Dynamic Type-2 Fuzzy Dependent Dirichlet Regression Mixture clustering model

[Display omitted] •A dynamic Type2 Fuzzy Dependent Dirichlet Regression Mixture clustering model.•It finds optimal numbers of new, transient, and existing clusters dynamically.•It ensures assignment of data to a cluster which has the most similarity to them.•Despite fuzzy clustering models, it suppo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied soft computing Ročník 57; s. 577 - 604
Hlavní autori: Gamasaee, R., Zarandi, M.H. Fazel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.08.2017
Predmet:
ISSN:1568-4946, 1872-9681
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •A dynamic Type2 Fuzzy Dependent Dirichlet Regression Mixture clustering model.•It finds optimal numbers of new, transient, and existing clusters dynamically.•It ensures assignment of data to a cluster which has the most similarity to them.•Despite fuzzy clustering models, it supports infinite number of clusters. In this paper, a new dynamic Interval Type-2 Fuzzy Dependent Dirichlet Piecewise Regression Mixture (IT2FDDPRM) clustering model is proposed. The model overcomes shortcomings of both Dependent Dirichlet Process Mixture (DDPM) technique and Interval Type-2 Fuzzy C-regression Clustering Model (IT2FCRM). DDPM method demonstrates that the probability of assigning data to a cluster including the maximum number of data among all clusters is higher, and it ignores the similarity of data to a cluster. However, the new IT2FDDPRM clustering technique supports assignment of data to a cluster which has the most similarity to them. It also allows the model to generate infinite number of clusters. Moreover, it has the capability of segmenting functions assigned to clusters. The model is validated using statistical tests, three validity functions, and mean square error of the model. The results of numerical experiments show that the proposed method has superior performance to other clustering techniques in literature.
AbstractList [Display omitted] •A dynamic Type2 Fuzzy Dependent Dirichlet Regression Mixture clustering model.•It finds optimal numbers of new, transient, and existing clusters dynamically.•It ensures assignment of data to a cluster which has the most similarity to them.•Despite fuzzy clustering models, it supports infinite number of clusters. In this paper, a new dynamic Interval Type-2 Fuzzy Dependent Dirichlet Piecewise Regression Mixture (IT2FDDPRM) clustering model is proposed. The model overcomes shortcomings of both Dependent Dirichlet Process Mixture (DDPM) technique and Interval Type-2 Fuzzy C-regression Clustering Model (IT2FCRM). DDPM method demonstrates that the probability of assigning data to a cluster including the maximum number of data among all clusters is higher, and it ignores the similarity of data to a cluster. However, the new IT2FDDPRM clustering technique supports assignment of data to a cluster which has the most similarity to them. It also allows the model to generate infinite number of clusters. Moreover, it has the capability of segmenting functions assigned to clusters. The model is validated using statistical tests, three validity functions, and mean square error of the model. The results of numerical experiments show that the proposed method has superior performance to other clustering techniques in literature.
Author Gamasaee, R.
Zarandi, M.H. Fazel
Author_xml – sequence: 1
  givenname: R.
  surname: Gamasaee
  fullname: Gamasaee, R.
  email: gamasaee@aut.ac.ir
– sequence: 2
  givenname: M.H. Fazel
  surname: Zarandi
  fullname: Zarandi, M.H. Fazel
  email: zarandi@aut.ac.ir
BookMark eNp9kMFOAjEQhhuDiYC-gKe-wK7ttmy7iRcDoiYYE4Pnps7OYsnSJW0xwtO7BE8eOM3M4Zv8_zciA995JOSWs5wzXt6tcxs7yAvGVc5kzpi4IEOuVZFVpeaDfp-UOpOVLK_IKMY166Gq0EOymO293Tigy_0Ws4LOd4fDns5wi75Gn-jMBQdfLSb6jquAMbrO01f3k3YBKbS7mDA4v6Kbrsb2mlw2to148zfH5GP-uJw-Z4u3p5fpwyIDwVjKRKOshpqrSmhpuZWsqZSoC9E0XIASrGS8P2qJCMAsh1JVKCeymACUWn2KMdGnvxC6GAM2BlyyqY-WgnWt4cwcrZi1OVoxRyuGSdNb6dHiH7oNbmPD_jx0f4KwL_XtMJgIDj1g7QJCMnXnzuG_n_d-Uw
CitedBy_id crossref_primary_10_1007_s00521_021_06227_9
Cites_doi 10.1016/j.neucom.2013.04.003
10.1080/01621459.1970.10481147
10.1016/j.neucom.2012.10.030
10.1016/j.neuroimage.2014.03.024
10.1080/01969727308546047
10.1016/j.knosys.2014.11.025
10.1016/j.neucom.2012.09.047
10.1016/j.ins.2006.05.003
10.1016/j.ins.2008.04.009
10.1145/2542050.2542079
10.1016/j.patcog.2013.03.026
10.1109/72.712150
10.1016/j.patcog.2015.04.010
10.1016/0098-3004(84)90020-7
10.1016/0165-0114(80)90059-7
10.1093/biomet/93.4.877
10.1016/0165-0114(84)90015-0
10.1109/91.236552
10.1016/j.patcog.2014.04.002
10.1016/S0165-0114(02)00111-2
10.1109/91.873577
10.1111/j.1541-0420.2010.01484.x
10.1016/j.jmp.2011.08.004
10.1214/13-BA852
10.1109/TFUZZ.1993.390281
10.1016/j.patcog.2013.03.025
10.1109/72.80202
10.1016/j.engappai.2009.02.003
10.1111/j.2517-6161.1996.tb02073.x
10.1080/01621459.1972.10482378
10.1016/S0165-0114(97)00306-0
10.1111/j.1541-0420.2005.00498.x
10.1016/j.patcog.2012.10.016
10.1016/j.ins.2011.10.015
10.1109/91.995115
10.1016/j.neucom.2013.08.012
10.1016/j.neucom.2013.05.019
10.1016/j.robot.2012.02.005
10.1016/j.dsp.2015.03.010
10.1016/j.asoc.2006.01.004
10.1016/j.neucom.2009.12.023
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2017.04.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 604
ExternalDocumentID 10_1016_j_asoc_2017_04_003
S1568494617301746
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-3f7a8cd179384a1a40f973d23ff13c73060123fd4eecc0a1c679e45425cc687b3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405457200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:05:31 EST 2025
Tue Nov 18 22:33:17 EST 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Piecewise Regression Mixture
Segmentation
Dependent Dirichlet Process Mixture
Interval Type-2 Fuzzy C-Regression Clustering
Dynamic regression clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-3f7a8cd179384a1a40f973d23ff13c73060123fd4eecc0a1c679e45425cc687b3
PageCount 28
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2017_04_003
crossref_primary_10_1016_j_asoc_2017_04_003
elsevier_sciencedirect_doi_10_1016_j_asoc_2017_04_003
PublicationCentury 2000
PublicationDate August 2017
2017-08-00
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Campbell (bib0020) 2013
Lin, Grimson, Fisher (bib0010) 2010; 23
Mendel (bib0030) 2007; 177
Reich, Bondell (bib0130) 2011; 67
Chen, Ch-Ta Lin (bib0220) 2007; 7
Box, Jenkins (bib0205) 1970
Evsukoff, Branco, Galichet (bib0265) 2002; 132
Li, Zhou, Xiang, Li, An (bib0145) 2009; 22
Sugeno, Yasukawa (bib0240) 1993; 1
Gershman, Blei (bib0065) 2012; 56
Chamroukhi, Same, Govaert, Aknin (bib0180) 2010; 73
Blei, Frazier (bib0110) 2011; 12
Xu (bib0235) 1999; 136
MacQueen (bib0050) 1967
Ma, Rana, Taghia, Flierl, Leijon (bib0075) 2014; 47
Neiswanger, Wood, Xing (bib0105) 2014
Hastie, Tibshirani (bib0080) 1996; 58
Quandt (bib0170) 1972; 67
Wang, Zhang, Zhou, Li, Yang (bib0045) 2016
Bezdek (bib0055) 1981
Nieto-Barajas, Contreras-Cristan (bib0100) 2014; 9
Kelley (bib0275) 1999
Fan, Bouguila (bib0115) 2012
Bezdek (bib0215) 1974; 3
Rostam Niakan Kalhori, Fazel Zarandi (bib0210) 2015; 48
Wang, Lee (bib0260) 1999; 108
Liang, Mendel (bib0200) 2000; 8
Pedrycz (bib0225) 1997; 13
Chatzis, Korkinof, Demiris (bib0175) 2012; 60
Farag, Quintana, Torres (bib0255) 1998; 9
Kim, Tadesse (bib0090) 2006; 93
Gallea, Ardizzone, Pirrone, Gambino (bib0150) 2013; 46
Mendel, Bob John (bib0025) 2000; 10
Qin, Self (bib0040) 2006; 62
Fazel Zarandi, Gamasaee, Turksen (bib0155) 2012; 187
MacEachern (bib0015) 1999
McZgee, Carelton (bib0165) 1970; 65
Hathaway, Bezdek (bib0140) 1993; 1
Narendra, Parthasarathy (bib0250) 1990; 1
Zhang, Guindani, Versace, Vannucci (bib0160) 2014; 95
Chamroukhi, Glotin, Same (bib0190) 2013; 112
N.K. Anh, N.T. Tam, N.V. Linh, Document Clustering using Dirichlet Process Mixture Model of von Mises-Fisher Distributions, SoICT’ 2013, December 05-06-13, Danang, Vietnam.
Lu (bib0245) 2014; 128
Chamroukhi, Mohammed, Trabelsi, Oukhellou, Amirat (bib0195) 2013; 120
Bezdek, Ehrlich, Full (bib0270) 1984; 10
Kharratzadeh, Renard, Coates (bib0005) 2015; 47
Tong (bib0230) 1990; 4
Fana, Bouguila (bib0070) 2013; 46
Pedrycz, Al-Hmouz, Balamash, Morfeq (bib0035) 2015; 76
Fan, Bouguila (bib0120) 2014; 126
Tayal, Poupart, Li (bib0135) 2012
Choi, Rhee (bib0060) 2009; 179
Zhang, Yao, Wang (bib0085) 2013; 46
Sato, Tanaka, Kurihara, Miyashita, Nakagawa (bib0125) 2013; 121
Chamroukhi (bib0185) 2015
Mendel (10.1016/j.asoc.2017.04.003_bib0030) 2007; 177
Chamroukhi (10.1016/j.asoc.2017.04.003_bib0180) 2010; 73
Tong (10.1016/j.asoc.2017.04.003_bib0230) 1990; 4
Reich (10.1016/j.asoc.2017.04.003_bib0130) 2011; 67
Kharratzadeh (10.1016/j.asoc.2017.04.003_bib0005) 2015; 47
Kim (10.1016/j.asoc.2017.04.003_bib0090) 2006; 93
Fan (10.1016/j.asoc.2017.04.003_bib0120) 2014; 126
Li (10.1016/j.asoc.2017.04.003_bib0145) 2009; 22
Fazel Zarandi (10.1016/j.asoc.2017.04.003_bib0155) 2012; 187
Liang (10.1016/j.asoc.2017.04.003_bib0200) 2000; 8
Blei (10.1016/j.asoc.2017.04.003_bib0110) 2011; 12
Evsukoff (10.1016/j.asoc.2017.04.003_bib0265) 2002; 132
Ma (10.1016/j.asoc.2017.04.003_bib0075) 2014; 47
Hathaway (10.1016/j.asoc.2017.04.003_bib0140) 1993; 1
Chamroukhi (10.1016/j.asoc.2017.04.003_bib0185) 2015
Tayal (10.1016/j.asoc.2017.04.003_bib0135) 2012
Qin (10.1016/j.asoc.2017.04.003_bib0040) 2006; 62
Chamroukhi (10.1016/j.asoc.2017.04.003_bib0195) 2013; 120
Xu (10.1016/j.asoc.2017.04.003_bib0235) 1999; 136
Mendel (10.1016/j.asoc.2017.04.003_bib0025) 2000; 10
Zhang (10.1016/j.asoc.2017.04.003_bib0160) 2014; 95
Pedrycz (10.1016/j.asoc.2017.04.003_bib0225) 1997; 13
Gershman (10.1016/j.asoc.2017.04.003_bib0065) 2012; 56
Nieto-Barajas (10.1016/j.asoc.2017.04.003_bib0100) 2014; 9
Chatzis (10.1016/j.asoc.2017.04.003_bib0175) 2012; 60
McZgee (10.1016/j.asoc.2017.04.003_bib0165) 1970; 65
Box (10.1016/j.asoc.2017.04.003_bib0205) 1970
Chamroukhi (10.1016/j.asoc.2017.04.003_bib0190) 2013; 112
Fana (10.1016/j.asoc.2017.04.003_bib0070) 2013; 46
Chen (10.1016/j.asoc.2017.04.003_bib0220) 2007; 7
Campbell (10.1016/j.asoc.2017.04.003_bib0020) 2013
MacQueen (10.1016/j.asoc.2017.04.003_bib0050) 1967
Neiswanger (10.1016/j.asoc.2017.04.003_bib0105) 2014
Lin (10.1016/j.asoc.2017.04.003_bib0010) 2010; 23
MacEachern (10.1016/j.asoc.2017.04.003_bib0015) 1999
Gallea (10.1016/j.asoc.2017.04.003_bib0150) 2013; 46
Zhang (10.1016/j.asoc.2017.04.003_bib0085) 2013; 46
Fan (10.1016/j.asoc.2017.04.003_bib0115) 2012
Sato (10.1016/j.asoc.2017.04.003_bib0125) 2013; 121
Wang (10.1016/j.asoc.2017.04.003_bib0260) 1999; 108
Narendra (10.1016/j.asoc.2017.04.003_bib0250) 1990; 1
Lu (10.1016/j.asoc.2017.04.003_bib0245) 2014; 128
Rostam Niakan Kalhori (10.1016/j.asoc.2017.04.003_bib0210) 2015; 48
Hastie (10.1016/j.asoc.2017.04.003_bib0080) 1996; 58
Farag (10.1016/j.asoc.2017.04.003_bib0255) 1998; 9
Bezdek (10.1016/j.asoc.2017.04.003_bib0055) 1981
Bezdek (10.1016/j.asoc.2017.04.003_bib0215) 1974; 3
Sugeno (10.1016/j.asoc.2017.04.003_bib0240) 1993; 1
Choi (10.1016/j.asoc.2017.04.003_bib0060) 2009; 179
Quandt (10.1016/j.asoc.2017.04.003_bib0170) 1972; 67
Wang (10.1016/j.asoc.2017.04.003_bib0045) 2016
Pedrycz (10.1016/j.asoc.2017.04.003_bib0035) 2015; 76
10.1016/j.asoc.2017.04.003_bib0095
Bezdek (10.1016/j.asoc.2017.04.003_bib0270) 1984; 10
Kelley (10.1016/j.asoc.2017.04.003_bib0275) 1999
References_xml – volume: 67
  start-page: 381
  year: 2011
  end-page: 390
  ident: bib0130
  article-title: A spatial Dirichlet process mixture model for clustering population genetics data
  publication-title: Biometrics
– volume: 7
  start-page: 1170
  year: 2007
  end-page: 1176
  ident: bib0220
  article-title: Dynamic parameter optimization of evolutionary computation for on-line prediction of time series with changing dynamics
  publication-title: Appl. Soft Comput.
– volume: 73
  start-page: 1210
  year: 2010
  end-page: 1221
  ident: bib0180
  article-title: A hidden process regression model for functional data description: application to curve discrimination
  publication-title: Neurocomputing
– volume: 60
  start-page: 789
  year: 2012
  end-page: 802
  ident: bib0175
  article-title: A nonparametric Bayesian approach toward robot learning by demonstration
  publication-title: Robot. Auton. Syst.
– volume: 128
  start-page: 491
  year: 2014
  end-page: 499
  ident: bib0245
  article-title: Demand forecasting of computer products based on variable selection scheme and support vector regression
  publication-title: Neurocomputing
– year: 1999
  ident: bib0015
  article-title: Dependent nonparametric processes
  publication-title: Proceedings of the Bayesian Statistical Science Section
– year: 2012
  ident: bib0135
  article-title: Hierarchical double Dirichlet process mixture of Gaussian processes
  publication-title: Twenty-Sixth AAAI Conference on Artificial Intelligence
– volume: 187
  start-page: 179
  year: 2012
  end-page: 203
  ident: bib0155
  article-title: A type-2 fuzzy c-regression clustering algorithm for Takagi–Sugeno system identification and its application in the steel industry
  publication-title: Inf. Sci.
– volume: 76
  start-page: 42
  year: 2015
  end-page: 52
  ident: bib0035
  article-title: Designing granular fuzzy models: a hierarchical approach to fuzzy modeling
  publication-title: Knowl.-Based Syst.
– year: 2013
  ident: bib0020
  article-title: Multi-agent Planning with Bayesian Non-parametric Asymptotics
– volume: 95
  start-page: 162
  year: 2014
  end-page: 175
  ident: bib0160
  article-title: A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses
  publication-title: NeuroImage
– volume: 23
  year: 2010
  ident: bib0010
  article-title: Construction of dependent Dirichlet processes based on Poisson processes
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 1981
  ident: bib0055
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– volume: 67
  start-page: 306
  year: 1972
  end-page: 310
  ident: bib0170
  article-title: A new approach to estimating switching regressions
  publication-title: J. Am. Assoc.
– volume: 1
  start-page: 195
  year: 1993
  end-page: 204
  ident: bib0140
  article-title: Switching regression models and fuzzy clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 177
  start-page: 84
  year: 2007
  end-page: 110
  ident: bib0030
  article-title: Advances in type-2 fuzzy sets and systems
  publication-title: Inf. Sci.
– volume: 10
  year: 2000
  ident: bib0025
  article-title: Type-2 fuzzy sets made simple
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 46
  start-page: 1789
  year: 2013
  end-page: 1798
  ident: bib0085
  article-title: Auto learning temporal atomic actions for activity classification
  publication-title: Pattern Recognit.
– volume: 3
  start-page: 58
  year: 1974
  end-page: 72
  ident: bib0215
  article-title: Cluster validity with fuzzy sets
  publication-title: J. Cybernet.
– volume: 47
  start-page: 3143
  year: 2014
  end-page: 3157
  ident: bib0075
  article-title: Bayesian estimation of Dirichlet mixture model with variational inference
  publication-title: Pattern Recognit.
– volume: 65
  start-page: 1109
  year: 1970
  end-page: 1124
  ident: bib0165
  article-title: Piecewise regression
  publication-title: J. Am. Assoc.
– volume: 58
  start-page: 155
  year: 1996
  end-page: 176
  ident: bib0080
  article-title: Discriminant analysis by Gaussian mixtures
  publication-title: J. R. Stat. Soc. B
– volume: 121
  start-page: 523
  year: 2013
  end-page: 531
  ident: bib0125
  article-title: Quantum annealing for Dirichlet process mixture models with applications to network clustering
  publication-title: Neurocomputing
– start-page: 1
  year: 2016
  end-page: 33
  ident: bib0045
  article-title: Hierarchical evolving Dirichlet processes for modeling nonlinear evolutionary traces in temporal data
  publication-title: Data Min. Knowl. Discov.
– volume: 62
  start-page: 526
  year: 2006
  end-page: 533
  ident: bib0040
  article-title: The clustering of regression models method with applications in gene expression data
  publication-title: Biometrics
– volume: 56
  start-page: 1
  year: 2012
  end-page: 12
  ident: bib0065
  article-title: A tutorial on Bayesian nonparametric models
  publication-title: J. Math. Psychol.
– year: 2015
  ident: bib0185
  article-title: Piecewise regression mixture for simultaneous functional data clustering and optimal segmentation
  publication-title: Classif.
– volume: 46
  start-page: 3000
  year: 2013
  end-page: 3016
  ident: bib0150
  article-title: Three-dimensional Fuzzy Kernel Regression framework for registration of medical volume data
  publication-title: Pattern Recognit.
– volume: 136
  start-page: 146
  year: 1999
  end-page: 150
  ident: bib0235
  article-title: Fuzzy system identification
  publication-title: IEEE Proc. D
– volume: 132
  start-page: 173
  year: 2002
  end-page: 188
  ident: bib0265
  article-title: Structure identification and parameter optimization for non-linear fuzzy modeling
  publication-title: Fuzzy Sets Syst.
– volume: 1
  start-page: 7
  year: 1993
  end-page: 31
  ident: bib0240
  article-title: A fuzzy-logic-based approach to qualitative modeling
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 108
  start-page: 179
  year: 1999
  end-page: 191
  ident: bib0260
  article-title: Fuzzy system modeling using linear distance rules
  publication-title: Fuzzy Sets Syst.
– volume: 120
  start-page: 633
  year: 2013
  end-page: 644
  ident: bib0195
  article-title: Joint segmentation of multivariate time series with hidden process regression for human activity recognition
  publication-title: Neurocomputing
– volume: 13
  start-page: 153
  year: 1997
  end-page: 167
  ident: bib0225
  article-title: An identification algorithm in fuzzy relational system
  publication-title: Fuzzy Sets Syst.
– volume: 112
  start-page: 153
  year: 2013
  end-page: 163
  ident: bib0190
  article-title: Model-based functional mixture discriminant analysis with hidden process regression for curve classification
  publication-title: Neurocomputing
– volume: 22
  start-page: 646
  year: 2009
  end-page: 653
  ident: bib0145
  article-title: T–S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 46
  start-page: 2754
  year: 2013
  end-page: 2769
  ident: bib0070
  article-title: Variational learning of a Dirichlet process of generalized Dirichlet distributions for simultaneous clustering and feature selection
  publication-title: Pattern Recognit.
– start-page: 660
  year: 2014
  end-page: 668
  ident: bib0105
  article-title: The dependent Dirichlet process mixture of objects for detection-free tracking and object modeling
  publication-title: Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics
– volume: 12
  start-page: 2383
  year: 2011
  end-page: 2410
  ident: bib0110
  article-title: Distance dependent Chinese restaurant processes
  publication-title: J. Mach. Learn. Res.
– volume: 4
  start-page: 1
  year: 1990
  end-page: 12
  ident: bib0230
  article-title: The evaluation of fuzzy models derived from experimental data
  publication-title: Fuzzy Sets Syst.
– year: 1970
  ident: bib0205
  article-title: Time Series Analysis, Forecasting and Control
– year: 1999
  ident: bib0275
  article-title: Iterative Methods for Optimization
– volume: 126
  start-page: 166
  year: 2014
  end-page: 179
  ident: bib0120
  article-title: Online variational learning of generalized Dirichlet mixture models with feature selection
  publication-title: Neurocomputing
– volume: 47
  start-page: 25
  year: 2015
  end-page: 35
  ident: bib0005
  article-title: Bayesian topic model approaches to online and time-dependent clustering
  publication-title: Dig. Signal Process.
– start-page: 281
  year: 1967
  end-page: 297
  ident: bib0050
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability
– volume: 8
  start-page: 535
  year: 2000
  end-page: 550
  ident: bib0200
  article-title: Interval Type 2 fuzzy logic systems: theory and design
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 48
  start-page: 3652
  year: 2015
  end-page: 3672
  ident: bib0210
  article-title: Interval type-2 credibilistic clustering for pattern recognition
  publication-title: Pattern Recognit.
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: bib0270
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
– start-page: 113
  year: 2012
  end-page: 128
  ident: bib0115
  article-title: Online learning of a Dirichlet process mixture of generalized Dirichlet distributions for simultaneous clustering and localized feature selection
  publication-title: JMLR: Workshop and Conference Proceedings 25
– volume: 179
  start-page: 2102
  year: 2009
  end-page: 2122
  ident: bib0060
  article-title: Interval type-2 fuzzy membership function generation methods for pattern recognition
  publication-title: Inf. Sci.
– volume: 93
  start-page: 877
  year: 2006
  end-page: 893
  ident: bib0090
  article-title: Variable selection in clustering via Dirichlet process mixture models
  publication-title: Biometrika
– volume: 1
  start-page: 4
  year: 1990
  end-page: 27
  ident: bib0250
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 9
  start-page: 756
  year: 1998
  end-page: 767
  ident: bib0255
  article-title: A genetic based neuro-fuzzy approach for modeling and control of dynamical systems
  publication-title: IEEE Trans. Neural Netw.
– reference: N.K. Anh, N.T. Tam, N.V. Linh, Document Clustering using Dirichlet Process Mixture Model of von Mises-Fisher Distributions, SoICT’ 2013, December 05-06-13, Danang, Vietnam.
– volume: 9
  start-page: 147
  year: 2014
  end-page: 170
  ident: bib0100
  article-title: A Bayesian nonparametric approach for time series clustering
  publication-title: Bayesian Anal.
– volume: 120
  start-page: 633
  year: 2013
  ident: 10.1016/j.asoc.2017.04.003_bib0195
  article-title: Joint segmentation of multivariate time series with hidden process regression for human activity recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.003
– volume: 65
  start-page: 1109
  year: 1970
  ident: 10.1016/j.asoc.2017.04.003_bib0165
  article-title: Piecewise regression
  publication-title: J. Am. Assoc.
  doi: 10.1080/01621459.1970.10481147
– year: 1999
  ident: 10.1016/j.asoc.2017.04.003_bib0275
– start-page: 281
  year: 1967
  ident: 10.1016/j.asoc.2017.04.003_bib0050
  article-title: Some methods for classification and analysis of multivariate observations
– volume: 112
  start-page: 153
  year: 2013
  ident: 10.1016/j.asoc.2017.04.003_bib0190
  article-title: Model-based functional mixture discriminant analysis with hidden process regression for curve classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.030
– year: 1970
  ident: 10.1016/j.asoc.2017.04.003_bib0205
– volume: 95
  start-page: 162
  year: 2014
  ident: 10.1016/j.asoc.2017.04.003_bib0160
  article-title: A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.024
– year: 2015
  ident: 10.1016/j.asoc.2017.04.003_bib0185
  article-title: Piecewise regression mixture for simultaneous functional data clustering and optimal segmentation
  publication-title: Classif.
– start-page: 660
  year: 2014
  ident: 10.1016/j.asoc.2017.04.003_bib0105
  article-title: The dependent Dirichlet process mixture of objects for detection-free tracking and object modeling
  publication-title: Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics
– volume: 3
  start-page: 58
  year: 1974
  ident: 10.1016/j.asoc.2017.04.003_bib0215
  article-title: Cluster validity with fuzzy sets
  publication-title: J. Cybernet.
  doi: 10.1080/01969727308546047
– volume: 76
  start-page: 42
  year: 2015
  ident: 10.1016/j.asoc.2017.04.003_bib0035
  article-title: Designing granular fuzzy models: a hierarchical approach to fuzzy modeling
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.11.025
– volume: 126
  start-page: 166
  year: 2014
  ident: 10.1016/j.asoc.2017.04.003_bib0120
  article-title: Online variational learning of generalized Dirichlet mixture models with feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.09.047
– volume: 177
  start-page: 84
  year: 2007
  ident: 10.1016/j.asoc.2017.04.003_bib0030
  article-title: Advances in type-2 fuzzy sets and systems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2006.05.003
– volume: 12
  start-page: 2383
  year: 2011
  ident: 10.1016/j.asoc.2017.04.003_bib0110
  article-title: Distance dependent Chinese restaurant processes
  publication-title: J. Mach. Learn. Res.
– volume: 179
  start-page: 2102
  issue: 13
  year: 2009
  ident: 10.1016/j.asoc.2017.04.003_bib0060
  article-title: Interval type-2 fuzzy membership function generation methods for pattern recognition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2008.04.009
– ident: 10.1016/j.asoc.2017.04.003_bib0095
  doi: 10.1145/2542050.2542079
– year: 1981
  ident: 10.1016/j.asoc.2017.04.003_bib0055
– volume: 46
  start-page: 2754
  year: 2013
  ident: 10.1016/j.asoc.2017.04.003_bib0070
  article-title: Variational learning of a Dirichlet process of generalized Dirichlet distributions for simultaneous clustering and feature selection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.03.026
– year: 1999
  ident: 10.1016/j.asoc.2017.04.003_bib0015
  article-title: Dependent nonparametric processes
– volume: 9
  start-page: 756
  issue: 5
  year: 1998
  ident: 10.1016/j.asoc.2017.04.003_bib0255
  article-title: A genetic based neuro-fuzzy approach for modeling and control of dynamical systems
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712150
– volume: 48
  start-page: 3652
  year: 2015
  ident: 10.1016/j.asoc.2017.04.003_bib0210
  article-title: Interval type-2 credibilistic clustering for pattern recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.04.010
– year: 2012
  ident: 10.1016/j.asoc.2017.04.003_bib0135
  article-title: Hierarchical double Dirichlet process mixture of Gaussian processes
  publication-title: Twenty-Sixth AAAI Conference on Artificial Intelligence
– volume: 10
  start-page: 191
  year: 1984
  ident: 10.1016/j.asoc.2017.04.003_bib0270
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– volume: 4
  start-page: 1
  year: 1990
  ident: 10.1016/j.asoc.2017.04.003_bib0230
  article-title: The evaluation of fuzzy models derived from experimental data
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(80)90059-7
– volume: 93
  start-page: 877
  issue: 4
  year: 2006
  ident: 10.1016/j.asoc.2017.04.003_bib0090
  article-title: Variable selection in clustering via Dirichlet process mixture models
  publication-title: Biometrika
  doi: 10.1093/biomet/93.4.877
– volume: 13
  start-page: 153
  year: 1997
  ident: 10.1016/j.asoc.2017.04.003_bib0225
  article-title: An identification algorithm in fuzzy relational system
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(84)90015-0
– year: 2013
  ident: 10.1016/j.asoc.2017.04.003_bib0020
– volume: 1
  start-page: 195
  issue: 3
  year: 1993
  ident: 10.1016/j.asoc.2017.04.003_bib0140
  article-title: Switching regression models and fuzzy clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.236552
– volume: 47
  start-page: 3143
  year: 2014
  ident: 10.1016/j.asoc.2017.04.003_bib0075
  article-title: Bayesian estimation of Dirichlet mixture model with variational inference
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.04.002
– volume: 132
  start-page: 173
  year: 2002
  ident: 10.1016/j.asoc.2017.04.003_bib0265
  article-title: Structure identification and parameter optimization for non-linear fuzzy modeling
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(02)00111-2
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2017.04.003_bib0045
  article-title: Hierarchical evolving Dirichlet processes for modeling nonlinear evolutionary traces in temporal data
  publication-title: Data Min. Knowl. Discov.
– volume: 136
  start-page: 146
  issue: 4
  year: 1999
  ident: 10.1016/j.asoc.2017.04.003_bib0235
  article-title: Fuzzy system identification
  publication-title: IEEE Proc. D
– volume: 8
  start-page: 535
  issue: 5
  year: 2000
  ident: 10.1016/j.asoc.2017.04.003_bib0200
  article-title: Interval Type 2 fuzzy logic systems: theory and design
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.873577
– volume: 67
  start-page: 381
  year: 2011
  ident: 10.1016/j.asoc.2017.04.003_bib0130
  article-title: A spatial Dirichlet process mixture model for clustering population genetics data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01484.x
– volume: 56
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2017.04.003_bib0065
  article-title: A tutorial on Bayesian nonparametric models
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2011.08.004
– volume: 9
  start-page: 147
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2017.04.003_bib0100
  article-title: A Bayesian nonparametric approach for time series clustering
  publication-title: Bayesian Anal.
  doi: 10.1214/13-BA852
– volume: 1
  start-page: 7
  year: 1993
  ident: 10.1016/j.asoc.2017.04.003_bib0240
  article-title: A fuzzy-logic-based approach to qualitative modeling
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.1993.390281
– volume: 46
  start-page: 3000
  year: 2013
  ident: 10.1016/j.asoc.2017.04.003_bib0150
  article-title: Three-dimensional Fuzzy Kernel Regression framework for registration of medical volume data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.03.025
– volume: 1
  start-page: 4
  year: 1990
  ident: 10.1016/j.asoc.2017.04.003_bib0250
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.80202
– volume: 22
  start-page: 646
  year: 2009
  ident: 10.1016/j.asoc.2017.04.003_bib0145
  article-title: T–S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2009.02.003
– volume: 58
  start-page: 155
  year: 1996
  ident: 10.1016/j.asoc.2017.04.003_bib0080
  article-title: Discriminant analysis by Gaussian mixtures
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02073.x
– volume: 67
  start-page: 306
  year: 1972
  ident: 10.1016/j.asoc.2017.04.003_bib0170
  article-title: A new approach to estimating switching regressions
  publication-title: J. Am. Assoc.
  doi: 10.1080/01621459.1972.10482378
– volume: 108
  start-page: 179
  year: 1999
  ident: 10.1016/j.asoc.2017.04.003_bib0260
  article-title: Fuzzy system modeling using linear distance rules
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(97)00306-0
– volume: 62
  start-page: 526
  year: 2006
  ident: 10.1016/j.asoc.2017.04.003_bib0040
  article-title: The clustering of regression models method with applications in gene expression data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00498.x
– volume: 46
  start-page: 1789
  year: 2013
  ident: 10.1016/j.asoc.2017.04.003_bib0085
  article-title: Auto learning temporal atomic actions for activity classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.10.016
– volume: 187
  start-page: 179
  year: 2012
  ident: 10.1016/j.asoc.2017.04.003_bib0155
  article-title: A type-2 fuzzy c-regression clustering algorithm for Takagi–Sugeno system identification and its application in the steel industry
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.10.015
– volume: 10
  issue: 2
  year: 2000
  ident: 10.1016/j.asoc.2017.04.003_bib0025
  article-title: Type-2 fuzzy sets made simple
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.995115
– volume: 128
  start-page: 491
  year: 2014
  ident: 10.1016/j.asoc.2017.04.003_bib0245
  article-title: Demand forecasting of computer products based on variable selection scheme and support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.012
– volume: 23
  year: 2010
  ident: 10.1016/j.asoc.2017.04.003_bib0010
  article-title: Construction of dependent Dirichlet processes based on Poisson processes
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 121
  start-page: 523
  year: 2013
  ident: 10.1016/j.asoc.2017.04.003_bib0125
  article-title: Quantum annealing for Dirichlet process mixture models with applications to network clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.019
– volume: 60
  start-page: 789
  year: 2012
  ident: 10.1016/j.asoc.2017.04.003_bib0175
  article-title: A nonparametric Bayesian approach toward robot learning by demonstration
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2012.02.005
– volume: 47
  start-page: 25
  year: 2015
  ident: 10.1016/j.asoc.2017.04.003_bib0005
  article-title: Bayesian topic model approaches to online and time-dependent clustering
  publication-title: Dig. Signal Process.
  doi: 10.1016/j.dsp.2015.03.010
– start-page: 113
  year: 2012
  ident: 10.1016/j.asoc.2017.04.003_bib0115
  article-title: Online learning of a Dirichlet process mixture of generalized Dirichlet distributions for simultaneous clustering and localized feature selection
  publication-title: JMLR: Workshop and Conference Proceedings 25
– volume: 7
  start-page: 1170
  year: 2007
  ident: 10.1016/j.asoc.2017.04.003_bib0220
  article-title: Dynamic parameter optimization of evolutionary computation for on-line prediction of time series with changing dynamics
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2006.01.004
– volume: 73
  start-page: 1210
  year: 2010
  ident: 10.1016/j.asoc.2017.04.003_bib0180
  article-title: A hidden process regression model for functional data description: application to curve discrimination
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.12.023
SSID ssj0016928
Score 2.1800125
Snippet [Display omitted] •A dynamic Type2 Fuzzy Dependent Dirichlet Regression Mixture clustering model.•It finds optimal numbers of new, transient, and existing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 577
SubjectTerms Dependent Dirichlet Process Mixture
Dynamic regression clustering
Interval Type-2 Fuzzy C-Regression Clustering
Piecewise Regression Mixture
Segmentation
Title Dynamic Type-2 Fuzzy Dependent Dirichlet Regression Mixture clustering model
URI https://dx.doi.org/10.1016/j.asoc.2017.04.003
Volume 57
WOSCitedRecordID wos000405457200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT8IwGG2M-uCLd-M9ffBtGSnraLdHohI1aoxRw9tSuk0hOgkMg_x6v15WjLfogy8LLFuBnnJ6-u3rdxA64EzkpAODlwhC_RA0sx-JFFYpOUlBnwuSaUuWu3N-eRm12_GVNeMcajsBXhTReBz3_xVqOAdgq62zf4DbNQon4DWADkeAHY6_Av7IeMx7aoXpB15rNJm8Aq0Yr9tScVxXPgBa0LP3Jgm28C66Y_0kQT6OVOEEFT7QFjnvpWulV4dA3DoTfVRW057K3xFPYihMVs91zYWjxUBtm9FR19pJzWuJiW3UBhpg8qrS3Bw3ssgPYxsxtORpqktb9mtYRxYzkTLjK_yJo024oFcTMPxUbh3XtWYJnc5I1VP4DxOVSx-sMtN6iWojUW0kJEx01de5gDdioLe55ulx-8w9UGKxttl1v8HunzKpfh-_ydca5Z3uuFlGi3bBgJsG6BU0kxWraKky48CWm9fQucUdG9yxxh073LHDHU9xxxZ3PMUda9zX0W3r-ObwxLdWGb6khJQ-zbmIZKrYNgpFXYQkjzlNA5rndSqBxZnSznkaZvCXJaIuGY-zsAGELSWLeIduoNniucg2EWYBj2RAadiBK4DhBQhQJjoMdAy8DbItVK86J5G2jryyM3lMvodlC3nunr6povLj1Y2qzxOrA42-S2AI_XDf9p8-ZQctTEf5LpotB6NsD83Ll7I7HOzb8fMGVPp8iA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Type-2+Fuzzy+Dependent+Dirichlet+Regression+Mixture+clustering+model&rft.jtitle=Applied+soft+computing&rft.au=Gamasaee%2C+R.&rft.au=Zarandi%2C+M.H.+Fazel&rft.date=2017-08-01&rft.issn=1568-4946&rft.volume=57&rft.spage=577&rft.epage=604&rft_id=info:doi/10.1016%2Fj.asoc.2017.04.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2017_04_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon