An unsupervised adversarial autoencoder for cyber attack detection in power distribution grids

Detection of cyber attacks in smart power distribution grids with unbalanced configurations poses challenges due to the inherent nonlinear nature of these uncertain and stochastic systems. It originates from the intermittent characteristics of the distributed energy resources (DERs) generation and l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electric power systems research Ročník 232; s. 110407
Hlavní autoři: Zideh, Mehdi Jabbari, Khalghani, Mohammad Reza, Solanki, Sarika Khushalani
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2024
Témata:
ISSN:0378-7796, 1873-2046
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Detection of cyber attacks in smart power distribution grids with unbalanced configurations poses challenges due to the inherent nonlinear nature of these uncertain and stochastic systems. It originates from the intermittent characteristics of the distributed energy resources (DERs) generation and load variations. Moreover, the unknown behavior of cyber attacks, especially false data injection attacks (FDIAs) in the distribution grids with complex temporal correlations and the limited amount of labeled data increases the vulnerability of the grids and imposes a high risk in the secure and reliable operation of the grids. To address these challenges, this paper proposes an unsupervised adversarial autoencoder (AAE) model to detect FDIAs in unbalanced power distribution grids integrated with DERs, i.e., PV systems and wind generation. The proposed method utilizes long short-term memory (LSTM) in the structure of the autoencoder to capture the temporal dependencies in the time-series measurements and leverages the power of generative adversarial networks (GANs) for better reconstruction of the input data. The advantage of the proposed data-driven model is that it can detect anomalous points for the system operation without reliance on abstract models or mathematical representations and data labels. To evaluate the efficacy of the approach, it is tested on IEEE 13-bus and 123-bus systems with historical meteorological data (wind speed, ambient temperature, and solar irradiance) as well as historical real-world load data under three types of data falsification functions. The comparison of the detection results of the proposed model with other data-driven methods verifies its superior performance in detecting cyber attacks in unbalanced power distribution grids. •An unsupervised neural network model combines the GANs and autoencoder for FDI attacks.•The proposed model utilizes the outputs of autoencoder and critic score for attack detection.•The proposed model is tested on unbalanced power distribution grids integrated with DERs.•Simulation results verify the model’s superior performance compared to other data-driven models.
AbstractList Detection of cyber attacks in smart power distribution grids with unbalanced configurations poses challenges due to the inherent nonlinear nature of these uncertain and stochastic systems. It originates from the intermittent characteristics of the distributed energy resources (DERs) generation and load variations. Moreover, the unknown behavior of cyber attacks, especially false data injection attacks (FDIAs) in the distribution grids with complex temporal correlations and the limited amount of labeled data increases the vulnerability of the grids and imposes a high risk in the secure and reliable operation of the grids. To address these challenges, this paper proposes an unsupervised adversarial autoencoder (AAE) model to detect FDIAs in unbalanced power distribution grids integrated with DERs, i.e., PV systems and wind generation. The proposed method utilizes long short-term memory (LSTM) in the structure of the autoencoder to capture the temporal dependencies in the time-series measurements and leverages the power of generative adversarial networks (GANs) for better reconstruction of the input data. The advantage of the proposed data-driven model is that it can detect anomalous points for the system operation without reliance on abstract models or mathematical representations and data labels. To evaluate the efficacy of the approach, it is tested on IEEE 13-bus and 123-bus systems with historical meteorological data (wind speed, ambient temperature, and solar irradiance) as well as historical real-world load data under three types of data falsification functions. The comparison of the detection results of the proposed model with other data-driven methods verifies its superior performance in detecting cyber attacks in unbalanced power distribution grids. •An unsupervised neural network model combines the GANs and autoencoder for FDI attacks.•The proposed model utilizes the outputs of autoencoder and critic score for attack detection.•The proposed model is tested on unbalanced power distribution grids integrated with DERs.•Simulation results verify the model’s superior performance compared to other data-driven models.
ArticleNumber 110407
Author Khalghani, Mohammad Reza
Zideh, Mehdi Jabbari
Solanki, Sarika Khushalani
Author_xml – sequence: 1
  givenname: Mehdi Jabbari
  orcidid: 0000-0001-7297-4021
  surname: Zideh
  fullname: Zideh, Mehdi Jabbari
  email: mehdijabbari@ieee.org
  organization: Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, 26506, WV, USA
– sequence: 2
  givenname: Mohammad Reza
  surname: Khalghani
  fullname: Khalghani, Mohammad Reza
  email: khalghani@ieee.org
  organization: Department of Electrical and Computer Engineering, Florida Polytechnic University, Lakeland, 33805, FL, USA
– sequence: 3
  givenname: Sarika Khushalani
  surname: Solanki
  fullname: Solanki, Sarika Khushalani
  email: skhushalanisolanki@mail.wvu.edu
  organization: Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, 26506, WV, USA
BookMark eNp9kM9OwzAMhyMEEtvgBTjlBVqcNG1Sics08U-axAWuRGnioozRTkk6tLenZZw47GTLP32W_c3Jedd3SMgNg5wBq243Oe5iyDlwkTMGAuQZmTEli4yDqM7JDAqpMinr6pLMY9wAQFXLckbelx0dujjsMOx9REeN22OIJnizpWZIPXa2dxho2wdqD83YmZSM_aQOE9rk-476ju767zFxPqbgm-F3-hG8i1fkojXbiNd_dUHeHu5fV0_Z-uXxebVcZ7YASFnRWulUW6pKNYUrBUrF0UgBXDY1lFiCa2thhSiRWckbV3LkzBZcydZxY4sF4ce9NvQxBmz1LvgvEw6agZ4M6Y2eDOnJkD4aGiH1D7I-men4FIzfnkbvjiiOT-09Bh2tH1Wh82G0ol3vT-E_1eaGKg
CitedBy_id crossref_primary_10_1016_j_desal_2025_119244
crossref_primary_10_1016_j_epsr_2025_111448
crossref_primary_10_1038_s41598_025_01863_w
crossref_primary_10_1016_j_rser_2025_116299
crossref_primary_10_1007_s40866_025_00271_3
crossref_primary_10_1109_ACCESS_2025_3576497
crossref_primary_10_48175_IJARSCT_28908
crossref_primary_10_1016_j_apenergy_2025_125296
crossref_primary_10_1016_j_epsr_2025_111585
crossref_primary_10_1016_j_est_2025_117625
crossref_primary_10_3390_en18174747
crossref_primary_10_1016_j_comnet_2025_111147
crossref_primary_10_1007_s12083_025_02054_0
crossref_primary_10_1016_j_engappai_2025_111755
Cites_doi 10.1109/TSG.2017.2703842
10.1109/TSG.2014.2298195
10.1016/j.ijepes.2021.107345
10.1016/j.renene.2019.08.092
10.1109/TII.2022.3146859
10.1016/j.jnca.2022.103540
10.1109/TSG.2021.3063088
10.1016/j.energy.2022.125865
10.1002/tee.22804
10.1109/BigData50022.2020.9378139
10.1109/ACCESS.2023.3347989
10.1109/PESGM41954.2020.9281560
10.1109/TIFS.2016.2542061
10.1145/3203245
10.1109/TSG.2019.2949998
10.1016/j.epsr.2024.110304
10.1109/ACCESS.2024.3366807
10.1109/ACCESS.2021.3064689
10.1145/2689746.2689747
10.1016/j.apenergy.2017.12.005
10.1016/j.energy.2020.119505
10.3390/en15051754
10.3390/en16052288
10.1109/ACCESS.2024.3369068
10.1109/TSG.2023.3238913
10.1109/TSMC.2020.2968516
10.1109/PESGM41954.2020.9281767
10.1016/j.epsr.2023.109118
10.1109/EI256261.2022.10116631
10.1109/TSG.2023.3241268
10.1016/j.energy.2019.03.009
10.1049/gtd2.12424
10.1049/enc2.12091
10.1016/j.rser.2019.01.050
10.1109/KPEC54747.2022.9814765
10.1016/j.apenergy.2021.117656
10.1109/SusTech53338.2022.9794237
10.1109/ACCESS.2023.3278281
10.1016/j.pnucene.2019.103236
10.1109/TSG.2022.3148233
10.1145/3196494.3196551
10.1016/j.apenergy.2022.118647
10.1109/TSG.2020.3010510
10.1109/TII.2019.2921106
10.1016/j.measurement.2023.112565
10.1109/ACCESS.2023.3299208
10.1109/ACCESS.2021.3111727
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.epsr.2024.110407
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
ExternalDocumentID 10_1016_j_epsr_2024_110407
S0378779624002955
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-3fc7d8f5868b3d54e782ea74027b905e50df94c445e1c72bd52e21c3287fd2ac3
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001232167600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Sat Nov 29 06:43:54 EST 2025
Tue Nov 18 21:34:47 EST 2025
Sat Apr 27 15:44:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Generative adversarial networks
False data injection attacks
Power distribution grids
Cyber attack detection
Unsupervised data-driven method
Adversarial autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-3fc7d8f5868b3d54e782ea74027b905e50df94c445e1c72bd52e21c3287fd2ac3
ORCID 0000-0001-7297-4021
ParticipantIDs crossref_primary_10_1016_j_epsr_2024_110407
crossref_citationtrail_10_1016_j_epsr_2024_110407
elsevier_sciencedirect_doi_10_1016_j_epsr_2024_110407
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Electric power systems research
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Raghuvamsi, Teeparthi (b39) 2023; 210
Ehsani, Aminifar, Mohsenian-Rad (b42) 2022; 16
Dileep (b3) 2020; 146
Sridhar, Govindarasu (b11) 2014; 5
Bonab, Holland, Sargolzaei (b6) 2023
Saeed, Wang, Peng, Hussain, Nawaz (b46) 2020; 121
Hasan, Habib, Shukur, Ibrahim, Islam, Razzaque (b1) 2023; 209
He, Gihan, Jin (b20) 2017; 8
Giraldo, Urbina, Cardenas, Valente, Faisal, Ruths, Tippenhauer, Sandberg, Candell (b10) 2018; 51
Hai, Dokic, Pavlovski, Mohamed, Saranovic, Alqudah, Kezunovic, Obradovic (b27) 2021; 9
Aligholian, Shahsavari, Stewart, Cortez, Mohsenian-Rad (b29) 2021; 12
Ruan, Fan, Zhu, Liang, Zhao, Wen, Dong (b41) 2023; 14
Mehrzad, Darmiani, Mousavi, Shafie-Khah, Aghamohammadi (b13) 2023; 11
Zhang, Jianhui, Bo (b34) 2020; 12
Bhanja, Das (b45) 2018
M. Sakurada, T. Yairi, Anomaly detection using autoencoders with nonlinear dimensionality reduction, in: 2Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, 2014, pp. 4–11
Zideh, Solanki (b15) 2023
Razavi, Rahimi, Javadi, Nezhad, Lotfi, Shafie-khah, Catalão (b25) 2019; 105
Mohtavipour, Jabbari Zideh (b53) 2019; 14
A. Aligholian, A. Shahsavari, E. Cortez, E. Stewart, H. Mohsenian-Rad, Event detection in micro-pmu data: A generative adversarial network scoring method, in: 2020 IEEE Power & Energy Society General Meeting, PESGM, 2020, pp. 1–5
Vincent, Korki, Seyedmahmoudian, Stojcevski, Mekhilef (b7) 2023; 217
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b54) 2014
R. Nematirad, A. Pahwa, Solar radiation forecasting using artificial neural networks considering feature selection, in: 2022 IEEE Kansas Power and Energy Conference, KPEC, 2022, pp. 1–4
Nayak, Misra, Behera (b47) 2014; 6
.
Bhusal, Gautam, Shukla, Benidris, Sengupta (b37) 2022; 134
Goyel, K. Shanti (b18) 2022
D. Amoateng, R. Yan, T. Saha, A deep unsupervised learning approach to PMU event detection in an active distribution network, in: 2020 IEEE Power & Energy Society General Meeting, PESGM, 2020, pp. 1–5
Bhusal, Mukesh, Mohammed (b36) 2021; 9
Liu, Zhiyi, Xingdong, Zuyi (b9) 2016; 11
S. Bhattacharjee, A. Thakur, S. Das, Towards fast and semi-supervised identification of smart meters launching data falsification attacks, in: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, 2018, pp. 173–185
Nematirad, Behrang, Pahwa (b48) 2024; 12
Ruan, Liang, Zhao, Qiu, Dong (b21) 2022; 18
A. Geiger, D. Liu, S. Alnegheimish, A. Cuesta-Infante, K. Veeramachaneni, Tadgan: Time series anomaly detection using generative adversarial networks, in: 2020 IEEE International Conference on Big Data, Big Data, 2020, pp. 33–43
(b58) 2022
Tiwari, Zideh, Talreja, Verma, Solanki, Solanki (b26) 2024; 12
Arjovsky, Chintala, Bottou (b55) 2017
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved Training of Wasserstein GANs, in: Proc. of the 31st Int. Conf. on Neural Information Processing Systems, 2017, pp. 5769–5779.
Yin, Zhang, Wang, Xiong (b52) 2022; 52
Ye, Esnaola, Perlaza, Harrison (b5) 2023
Dey, Rana, Simmons, Dudley (b32) 2021; 303
Majumder, Vosughi, Mustafa, Warner, Srivastava (b2) 2023
Li, Wang, Lu (b16) 2023; 263
Bergstra, Bardenet, Bengio, Kégl (b59) 2011
Liu, Mustafa, Nie, Srivastava (b8) 2022; 15
Zideh, Chatterjee, Srivastava (b14) 2024; 12
D. Berndt, J. Clifford, Using dynamic time warping to find patterns in time series, in: KDD Workshop, 1994, pp. 359–370.
(b57) 2023
Ruan, Liang, Zhao, Zhao, Qiu, Wen, Dong (b24) 2023; 4
Li, Xue, Wu, Wang, Zhou, Aziz, He (b19) 2021; 218
Fan, Xiao, Zhao, Wang (b28) 2018; 211
Mirzapour, Rui, Sahraei-Ardakani (b4) 2024; 230
Wang, Ruan, Ma, Zhou, Fu, Cao (b17) 2019; 174
Radhoush, Vannoy, Liyanage, Whitaker, Nehrir (b40) 2023; 16
Li, Wang, Hu (b23) 2020; 16
Müller, Heinrich, Heussen, Bindner (b30) 2022; 312
Li, Jinan, Junbo, Jin, Wenzhan, Fangyu (b35) 2022; 13
Jayalakshmi, Santhakumaran (b49) 2011; 3
Musleh, Guo, Zhao (b12) 2019; 11
Y. Zhu, J. Ruan, G. Fan, S. Wang, G. Liang, J. Zhao, A Generalized Data Recovery Model against False Data Injection Attack in Smart Grid, in: 2022 IEEE 6th Conference on Energy Internet and Energy System Integration, EI2, 2022, pp. 1477–1482.
E. Naderi, A. Aydeger, A. Asrari, Detection of false data injection cyberattacks targeting smart transmission/distribution networks, in: 2022 IEEE Conference on Technologies for Sustainability, SusTech, 2022, pp. 224–229
Liu (10.1016/j.epsr.2024.110407_b9) 2016; 11
Majumder (10.1016/j.epsr.2024.110407_b2) 2023
Zideh (10.1016/j.epsr.2024.110407_b14) 2024; 12
10.1016/j.epsr.2024.110407_b60
Jayalakshmi (10.1016/j.epsr.2024.110407_b49) 2011; 3
Radhoush (10.1016/j.epsr.2024.110407_b40) 2023; 16
10.1016/j.epsr.2024.110407_b22
Fan (10.1016/j.epsr.2024.110407_b28) 2018; 211
Saeed (10.1016/j.epsr.2024.110407_b46) 2020; 121
Raghuvamsi (10.1016/j.epsr.2024.110407_b39) 2023; 210
Nayak (10.1016/j.epsr.2024.110407_b47) 2014; 6
10.1016/j.epsr.2024.110407_b50
Goodfellow (10.1016/j.epsr.2024.110407_b54) 2014
Ye (10.1016/j.epsr.2024.110407_b5) 2023
10.1016/j.epsr.2024.110407_b51
Musleh (10.1016/j.epsr.2024.110407_b12) 2019; 11
Müller (10.1016/j.epsr.2024.110407_b30) 2022; 312
10.1016/j.epsr.2024.110407_b56
Ruan (10.1016/j.epsr.2024.110407_b21) 2022; 18
Hai (10.1016/j.epsr.2024.110407_b27) 2021; 9
Bonab (10.1016/j.epsr.2024.110407_b6) 2023
Zideh (10.1016/j.epsr.2024.110407_b15) 2023
Liu (10.1016/j.epsr.2024.110407_b8) 2022; 15
Vincent (10.1016/j.epsr.2024.110407_b7) 2023; 217
Dey (10.1016/j.epsr.2024.110407_b32) 2021; 303
Arjovsky (10.1016/j.epsr.2024.110407_b55) 2017
Hasan (10.1016/j.epsr.2024.110407_b1) 2023; 209
Ehsani (10.1016/j.epsr.2024.110407_b42) 2022; 16
Bhusal (10.1016/j.epsr.2024.110407_b37) 2022; 134
Bhusal (10.1016/j.epsr.2024.110407_b36) 2021; 9
Li (10.1016/j.epsr.2024.110407_b16) 2023; 263
Dileep (10.1016/j.epsr.2024.110407_b3) 2020; 146
Aligholian (10.1016/j.epsr.2024.110407_b29) 2021; 12
Li (10.1016/j.epsr.2024.110407_b19) 2021; 218
10.1016/j.epsr.2024.110407_b43
Ruan (10.1016/j.epsr.2024.110407_b41) 2023; 14
10.1016/j.epsr.2024.110407_b44
(10.1016/j.epsr.2024.110407_b57) 2023
