: Online dynamic ensemble deep random vector functional link neural network for forecasting
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.06.042
– volume: Volume 349
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib30
  article-title: COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121638
– volume: Volume 80
  start-page: 772
  year: 2016
  ident: 10.1016/j.asoc.2024.111863_bib27
  article-title: Particle swarm optimization simulation via optimal halton sequences
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.05.367
– volume: Volume 254
  year: 2022
  ident: 10.1016/j.asoc.2024.111863_bib35
  article-title: Muformer: A long sequence time-series forecasting model based on modified multi head attention
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.109584
– volume: Volume 268
  year: 2023
  ident: 10.1016/j.asoc.2024.111863_bib4
  article-title: Multifactor and multiscale method for power load forecasting
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2023.110476
– volume: Volume 170
  year: 2022
  ident: 10.1016/j.asoc.2024.111863_bib11
  article-title: A deep bi-directional long-short term memory neural network-based methodology to enhance short-term electricity load forecasting for residential applications
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108364
SSID ssj0016928
Score 2.507984
Snippet Accurate power load forecasting enables Independent System Operators (ISOs) to precisely quantify the demand patterns of users and achieve efficient management...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111863
SubjectTerms Data preprocessing
Deep learning
Load forecast
Meta-heuristic optimization algorithm
Title A short-term power load forecasting system based on data decomposition, deep learning and weighted linear error correction with feedback mechanism
URI https://dx.doi.org/10.1016/j.asoc.2024.111863
Volume 162
WOSCitedRecordID wos001339183900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ojy0hy4GUexHdfeY4SKAKGKQ0FRL9a-rKQNTuQ86O9A_GBm9uGkBSp64GJZlndieb7Mfjv-doax1xJZhMySYazyhLJVqYqFFDyulRa8FJkRtsfS10_F8XE5HvPPvd7PsBdmMyuapry44Iv_6mq8hs6mrbM3cHdnFC_gOTodj-h2PP6T40fRcoKcOqaYGy2oCVo0mwtNekKjxNLKnF395oimME2fC0gnGmlD-nIv4qJXr41ZhLYSbifjd5tIxTFETkUbmbadt5GiDh-u5bhN69Y4I0qhzqNvhvYVhyKFodat571LnACson29CtMnEWovET6dCOrltSMTdpna08m0XU87GdHGZm8na-Et-PxFOuwEWl3IPUSQcJ-IDDHZh2gXVTEely4M_hbwXe7hrC8Qy30y39_efLm69pVZr9MiBpnbWUU2KrJRORu32H5a5Bxj5f7ow9H4Y_d16pDbnr3dk_vNWE43ePVJ_kx4dkjMyX12168-YORQ84D1TPOQ3QudPcAH-kfsxwi2IAILIiAQwQ6IwIEILIhg3gCBCC6B6A0QhCBACBBCECAEDkJgIQRbCAFBCAKEoIPQY_bl3dHJ2_ex794Rq2wwWMXIsw3XiqofmZwbURdlZrJUphJJqlDIi7hKTa5kKdKhyWudKVkXA6nyQhW1FNkTttfMG_OUQS5qqmtnTCFyXNBrgYuQQieaFi8mGaoDloRXXClf2p46rMyqvzv3gEXdmIUr7HLt3XnwXOWpqaOcFQLxmnHPbvQrz9md7T_kBdtbtWvzkt1Wm9V02b7yKPwFx-e26g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+short-term+power+load+forecasting+system+based+on+data+decomposition%2C+deep+learning+and+weighted+linear+error+correction+with+feedback+mechanism&rft.jtitle=Applied+soft+computing&rft.au=Dong%2C+Zhaochen&rft.au=Tian%2C+Zhirui&rft.au=Lv%2C+Shuang&rft.date=2024-09-01&rft.issn=1568-4946&rft.volume=162&rft.spage=111863&rft_id=info:doi/10.1016%2Fj.asoc.2024.111863&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2024_111863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon