Design of a modular neural network based on an improved soft subspace clustering algorithm

Being a commonly used way for task decomposition in modular neural network (MNN), clustering analysis is employed to decompose the complex task into several simple subtasks for learning. Recent studies mainly focus on hard clustering, but the clusters might be not sufficiently represented when the c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 209; s. 118219
Hlavní autoři: Li, Meng, Li, Wenjing, Qiao, Junfei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.12.2022
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Being a commonly used way for task decomposition in modular neural network (MNN), clustering analysis is employed to decompose the complex task into several simple subtasks for learning. Recent studies mainly focus on hard clustering, but the clusters might be not sufficiently represented when the cluster boundary is ambiguous, which may degenerate the learning performance of subnetworks in MNN. To solve this problem, we design a modular neural network based on an improved soft subspace clustering (IESSC-MNN) algorithm in this study. Firstly, we propose an improved soft subspace clustering algorithm for task decomposition in MNN, which divides the original space into several interactive feature subspaces and allocates a weight item to each subspace to describe the contribution of the subtasks at the same time. Secondly, each RBF subnetwork is adaptively constructed using a structure growing strategy, and all subnetworks learning the corresponding subtask in parallel. Finally, all subnetworks’ outputs are integrated by weighted summation using the contribution weight of subnetworks. The simulation results of the proposed model on five benchmark data and a practical dataset indicate that IESSC-MNN improves the modeling accuracy and generalization performance with a simple structure when compared with other MNNs.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2022.118219