Giraldo (10.1016/j.epsr.2024.110407_b10) 2018; 51
Bhanja (10.1016/j.epsr.2024.110407_b45) 2018
Goyel (10.1016/j.epsr.2024.110407_b18) 2022
Ruan (10.1016/j.epsr.2024.110407_b24) 2023; 4
He (10.1016/j.epsr.2024.110407_b20) 2017; 8
Zhang (10.1016/j.epsr.2024.110407_b34) 2020; 12
Razavi (10.1016/j.epsr.2024.110407_b25) 2019; 105
Mohtavipour (10.1016/j.epsr.2024.110407_b53) 2019; 14
Tiwari (10.1016/j.epsr.2024.110407_b26) 2024; 12
Mirzapour (10.1016/j.epsr.2024.110407_b4) 2024; 230
Sridhar (10.1016/j.epsr.2024.110407_b11) 2014; 5
Li (10.1016/j.epsr.2024.110407_b23) 2020; 16
10.1016/j.epsr.2024.110407_b31
Nematirad (10.1016/j.epsr.2024.110407_b48) 2024; 12
Wang (10.1016/j.epsr.2024.110407_b17) 2019; 174
(10.1016/j.epsr.2024.110407_b58) 2022
Mehrzad (10.1016/j.epsr.2024.110407_b13) 2023; 11
10.1016/j.epsr.2024.110407_b33
Yin (10.1016/j.epsr.2024.110407_b52) 2022; 52
Li (10.1016/j.epsr.2024.110407_b35) 2022; 13
10.1016/j.epsr.2024.110407_b38
Bergstra (10.1016/j.epsr.2024.110407_b59) 2011
References_xml – volume: 312
  year: 2022
  ident: b30
  article-title: Unsupervised detection and open-set classification of fast-ramped flexibility activation events
  publication-title: Appl. Energy
– volume: 134
  year: 2022
  ident: b37
  article-title: Coordinated data falsification attack detection in the domain of distributed generation using deep learning
  publication-title: Int. J. Electr. Power Energy Syst.
– reference: Y. Zhu, J. Ruan, G. Fan, S. Wang, G. Liang, J. Zhao, A Generalized Data Recovery Model against False Data Injection Attack in Smart Grid, in: 2022 IEEE 6th Conference on Energy Internet and Energy System Integration, EI2, 2022, pp. 1477–1482.
– volume: 303
  year: 2021
  ident: b32
  article-title: Solar farm voltage anomaly detection using high-resolution
  publication-title: Appl. Energy
– reference: R. Nematirad, A. Pahwa, Solar radiation forecasting using artificial neural networks considering feature selection, in: 2022 IEEE Kansas Power and Energy Conference, KPEC, 2022, pp. 1–4,
– reference: I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved Training of Wasserstein GANs, in: Proc. of the 31st Int. Conf. on Neural Information Processing Systems, 2017, pp. 5769–5779.
– year: 2022
  ident: b18
  article-title: Data integrity attack detection using ensemble based learning for cyber physical power systems
  publication-title: IEEE Trans. Smart Grid
– reference: M. Sakurada, T. Yairi, Anomaly detection using autoencoders with nonlinear dimensionality reduction, in: 2Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, 2014, pp. 4–11,
– volume: 18
  start-page: 7814
  year: 2022
  end-page: 7823
  ident: b21
  article-title: An inertia-based data recovery scheme for false data injection attack
  publication-title: IEEE Trans. Ind. Inform.
– reference: A. Aligholian, A. Shahsavari, E. Cortez, E. Stewart, H. Mohsenian-Rad, Event detection in micro-pmu data: A generative adversarial network scoring method, in: 2020 IEEE Power & Energy Society General Meeting, PESGM, 2020, pp. 1–5,
– year: 2014
  ident: b54
  article-title: Generative adversarial networks
– volume: 16
  start-page: 2816
  year: 2022
  end-page: 2828
  ident: b42
  article-title: Convolutional autoencoder anomaly detection and classification based on distribution PMU measurements
  publication-title: IET Gener. Transm. Distrib.
– year: 2023
  ident: b2
  article-title: On the cyber-physical needs of DER-based voltage control/optimization algorithms in active distribution network
  publication-title: IEEE Access
– year: 2018
  ident: b45
  article-title: Impact of data normalization on deep neural network for time series forecasting
– volume: 12
  start-page: 29959
  year: 2024
  end-page: 29970
  ident: b26
  article-title: Power flow analysis using deep neural networks in three-phase unbalanced smart distribution grids
  publication-title: IEEE Access
– start-page: 1
  year: 2023
  end-page: 8
  ident: b6
  article-title: An observer-based control for a networked control of permanent magnet linear motors under a false-data-injection attack
  publication-title: 2023 IEEE Conference on Dependable and Secure Computing
– volume: 230
  year: 2024
  ident: b4
  article-title: Grid-enhancing technologies: Progress, challenges, and future research directions
  publication-title: Electr. Power Syst. Res.
– reference: D. Berndt, J. Clifford, Using dynamic time warping to find patterns in time series, in: KDD Workshop, 1994, pp. 359–370.
– volume: 15
  start-page: 1754
  year: 2022
  ident: b8
  article-title: Reachability-based false data injection attacks and defence mechanisms for cyberpower system
  publication-title: Energies
– volume: 211
  start-page: 1123
  year: 2018
  end-page: 1135
  ident: b28
  article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data
  publication-title: Appl. Energy
– volume: 12
  start-page: 3624
  year: 2021
  end-page: 3636
  ident: b29
  article-title: Unsupervised event detection, clustering, and use case exposition in micro-pmu measurements
  publication-title: IEEE Trans. Smart Grid
– reference: D. Amoateng, R. Yan, T. Saha, A deep unsupervised learning approach to PMU event detection in an active distribution network, in: 2020 IEEE Power & Energy Society General Meeting, PESGM, 2020, pp. 1–5,
– volume: 121
  year: 2020
  ident: b46
  article-title: Online fault monitoring based on deep neural network & sliding window technique
  publication-title: Prog. Nucl. Energy
– volume: 263
  year: 2023
  ident: b16
  article-title: Graph-based detection for false data injection attacks in power grid
  publication-title: Energy
– volume: 210
  year: 2023
  ident: b39
  article-title: Detection and reconstruction of measurements against false data injection and DoS attacks in distribution system state estimation: A deep learning approach
  publication-title: Measurement
– volume: 5
  start-page: 580
  year: 2014
  end-page: 591
  ident: b11
  article-title: Model-based attack detection and mitigation for automatic generation control
  publication-title: IEEE Trans. Smart Grid
– volume: 9
  start-page: 40402
  year: 2021
  end-page: 40416
  ident: b36
  article-title: Detection of cyber attacks on voltage regulation in distribution systems using machine learning
  publication-title: IEEE Access
– reference: S. Bhattacharjee, A. Thakur, S. Das, Towards fast and semi-supervised identification of smart meters launching data falsification attacks, in: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, 2018, pp. 173–185,
– volume: 3
  start-page: 1793
  year: 2011
  end-page: 8201
  ident: b49
  article-title: Statistical normalization and back propagation for classification
  publication-title: Int. J. Comput. Theory Eng.
– volume: 217
  year: 2023
  ident: b7
  article-title: Detection of false data injection attacks in cyber-physical systems using graph convolutional network
  publication-title: Electr. Power Syst. Res.
– volume: 4
  start-page: 233
  year: 2023
  end-page: 251
  ident: b24
  article-title: Deep learning for cybersecurity in smart grids: Review and perspectives
  publication-title: Energy Convers. Econom.
– volume: 12
  start-page: 26384
  year: 2024
  end-page: 26400
  ident: b48
  article-title: Acoustic-based online monitoring of cooling fan malfunction in air-forced transformers using learning techniques
  publication-title: IEEE Access
– volume: 13
  start-page: 2369
  year: 2022
  end-page: 2380
  ident: b35
  article-title: Adaptive hierarchical cyber attack detection and localization in active distribution systems
  publication-title: IEEE Trans. Smart Grid
– volume: 6
  start-page: 257
  year: 2014
  end-page: 269
  ident: b47
  article-title: Impact of data normalization on stock index forecasting
  publication-title: Int. J. Comput. Inf. Syst. Ind. Manage. Appl.
– start-page: 2546
  year: 2011
  end-page: 2554
  ident: b59
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Advances in Neural Information Processing Systems
– year: 2023
  ident: b57
  article-title: IEEE PES distribution systems analysis subcommittee radial test feeders
– volume: 105
  start-page: 157
  year: 2019
  end-page: 167
  ident: b25
  article-title: Impact of distributed generation on protection and voltage regulation of distribution systems: A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 209
  year: 2023
  ident: b1
  article-title: Review on cyber-physical and cyber-security system in smart grid: Standards, protocols, constraints, and recommendations
  publication-title: J. Netw. Comput. Appl.
– reference: A. Geiger, D. Liu, S. Alnegheimish, A. Cuesta-Infante, K. Veeramachaneni, Tadgan: Time series anomaly detection using generative adversarial networks, in: 2020 IEEE International Conference on Big Data, Big Data, 2020, pp. 33–43,
– volume: 11
  start-page: 1592
  year: 2016
  end-page: 1602
  ident: b9
  article-title: Masking transmission line outages via false data injection attacks
  publication-title: IEEE Trans. Inf. Forensics Secur.
– year: 2023
  ident: b5
  article-title: Stealth data injection attacks with sparsity constraints
  publication-title: IEEE Trans. Smart Grid
– volume: 12
  start-page: 4597
  year: 2024
  end-page: 4617
  ident: b14
  article-title: Physics-informed machine learning for data anomaly detection, classification, localization, and mitigation: A review, challenges, and path forward
  publication-title: IEEE Access
– volume: 174
  start-page: 1292
  year: 2019
  end-page: 1304
  ident: b17
  article-title: Deep learning aided interval state prediction for improving cyber security in energy internet
  publication-title: Energy
– reference: E. Naderi, A. Aydeger, A. Asrari, Detection of false data injection cyberattacks targeting smart transmission/distribution networks, in: 2022 IEEE Conference on Technologies for Sustainability, SusTech, 2022, pp. 224–229,
– volume: 51
  start-page: 1
  year: 2018
  end-page: 36
  ident: b10
  article-title: A survey of physics-based attack detection in cyber-physical systems
  publication-title: ACM Comput. Surv.
– volume: 14
  start-page: 4035
  year: 2023
  end-page: 4046
  ident: b41
  article-title: Super-resolution perception assisted spatiotemporal graph deep learning against false data injection attacks in smart grid
  publication-title: IEEE Trans. Smart Grid
– volume: 11
  start-page: 2218
  year: 2019
  end-page: 2234
  ident: b12
  article-title: A survey on the detection algorithms for false data injection attacks in smart grids
  publication-title: IEEE Trans. Smart Grid
– volume: 12
  start-page: 623
  year: 2020
  end-page: 634
  ident: b34
  article-title: Detecting false data injection attacks in smart grids: A semi-supervised deep learning approach
  publication-title: IEEE Trans. Smart Grid
– volume: 52
  start-page: 112
  year: 2022
  end-page: 122
  ident: b52
  article-title: Anomaly detection based on convolutional recurrent autoencoder for IoT time series
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– start-page: 214
  year: 2017
  end-page: 223
  ident: b55
  article-title: Wasserstein generative adversarial networks
  publication-title: International Conference on Machine Learning
– volume: 11
  start-page: 78671
  year: 2023
  end-page: 78685
  ident: b13
  article-title: A review on data-driven security assessment of power systems: Trends and applications of artificial intelligence
  publication-title: IEEE Access
– volume: 218
  year: 2021
  ident: b19
  article-title: Intrusion detection of cyber physical energy system based on multivariate ensemble classification
  publication-title: Energy
– volume: 16
  start-page: 2031
  year: 2020
  end-page: 2043
  ident: b23
  article-title: Online generative adversary network based measurement recovery in false data injection attacks: A cyber-physical approach
  publication-title: IEEE Trans. Ind. Inform.
– volume: 16
  start-page: 2288
  year: 2023
  ident: b40
  article-title: Distribution system state estimation and false data injection attack detection with a multi-output deep neural network
  publication-title: Energies
– year: 2022
  ident: b58
  article-title: Weather Data
– reference: .
– year: 2023
  ident: b15
  article-title: Physics-informed convolutional autoencoder for cyber anomaly detection in power distribution grids
– volume: 14
  start-page: 252
  year: 2019
  end-page: 260
  ident: b53
  article-title: An iterative method for detection of the collusive strategy in prisoner’s dilemma game of electricity market
  publication-title: EEJ Trans. Electr. Electron. Eng.
– volume: 146
  start-page: 2589
  year: 2020
  end-page: 2625
  ident: b3
  article-title: A survey on smart grid technologies and applications
  publication-title: Renew Energy
– volume: 9
  start-page: 127420
  year: 2021
  end-page: 127432
  ident: b27
  article-title: Transfer learning for event detection from PMU measurements with scarce labels
  publication-title: IEEE Access
– volume: 8
  start-page: 2505
  year: 2017
  end-page: 2516
  ident: b20
  article-title: Real-time detection of false data injection attacks in smart grid: A deep learning-based intelligent mechanism
  publication-title: IEEE Trans. Smart Grid
– volume: 8
  start-page: 2505
  issue: 5
  year: 2017
  ident: 10.1016/j.epsr.2024.110407_b20
  article-title: Real-time detection of false data injection attacks in smart grid: A deep learning-based intelligent mechanism
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2703842
– volume: 3
  start-page: 1793
  issue: 1
  year: 2011
  ident: 10.1016/j.epsr.2024.110407_b49
  article-title: Statistical normalization and back propagation for classification
  publication-title: Int. J. Comput. Theory Eng.
– year: 2018
  ident: 10.1016/j.epsr.2024.110407_b45
– start-page: 214
  year: 2017
  ident: 10.1016/j.epsr.2024.110407_b55
  article-title: Wasserstein generative adversarial networks
– volume: 5
  start-page: 580
  issue: 2
  year: 2014
  ident: 10.1016/j.epsr.2024.110407_b11
  article-title: Model-based attack detection and mitigation for automatic generation control
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2298195
– volume: 134
  year: 2022
  ident: 10.1016/j.epsr.2024.110407_b37
  article-title: Coordinated data falsification attack detection in the domain of distributed generation using deep learning
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107345
– volume: 146
  start-page: 2589
  year: 2020
  ident: 10.1016/j.epsr.2024.110407_b3
  article-title: A survey on smart grid technologies and applications
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.08.092
– volume: 18
  start-page: 7814
  issue: 11
  year: 2022
  ident: 10.1016/j.epsr.2024.110407_b21
  article-title: An inertia-based data recovery scheme for false data injection attack
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3146859
– volume: 209
  year: 2023
  ident: 10.1016/j.epsr.2024.110407_b1
  article-title: Review on cyber-physical and cyber-security system in smart grid: Standards, protocols, constraints, and recommendations
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2022.103540
– volume: 12
  start-page: 3624
  issue: 4
  year: 2021
  ident: 10.1016/j.epsr.2024.110407_b29
  article-title: Unsupervised event detection, clustering, and use case exposition in micro-pmu measurements
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2021.3063088
– volume: 263
  year: 2023
  ident: 10.1016/j.epsr.2024.110407_b16
  article-title: Graph-based detection for false data injection attacks in power grid
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125865
– start-page: 1
  year: 2023
  ident: 10.1016/j.epsr.2024.110407_b6
  article-title: An observer-based control for a networked control of permanent magnet linear motors under a false-data-injection attack
– start-page: 2546
  year: 2011
  ident: 10.1016/j.epsr.2024.110407_b59
  article-title: Algorithms for hyper-parameter optimization
– volume: 14
  start-page: 252
  issue: 2
  year: 2019
  ident: 10.1016/j.epsr.2024.110407_b53
  article-title: An iterative method for detection of the collusive strategy in prisoner’s dilemma game of electricity market
  publication-title: EEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.22804
– ident: 10.1016/j.epsr.2024.110407_b50
  doi: 10.1109/BigData50022.2020.9378139
– volume: 12
  start-page: 4597
  year: 2024
  ident: 10.1016/j.epsr.2024.110407_b14
  article-title: Physics-informed machine learning for data anomaly detection, classification, localization, and mitigation: A review, challenges, and path forward
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3347989
– ident: 10.1016/j.epsr.2024.110407_b31
  doi: 10.1109/PESGM41954.2020.9281560
– volume: 11
  start-page: 1592
  issue: 7
  year: 2016
  ident: 10.1016/j.epsr.2024.110407_b9
  article-title: Masking transmission line outages via false data injection attacks
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2016.2542061
– volume: 51
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.epsr.2024.110407_b10
  article-title: A survey of physics-based attack detection in cyber-physical systems
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3203245
– volume: 11
  start-page: 2218
  issue: 3
  year: 2019
  ident: 10.1016/j.epsr.2024.110407_b12
  article-title: A survey on the detection algorithms for false data injection attacks in smart grids
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2019.2949998
– volume: 230
  year: 2024
  ident: 10.1016/j.epsr.2024.110407_b4
  article-title: Grid-enhancing technologies: Progress, challenges, and future research directions
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2024.110304
– volume: 12
  start-page: 26384
  year: 2024
  ident: 10.1016/j.epsr.2024.110407_b48
  article-title: Acoustic-based online monitoring of cooling fan malfunction in air-forced transformers using learning techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3366807
– volume: 9
  start-page: 40402
  year: 2021
  ident: 10.1016/j.epsr.2024.110407_b36
  article-title: Detection of cyber attacks on voltage regulation in distribution systems using machine learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064689
– ident: 10.1016/j.epsr.2024.110407_b51
  doi: 10.1145/2689746.2689747
– volume: 211
  start-page: 1123
  year: 2018
  ident: 10.1016/j.epsr.2024.110407_b28
  article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.005
– volume: 218
  year: 2021
  ident: 10.1016/j.epsr.2024.110407_b19
  article-title: Intrusion detection of cyber physical energy system based on multivariate ensemble classification
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119505
– volume: 15
  start-page: 1754
  issue: 5
  year: 2022
  ident: 10.1016/j.epsr.2024.110407_b8
  article-title: Reachability-based false data injection attacks and defence mechanisms for cyberpower system
  publication-title: Energies
  doi: 10.3390/en15051754
– volume: 16
  start-page: 2288
  issue: 5
  year: 2023
  ident: 10.1016/j.epsr.2024.110407_b40
  article-title: Distribution system state estimation and false data injection attack detection with a multi-output deep neural network
  publication-title: Energies
  doi: 10.3390/en16052288
– year: 2023
  ident: 10.1016/j.epsr.2024.110407_b15
– volume: 12
  start-page: 29959
  year: 2024
  ident: 10.1016/j.epsr.2024.110407_b26
  article-title: Power flow analysis using deep neural networks in three-phase unbalanced smart distribution grids
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3369068
– ident: 10.1016/j.epsr.2024.110407_b56
– year: 2023
  ident: 10.1016/j.epsr.2024.110407_b5
  article-title: Stealth data injection attacks with sparsity constraints
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2023.3238913
– volume: 52
  start-page: 112
  issue: 1
  year: 2022
  ident: 10.1016/j.epsr.2024.110407_b52
  article-title: Anomaly detection based on convolutional recurrent autoencoder for IoT time series
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2020.2968516
– year: 2014
  ident: 10.1016/j.epsr.2024.110407_b54
– ident: 10.1016/j.epsr.2024.110407_b33
  doi: 10.1109/PESGM41954.2020.9281767
– volume: 217
  year: 2023
  ident: 10.1016/j.epsr.2024.110407_b7
  article-title: Detection of false data injection attacks in cyber-physical systems using graph convolutional network
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2023.109118
– ident: 10.1016/j.epsr.2024.110407_b22
  doi: 10.1109/EI256261.2022.10116631
– volume: 14
  start-page: 4035
  issue: 5
  year: 2023
  ident: 10.1016/j.epsr.2024.110407_b41
  article-title: Super-resolution perception assisted spatiotemporal graph deep learning against false data injection attacks in smart grid
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2023.3241268
– volume: 174
  start-page: 1292
  year: 2019
  ident: 10.1016/j.epsr.2024.110407_b17
  article-title: Deep learning aided interval state prediction for improving cyber security in energy internet
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.009
– volume: 16
  start-page: 2816
  issue: 14
  year: 2022
  ident: 10.1016/j.epsr.2024.110407_b42
  article-title: Convolutional autoencoder anomaly detection and classification based on distribution PMU measurements
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/gtd2.12424
– volume: 4
  start-page: 233
  issue: 4
  year: 2023
  ident: 10.1016/j.epsr.2024.110407_b24
  article-title: Deep learning for cybersecurity in smart grids: Review and perspectives
  publication-title: Energy Convers. Econom.
  doi: 10.1049/enc2.12091
– volume: 105
  start-page: 157
  year: 2019
  ident: 10.1016/j.epsr.2024.110407_b25
  article-title: Impact of distributed generation on protection and voltage regulation of distribution systems: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.01.050
– year: 2022
  ident: 10.1016/j.epsr.2024.110407_b58
– ident: 10.1016/j.epsr.2024.110407_b44
  doi: 10.1109/KPEC54747.2022.9814765
– volume: 303
  year: 2021
  ident: 10.1016/j.epsr.2024.110407_b32
  article-title: Solar farm voltage anomaly detection using high-resolution μPMU data-driven unsupervised machine learning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117656
– ident: 10.1016/j.epsr.2024.110407_b38
  doi: 10.1109/SusTech53338.2022.9794237
– year: 2023
  ident: 10.1016/j.epsr.2024.110407_b2
  article-title: On the cyber-physical needs of DER-based voltage control/optimization algorithms in active distribution network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3278281
– volume: 121
  year: 2020
  ident: 10.1016/j.epsr.2024.110407_b46
  article-title: Online fault monitoring based on deep neural network & sliding window technique
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2019.103236
– volume: 13
  start-page: 2369
  issue: 3
  year: 2022
  ident: 10.1016/j.epsr.2024.110407_b35
  article-title: Adaptive hierarchical cyber attack detection and localization in active distribution systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2022.3148233
– ident: 10.1016/j.epsr.2024.110407_b43
  doi: 10.1145/3196494.3196551
– volume: 312
  year: 2022
  ident: 10.1016/j.epsr.2024.110407_b30
  article-title: Unsupervised detection and open-set classification of fast-ramped flexibility activation events
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118647
– volume: 12
  start-page: 623
  issue: 1
  year: 2020
  ident: 10.1016/j.epsr.2024.110407_b34
  article-title: Detecting false data injection attacks in smart grids: A semi-supervised deep learning approach
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.3010510
– volume: 6
  start-page: 257
  issue: 2014
  year: 2014
  ident: 10.1016/j.epsr.2024.110407_b47
  article-title: Impact of data normalization on stock index forecasting
  publication-title: Int. J. Comput. Inf. Syst. Ind. Manage. Appl.
– year: 2023
  ident: 10.1016/j.epsr.2024.110407_b57
– year: 2022
  ident: 10.1016/j.epsr.2024.110407_b18
  article-title: Data integrity attack detection using ensemble based learning for cyber physical power systems
  publication-title: IEEE Trans. Smart Grid
– volume: 16
  start-page: 2031
  issue: 3
  year: 2020
  ident: 10.1016/j.epsr.2024.110407_b23
  article-title: Online generative adversary network based measurement recovery in false data injection attacks: A cyber-physical approach
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2921106
– volume: 210
  year: 2023
  ident: 10.1016/j.epsr.2024.110407_b39
  article-title: Detection and reconstruction of measurements against false data injection and DoS attacks in distribution system state estimation: A deep learning approach
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112565
– volume: 11
  start-page: 78671
  year: 2023
  ident: 10.1016/j.epsr.2024.110407_b13
  article-title: A review on data-driven security assessment of power systems: Trends and applications of artificial intelligence
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3299208
– ident: 10.1016/j.epsr.2024.110407_b60
– volume: 9
  start-page: 127420
  year: 2021
  ident: 10.1016/j.epsr.2024.110407_b27
  article-title: Transfer learning for event detection from PMU measurements with scarce labels
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3111727
SSID ssj0006975
Score 2.5180814
Snippet Detection of cyber attacks in smart power distribution grids with unbalanced configurations poses challenges due to the inherent nonlinear nature of these...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110407
SubjectTerms Adversarial autoencoder
Cyber attack detection
False data injection attacks
Generative adversarial networks
Power distribution grids
Unsupervised data-driven method
Title An unsupervised adversarial autoencoder for cyber attack detection in power distribution grids
URI https://dx.doi.org/10.1016/j.epsr.2024.110407
Volume 232
WOSCitedRecordID wos001232167600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE-1vOQDtygo68RxclyhIihQIbVIeyLyK03arbvaZKu2_4B_zThO3FCgogcuURTZXivz7YxnMjMfQm_yXGnBwS0hJUnDJNYk5KlQIRijvEy1SGPZddf_zPb2svk8_zqZ_BhqYc4WzJjs_Dxf_ldRwzMQti2dvYW4_aLwAO5B6HAFscP1nwQ_M8HaNOulVQINHCe5pVxueMfOwdftqe1caRtI2PxCeSHgjrctl8eB0q2WQ-7j0rKn2c83nhErOFzVrirYR_I7Cp1a9oNdU2j7GWIUIbMx6VrpLnjzRVeqDna5ELAbr-krvjisHLMUaJiKn5xwWzJ56e3FPnjfxrFr78PEYx58qtZNZXMy63HQgiQ-wdUXa4Hzypgjsx0UMekjnU6VwrkkcYS4v2l5F3A4AoPd2JauJHl7NfjXltrXTJ1PQBxy244Ku0Zh1yjcGnfQJmE0Bx2_Ofu4M9_1Zj3Nu67Nfud9BZZLFry-kz-fckYnl4OH6EHvcuCZg8ojNNHmMbo_akT5BH2fGTwGDR6BBo9AgwE0uAMNdqDBHjS4NrjDAR6DBnegeYq-vd85ePch7Jk3QhlHURvGpWQqK2mWZiJWNNHw19WcJRFhIo-oppEq80QmCdVTyYhQlGgylTG436UiXMbP0IY5NXoL4VIKlmqeUSoUGGXJQQFkyvrpPJIRLbfRdHhThezb0lt2lEXxdxlto8DPWbqmLDeOpoMAiv5Y6Y6LBeDphnnPb_UrL9C9K6C_RBvtaq1fobvyrK2b1eseTD8BYc-fKA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+unsupervised+adversarial+autoencoder+for+cyber+attack+detection+in+power+distribution+grids&rft.jtitle=Electric+power+systems+research&rft.au=Zideh%2C+Mehdi+Jabbari&rft.au=Khalghani%2C+Mohammad+Reza&rft.au=Solanki%2C+Sarika+Khushalani&rft.date=2024-07-01&rft.issn=0378-7796&rft.volume=232&rft.spage=110407&rft_id=info:doi/10.1016%2Fj.epsr.2024.110407&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2024_110407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon