Efficient identification of Alzheimer’s brain dynamics with Spatial-Temporal Autoencoder: A deep learning approach for diagnosing brain disorders

•An automatic EEG-based diagnosis scheme for Alzheimer’s disease (AD) with deep learning methods was proposed.•A Spatial-Temporal Autoencoder (STAE) framework was designed to estimate latent factors of EEG via unsupervised learning.•Alzheimer’s brain dynamics were inferred with STAE and manifolds in...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical signal processing and control Vol. 86; p. 104917
Main Authors: Wu, Lingyun, Zhao, Quanfa, Liu, Jing, Yu, Haitao
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2023
Subjects:
ISSN:1746-8094, 1746-8108
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •An automatic EEG-based diagnosis scheme for Alzheimer’s disease (AD) with deep learning methods was proposed.•A Spatial-Temporal Autoencoder (STAE) framework was designed to estimate latent factors of EEG via unsupervised learning.•Alzheimer’s brain dynamics were inferred with STAE and manifolds in low-dimensional state space were used to identify AD.•STAE exhibited superior performance with high accuracy of AD identification and robust against instability in EEG recording. Alzheimer’s disease (AD) is a progressive neurological disorder seriously affecting cognitive and behavior abilities of the older people. Accurate and early diagnosis of AD is critical for improving the therapeutic effect and alleviate the clinical symptom. In this work, we proposed an automatic EEG-based diagnosis scheme for AD patients with deep learning methods. A Spatial-Temporal Autoencoder (STAE) framework with Convolutional Neural Network (CNN)- Long Short-Term-Memory (LSTM) generative model was designed to estimate latent factors of the observed oscillatory activity in the brain from multi-channels electroencephalogram (EEG) signals via unsupervised learning. Based on latent factor analysis, Alzheimer’s brain dynamics on single-trials were inferred and temporal evolution of latent brain state was analyzed in low-dimensional state space. The study mainly showed that: i) the brain state trajectories of AD patients were distinct from healthy subjects, resulting in different forms of ring manifolds and allowing to accurately identify AD; ii) experimental results demonstrated the efficiency and flexibility of the proposed deep learning-based diagnosis scheme, by which the classification of AD patients and the normal based on clinical EEG dataset achieved an accuracy of 96.30%, a sensitivity of 97.73% and a specificity of 94.69% with a multiple layer perception (MLP) classifier; iii) compared with other approaches for latent brain dynamics estimation, STAE exhibited superior performance with high accuracy of AD identification and strongly robust against instabilities in EEG recordings. The present results reveal the neuropathological mechanism of Alzheimer’s disease with brain dynamics variations and provide a feasible diagnosis tool for brain disorders.
AbstractList •An automatic EEG-based diagnosis scheme for Alzheimer’s disease (AD) with deep learning methods was proposed.•A Spatial-Temporal Autoencoder (STAE) framework was designed to estimate latent factors of EEG via unsupervised learning.•Alzheimer’s brain dynamics were inferred with STAE and manifolds in low-dimensional state space were used to identify AD.•STAE exhibited superior performance with high accuracy of AD identification and robust against instability in EEG recording. Alzheimer’s disease (AD) is a progressive neurological disorder seriously affecting cognitive and behavior abilities of the older people. Accurate and early diagnosis of AD is critical for improving the therapeutic effect and alleviate the clinical symptom. In this work, we proposed an automatic EEG-based diagnosis scheme for AD patients with deep learning methods. A Spatial-Temporal Autoencoder (STAE) framework with Convolutional Neural Network (CNN)- Long Short-Term-Memory (LSTM) generative model was designed to estimate latent factors of the observed oscillatory activity in the brain from multi-channels electroencephalogram (EEG) signals via unsupervised learning. Based on latent factor analysis, Alzheimer’s brain dynamics on single-trials were inferred and temporal evolution of latent brain state was analyzed in low-dimensional state space. The study mainly showed that: i) the brain state trajectories of AD patients were distinct from healthy subjects, resulting in different forms of ring manifolds and allowing to accurately identify AD; ii) experimental results demonstrated the efficiency and flexibility of the proposed deep learning-based diagnosis scheme, by which the classification of AD patients and the normal based on clinical EEG dataset achieved an accuracy of 96.30%, a sensitivity of 97.73% and a specificity of 94.69% with a multiple layer perception (MLP) classifier; iii) compared with other approaches for latent brain dynamics estimation, STAE exhibited superior performance with high accuracy of AD identification and strongly robust against instabilities in EEG recordings. The present results reveal the neuropathological mechanism of Alzheimer’s disease with brain dynamics variations and provide a feasible diagnosis tool for brain disorders.
ArticleNumber 104917
Author Zhao, Quanfa
Liu, Jing
Wu, Lingyun
Yu, Haitao
Author_xml – sequence: 1
  givenname: Lingyun
  surname: Wu
  fullname: Wu, Lingyun
  organization: Department of Neurology, Tangshan Gongren Hospital, Tangshan 063000, China
– sequence: 2
  givenname: Quanfa
  surname: Zhao
  fullname: Zhao, Quanfa
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: Department of Neurology, Tangshan Gongren Hospital, Tangshan 063000, China
– sequence: 4
  givenname: Haitao
  surname: Yu
  fullname: Yu, Haitao
  email: htyu@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
BookMark eNp9kE1u2zAQRokiBZq4vUBXvIBcUpT1U2RjGG4TIEAWTdfEiBzaY8ikQCoNnFXukFWvl5NEitNNF94MhwO-D5x3wc588MjYVynmUsjy227ept7Mc5GrcVA0svrAzmVVlFktRX32rxdN8YldpLQToqgrWZyz57VzZAj9wMmOlcYbDBQ8D44vu8ct0h7jy9PfxNsI5Lk9eNiTSfyBhi3_1Y-PocvucN-HCB1f3g8BvQkW43e-5Bax5x1C9OQ3HPo-BjBb7kLklmDjQ5rm78mUQhy59Jl9dNAl_PJ-ztjvH-u71VV2c_vzerW8yYwSYsiUsVZCAbVR4EqZN41SRgLWrhI1VE1eViqXtlqAkHVZuLZdKNc2VolWlK4VasbqY66JIaWIThsa3pYfxg91Wgo9ydU7PcnVk1x9lDui-X9oH2kP8XAaujxCOC71hzDqNJk3aCmiGbQNdAp_BXYJmfE
CitedBy_id crossref_primary_10_1177_09287329241291334
crossref_primary_10_3390_diagnostics15111441
crossref_primary_10_1016_j_bspc_2025_108057
crossref_primary_10_1002_ajmg_b_32979
crossref_primary_10_1016_j_bspc_2023_105703
crossref_primary_10_1016_j_cmpb_2024_108506
crossref_primary_10_1016_j_bspc_2024_106668
crossref_primary_10_1016_j_bspc_2023_105298
Cites_doi 10.1016/j.bspc.2021.103417
10.1038/s41467-022-34129-4
10.1017/S1041610213000781
10.1109/TIT.1967.1053964
10.1038/nn.3776
10.1002/ana.25380
10.1073/pnas.2212954119
10.1038/s41592-018-0109-9
10.1016/j.neuron.2017.05.025
10.1016/j.cell.2019.12.018
10.1109/TNSRE.2021.3101240
10.3233/JAD-170841
10.1016/j.neubiorev.2017.01.002
10.1073/pnas.1408900111
10.1177/155005941104200304
10.1523/JNEUROSCI.1669-18.2018
10.1159/000441447
10.1038/ncomms8759
10.1016/j.arr.2021.101482
10.1016/S1474-4422(20)30440-3
10.1038/nature11129
10.1016/j.neuron.2018.05.020
10.1177/1550059413486272
10.1073/pnas.1915984117
10.1007/BF00308809
10.1016/S0020-7373(87)80053-6
10.1109/TFUZZ.2019.2903753
10.1093/brain/awaa058
10.3389/fnins.2020.00641
10.1371/journal.pcbi.1008128
10.3233/ICA-130439
10.1109/ACCESS.2019.2912273
10.1038/s41467-017-01150-x
10.1007/s11571-014-9325-x
10.3389/fnsys.2020.00043
10.1016/j.physa.2018.05.009
10.1080/03610730590948186
10.1016/j.neuroimage.2021.118774
10.1162/neco.1997.9.8.1735
10.1016/j.neurobiolaging.2017.12.023
10.2174/156720510792231720
10.1016/j.neurobiolaging.2011.06.007
10.1592/phco.27.3.399
10.1016/j.neurobiolaging.2014.12.013
10.2967/jnumed.116.179903
10.1007/s10548-018-0674-3
10.1023/A:1022627411411
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.104917
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2023_104917
S1746809423003506
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-3cdd1a4a8c3af6129933c1ae8f708a79267321d75a01864fbb53fb9d30b06fb03
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000986554400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Sat Nov 29 07:02:04 EST 2025
Tue Nov 18 22:20:48 EST 2025
Tue Jul 16 04:30:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Latent brain dynamics
Diagnosis
Alzheimer’s disease
Spatial-Temporal Autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-3cdd1a4a8c3af6129933c1ae8f708a79267321d75a01864fbb53fb9d30b06fb03
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2023_104917
crossref_primary_10_1016_j_bspc_2023_104917
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_104917
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yu (b0135) 2020; 28
Kanda (b0210) 2014; 45
Cherry, Simmons (b0025) 2005; 31
Cover, Hart (b0265) 1967; 13
Li (b0140) 2021; 29
Therriault (b0220) 2020; 96
Tetreault (b0080) 2020; 143
Pandarinath (b0185) 2018; 15
Pandarinath (b0145) 2018; 38
Pichet (b0040) 2022; 13
Graff-Radford (b0225) 2021; 20
Shoeibi (b0125) 2022; 73
Braak, Braak (b0005) 1991; 82
Churchland (b0160) 2012; 487
Boyle (b0010) 2019; 85
J.C. Watts, et al., Serial Propagation of Distinct Strains of Aβ Prions from Alzheimer's Disease Patients. Proceedings of the National Academy of Sciences, 2014. 111 28 10323-10328.
Kao (b0175) 2015; 6
Zhao (b0120) 2022; 246
Beier (b0020) 2007; 27
Whitwell (b0055) 2015; 36
Quinlan (b0270) 1987; 27
Liu (b0190) 2020; 14
Babiloni (b0085) 2018; 65
Pini (b0095) 2021; 72
Bhat (b0075) 2015; 74
Whitwell (b0230) 2017; 58
Yu (b0110) 2020; 14
Barnes (b0015) 2018; 64
Gallego (b0150) 2017; 94
Cera (b0215) 2013; 25
Franciotti (b0090) 2019; 32
Q (b0195) 2019; 7
Hochreiter, Schmidhuber (b0200) 1997; 9
Palmqvist (b0035) 2017; 8
Cueva (b0170) 2020; 117
Cunningham, Yu (b0180) 2014; 17
Vieira (b0115) 2017; 74
Wang (b0245) 2015; 9
Dauwels, Vialatte, Cichocki (b0250) 2010; 7
Yu (b0100) 2018; 506
Lin (b0155) 2020; 180
Zhang (b0255) 2013; 20
Cassani (b0045) 2018
Cai (b0105) 2020
Haan (b0060) 2008; 4
Cortes, Vapnik (b0260) 1995; 20
Cao (b0240) 2015; 25
Trambaiolli (b0130) 2011; 42
Pollock, Jazayeri (b0205) 2020; 16
C. Condello, et al., Aβ and Tau Prions Feature in the Neuropathogenesis of Down Syndrome. Proceedings of the National Academy of Sciences, 2022. 119 46 e2212954119.
Agosta (b0050) 2012; 33
Remington (b0165) 2018; 98
Ouchani (b0065) 2021
Wang (b0070) 2015; 25
Yu (10.1016/j.bspc.2023.104917_b0100) 2018; 506
Whitwell (10.1016/j.bspc.2023.104917_b0055) 2015; 36
Q (10.1016/j.bspc.2023.104917_b0195) 2019; 7
Remington (10.1016/j.bspc.2023.104917_b0165) 2018; 98
Whitwell (10.1016/j.bspc.2023.104917_b0230) 2017; 58
Palmqvist (10.1016/j.bspc.2023.104917_b0035) 2017; 8
Hochreiter (10.1016/j.bspc.2023.104917_b0200) 1997; 9
Bhat (10.1016/j.bspc.2023.104917_b0075) 2015; 74
Haan (10.1016/j.bspc.2023.104917_b0060) 2008; 4
Therriault (10.1016/j.bspc.2023.104917_b0220) 2020; 96
Shoeibi (10.1016/j.bspc.2023.104917_b0125) 2022; 73
Boyle (10.1016/j.bspc.2023.104917_b0010) 2019; 85
Cunningham (10.1016/j.bspc.2023.104917_b0180) 2014; 17
Cai (10.1016/j.bspc.2023.104917_b0105) 2020
Cao (10.1016/j.bspc.2023.104917_b0240) 2015; 25
Churchland (10.1016/j.bspc.2023.104917_b0160) 2012; 487
Ouchani (10.1016/j.bspc.2023.104917_b0065) 2021
Quinlan (10.1016/j.bspc.2023.104917_b0270) 1987; 27
Pollock (10.1016/j.bspc.2023.104917_b0205) 2020; 16
Babiloni (10.1016/j.bspc.2023.104917_b0085) 2018; 65
Gallego (10.1016/j.bspc.2023.104917_b0150) 2017; 94
Zhang (10.1016/j.bspc.2023.104917_b0255) 2013; 20
Li (10.1016/j.bspc.2023.104917_b0140) 2021; 29
Kao (10.1016/j.bspc.2023.104917_b0175) 2015; 6
10.1016/j.bspc.2023.104917_b0030
Cortes (10.1016/j.bspc.2023.104917_b0260) 1995; 20
Vieira (10.1016/j.bspc.2023.104917_b0115) 2017; 74
Dauwels (10.1016/j.bspc.2023.104917_b0250) 2010; 7
Cover (10.1016/j.bspc.2023.104917_b0265) 1967; 13
Trambaiolli (10.1016/j.bspc.2023.104917_b0130) 2011; 42
Lin (10.1016/j.bspc.2023.104917_b0155) 2020; 180
Kanda (10.1016/j.bspc.2023.104917_b0210) 2014; 45
Agosta (10.1016/j.bspc.2023.104917_b0050) 2012; 33
Pichet (10.1016/j.bspc.2023.104917_b0040) 2022; 13
Franciotti (10.1016/j.bspc.2023.104917_b0090) 2019; 32
10.1016/j.bspc.2023.104917_b0235
Pandarinath (10.1016/j.bspc.2023.104917_b0185) 2018; 15
Beier (10.1016/j.bspc.2023.104917_b0020) 2007; 27
Cera (10.1016/j.bspc.2023.104917_b0215) 2013; 25
Cassani (10.1016/j.bspc.2023.104917_b0045) 2018
Barnes (10.1016/j.bspc.2023.104917_b0015) 2018; 64
Braak (10.1016/j.bspc.2023.104917_b0005) 1991; 82
Wang (10.1016/j.bspc.2023.104917_b0245) 2015; 9
Zhao (10.1016/j.bspc.2023.104917_b0120) 2022; 246
Pini (10.1016/j.bspc.2023.104917_b0095) 2021; 72
Liu (10.1016/j.bspc.2023.104917_b0190) 2020; 14
Pandarinath (10.1016/j.bspc.2023.104917_b0145) 2018; 38
Cherry (10.1016/j.bspc.2023.104917_b0025) 2005; 31
Wang (10.1016/j.bspc.2023.104917_b0070) 2015; 25
Yu (10.1016/j.bspc.2023.104917_b0110) 2020; 14
Cueva (10.1016/j.bspc.2023.104917_b0170) 2020; 117
Tetreault (10.1016/j.bspc.2023.104917_b0080) 2020; 143
Yu (10.1016/j.bspc.2023.104917_b0135) 2020; 28
Graff-Radford (10.1016/j.bspc.2023.104917_b0225) 2021; 20
References_xml – volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0260
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 16
  start-page: e1008128
  year: 2020
  ident: b0205
  article-title: Engineering recurrent neural networks from task-relevant manifolds and dynamics
  publication-title: PLoS Comput. Biol.
– volume: 45
  start-page: 104
  year: 2014
  end-page: 112
  ident: b0210
  article-title: Clinician’s road map to wavelet EEG as an Alzheimer’s Disease Biomarker
  publication-title: Clin. EEG Neurosci.
– volume: 20
  start-page: 222
  year: 2021
  end-page: 234
  ident: b0225
  article-title: New insights into atypical Alzheimer's disease in the era of biomarkers
  publication-title: The Lancet Neurol.
– volume: 8
  start-page: 1214
  year: 2017
  ident: b0035
  article-title: Earliest accumulation of Β-Amyloid occurs within the default-mode network and concurrently affects brain connectivity
  publication-title: Nat. Commun.
– volume: 143
  start-page: 1249
  year: 2020
  end-page: 1260
  ident: b0080
  article-title: Network localization of clinical, cognitive, and neuropsychiatric symptoms in Alzheimer’s Disease
  publication-title: Brain
– volume: 82
  start-page: 239
  year: 1991
  end-page: 259
  ident: b0005
  article-title: Neuropathological Stageing of Alzheimer-Related Changes
  publication-title: Acta. Neuropathol.
– start-page: 51. 14
  year: 2020:
  ident: b0105
  article-title: Functional integration and segregation in multiplex brain networks for Alzheimer's disease
  publication-title: Front. Neurosci.
– volume: 13
  start-page: 6635
  year: 2022
  ident: b0040
  article-title: Amyloid-associated increases in soluble Tau relate to tau aggregation rates and cognitive decline in Early Alzheimer’s disease
  publication-title: Nat. Commun.
– volume: 38
  start-page: 9390
  year: 2018
  end-page: 9401
  ident: b0145
  article-title: Latent factors and dynamics in motor cortex and their application to brain-machine interfaces
  publication-title: J. Neurosci.
– volume: 27
  start-page: 221
  year: 1987
  end-page: 234
  ident: b0270
  article-title: Simplifying decision trees
  publication-title: Int. J. Man Mach. Stud.
– volume: 7
  start-page: 487
  year: 2010
  ident: b0250
  article-title: Diagnosis of Alzheimer's Disease from EEG Signals: where are we standing?
  publication-title: Curr. Alzheimer Res.
– volume: 25
  year: 2015
  ident: b0240
  article-title: Characterization of complexity in the electroencephalograph activity of Alzheimer's disease based on fuzzy entropy. chaos: an interdisciplinary
  publication-title: J. Nonlinear Sci.
– volume: 6
  start-page: 7759
  year: 2015
  ident: b0175
  article-title: Single-trial dynamics of motor cortex and their applications to brain-machine interfaces
  publication-title: Nat. Commun.
– volume: 9
  start-page: 291
  year: 2015
  end-page: 304
  ident: b0245
  article-title: Power spectral density and coherence analysis of alzheimer's EEG
  publication-title: Cogn. Neurodyn.
– volume: 17
  start-page: 1500
  year: 2014
  end-page: 1509
  ident: b0180
  article-title: Dimensionality reduction for large-scale neural recordings
  publication-title: Nat. Neurosci.
– start-page: 1
  year: 2021
  end-page: 15
  ident: b0065
  article-title: A review of methods of diagnosis and complexity analysis of Alzheimer's disease using EEG signals
  publication-title: Biomed Res. Int.
– volume: 42
  start-page: 160
  year: 2011
  end-page: 165
  ident: b0130
  article-title: Improving Alzheimer's disease diagnosis with machine learning techniques
  publication-title: Clin. EEG Neurosci.
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: b0265
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
– volume: 14
  start-page: 641
  year: 2020
  ident: b0110
  article-title: Identification of Alzheimer's EEG with a WVG Network-Based Fuzzy Learning Approach
  publication-title: Front. Neurosci.
– volume: 487
  start-page: 51
  year: 2012
  end-page: 56
  ident: b0160
  article-title: Neural population dynamics during reaching
  publication-title: Nature
– volume: 25
  year: 2015
  ident: b0070
  article-title: Multiple feature extraction and classification of electroencephalograph signal for Alzheimers' with spectrum and bispectrum. chaos: an interdisciplinary
  publication-title: J. Nonlinear Sci.
– volume: 20
  start-page: 391
  year: 2013
  end-page: 405
  ident: b0255
  article-title: EEG-based expert system using complexity measures and probability density function control in alpha sub-band
  publication-title: Integr. Comput.-Aided Eng.
– volume: 246
  year: 2022
  ident: b0120
  article-title: A dynamic graph convolutional neural network framework reveals new insights into connectome dysfunctions in Adhd
  publication-title: Neuroimage
– volume: 29
  start-page: 1557
  year: 2021
  end-page: 1567
  ident: b0140
  article-title: Feature extraction and identification of alzheimer's disease based on latent factor of multi-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 5174815
  year: 2018
  ident: b0045
  article-title: Systematic review on resting-state EEG for Alzheimer's disease diagnosis and progression assessment
  publication-title: Dis. Markers
– volume: 72
  year: 2021
  ident: b0095
  article-title: Breakdown of specific functional brain networks in clinical variants of Alzheimer's disease
  publication-title: Ageing Res. Rev.
– volume: 28
  start-page: 60
  year: 2020
  end-page: 71
  ident: b0135
  article-title: Supervised Network-Based Fuzzy Learning of EEG Signals for Alzheimer's Disease Identification
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 73
  year: 2022
  ident: b0125
  article-title: Detection of Epileptic Seizures on EEG signals using anfis classifier, autoencoders and fuzzy entropies
  publication-title: Biomed. Signal Process. Control
– volume: 180
  start-page: 536
  year: 2020
  end-page: 551.e17
  ident: b0155
  article-title: Cerebellar neurodynamics predict decision timing and outcome on the single-trial level
  publication-title: Cell
– volume: 74
  start-page: 58
  year: 2017
  end-page: 75
  ident: b0115
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications
  publication-title: Neurosci. Biobehav. Rev.
– volume: 98
  start-page: 1005
  year: 2018
  end-page: 1019.e5
  ident: b0165
  article-title: Flexible sensorimotor computations through rapid reconfiguration of cortical dynamics
  publication-title: Neuron
– volume: 4
  start-page: T332
  year: 2008
  end-page: T333
  ident: b0060
  article-title: P1–388: resting-state oscillatory brain dynamics in Alzheimer's disease
  publication-title: Alzheimers Dement.
– volume: 36
  start-page: 1245
  year: 2015
  end-page: 1252
  ident: b0055
  article-title: Working Memory and Language Network Dysfunctions in Logopenic Aphasia: a Task-Free fMRI Comparison with Alzheimer's Dementia
  publication-title: Neurobiol. Aging
– volume: 96
  start-page: e81
  year: 2020
  end-page: e92
  ident: b0220
  article-title: Topographic Distribution of Amyloid-Β, Tau, and Atrophy in Patients with Behavioral/Dysexecutive Alzheimer Disease
  publication-title: Neurology
– volume: 7
  start-page: 53731
  year: 2019
  end-page: 53742
  ident: b0195
  article-title: Spectrum Analysis of EEG Signals Using CNN to model patient's consciousness level based on anesthesiologists' experience
  publication-title: IEEE Access
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0200
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 27
  start-page: 399
  year: 2007
  end-page: 411
  ident: b0020
  article-title: Treatment strategies for the behavioral symptoms of Alzheimer's disease: focus on early pharmacologic intervention
  publication-title: Pharmacotherapy
– volume: 85
  start-page: 114
  year: 2019
  end-page: 124
  ident: b0010
  article-title: Attributable risk of Alzheimer's dementia attributed to age-related neuropathologies
  publication-title: Ann. Neurol.
– volume: 33
  start-page: 1564
  year: 2012
  end-page: 1578
  ident: b0050
  article-title: Resting State fMRI in Alzheimer's Disease: beyond the default mode network
  publication-title: Neurobiol. Aging
– reference: C. Condello, et al., Aβ and Tau Prions Feature in the Neuropathogenesis of Down Syndrome. Proceedings of the National Academy of Sciences, 2022. 119 46 e2212954119.
– volume: 117
  start-page: 23021
  year: 2020
  end-page: 23032
  ident: b0170
  article-title: Low-dimensional dynamics for working memory and time encoding
  publication-title: Proc. Natl. Acad. Sci.
– volume: 94
  start-page: 978
  year: 2017
  end-page: 984
  ident: b0150
  article-title: Neural manifolds for the control of movement
  publication-title: Neuron
– reference: J.C. Watts, et al., Serial Propagation of Distinct Strains of Aβ Prions from Alzheimer's Disease Patients. Proceedings of the National Academy of Sciences, 2014. 111 28 10323-10328.
– volume: 65
  start-page: 18
  year: 2018
  end-page: 40
  ident: b0085
  article-title: Abnormalities of resting-state functional cortical connectivity in patients with dementia due to alzheimer's and lewy body diseases: an EEG Study
  publication-title: Neurobiol. Aging
– volume: 64
  start-page: 631
  year: 2018
  end-page: 642
  ident: b0015
  article-title: Disease course varies according to age and symptom length in Alzheimer's Disease
  publication-title: J. Alzheimers Dis.
– volume: 32
  start-page: 127
  year: 2019
  end-page: 141
  ident: b0090
  article-title: Cortical network topology in prodromal and mild dementia due to alzheimer's disease: graph theory applied to resting state EEG
  publication-title: Brain Topogr.
– volume: 15
  start-page: 805
  year: 2018
  end-page: 815
  ident: b0185
  article-title: Inferring single-trial neural population dynamics using sequential auto-encoders
  publication-title: Nat. Methods
– volume: 14
  start-page: 43
  year: 2020
  ident: b0190
  article-title: EEG-based emotion classification using a deep neural network and sparse autoencoder
  publication-title: Front. Syst. Neurosci.
– volume: 74
  start-page: 202
  year: 2015
  end-page: 210
  ident: b0075
  article-title: Clinical Neurophysiological and Automated EEG-Based Diagnosis of the Alzheimer's Disease
  publication-title: Eur. Neurol.
– volume: 31
  start-page: 261
  year: 2005
  end-page: 289
  ident: b0025
  article-title: Long-term effectiveness of spaced-retrieval memory training for older adults with probable Alzheimer's disease
  publication-title: Exp. Aging Res.
– volume: 25
  start-page: 1679
  year: 2013
  end-page: 1685
  ident: b0215
  article-title: Speech and Orofacial Apraxias in Alzheimer's Disease
  publication-title: Int. Psychogeriatr.
– volume: 506
  start-page: 1093
  year: 2018
  end-page: 1103
  ident: b0100
  article-title: Functional brain connectivity in alzheimer's disease: an EEG study based on permutation disalignment index
  publication-title: Physica. A
– volume: 58
  start-page: 632
  year: 2017
  end-page: 638
  ident: b0230
  article-title: 18F-Fdg pet in posterior cortical atrophy and dementia with Lewy bodies
  publication-title: J. Nucl. Med.
– volume: 73
  year: 2022
  ident: 10.1016/j.bspc.2023.104917_b0125
  article-title: Detection of Epileptic Seizures on EEG signals using anfis classifier, autoencoders and fuzzy entropies
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103417
– volume: 13
  start-page: 6635
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.104917_b0040
  article-title: Amyloid-associated increases in soluble Tau relate to tau aggregation rates and cognitive decline in Early Alzheimer’s disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34129-4
– volume: 25
  start-page: 1679
  issue: 10
  year: 2013
  ident: 10.1016/j.bspc.2023.104917_b0215
  article-title: Speech and Orofacial Apraxias in Alzheimer's Disease
  publication-title: Int. Psychogeriatr.
  doi: 10.1017/S1041610213000781
– volume: 25
  issue: 1
  year: 2015
  ident: 10.1016/j.bspc.2023.104917_b0070
  article-title: Multiple feature extraction and classification of electroencephalograph signal for Alzheimers' with spectrum and bispectrum. chaos: an interdisciplinary
  publication-title: J. Nonlinear Sci.
– start-page: 5174815
  year: 2018
  ident: 10.1016/j.bspc.2023.104917_b0045
  article-title: Systematic review on resting-state EEG for Alzheimer's disease diagnosis and progression assessment
  publication-title: Dis. Markers
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.bspc.2023.104917_b0265
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 17
  start-page: 1500
  issue: 11
  year: 2014
  ident: 10.1016/j.bspc.2023.104917_b0180
  article-title: Dimensionality reduction for large-scale neural recordings
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3776
– volume: 85
  start-page: 114
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2023.104917_b0010
  article-title: Attributable risk of Alzheimer's dementia attributed to age-related neuropathologies
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25380
– ident: 10.1016/j.bspc.2023.104917_b0235
  doi: 10.1073/pnas.2212954119
– volume: 15
  start-page: 805
  issue: 10
  year: 2018
  ident: 10.1016/j.bspc.2023.104917_b0185
  article-title: Inferring single-trial neural population dynamics using sequential auto-encoders
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0109-9
– volume: 94
  start-page: 978
  issue: 5
  year: 2017
  ident: 10.1016/j.bspc.2023.104917_b0150
  article-title: Neural manifolds for the control of movement
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.05.025
– volume: 180
  start-page: 536
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2023.104917_b0155
  article-title: Cerebellar neurodynamics predict decision timing and outcome on the single-trial level
  publication-title: Cell
  doi: 10.1016/j.cell.2019.12.018
– volume: 29
  start-page: 1557
  year: 2021
  ident: 10.1016/j.bspc.2023.104917_b0140
  article-title: Feature extraction and identification of alzheimer's disease based on latent factor of multi-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3101240
– volume: 64
  start-page: 631
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2023.104917_b0015
  article-title: Disease course varies according to age and symptom length in Alzheimer's Disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-170841
– volume: 74
  start-page: 58
  year: 2017
  ident: 10.1016/j.bspc.2023.104917_b0115
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2017.01.002
– ident: 10.1016/j.bspc.2023.104917_b0030
  doi: 10.1073/pnas.1408900111
– volume: 42
  start-page: 160
  issue: 3
  year: 2011
  ident: 10.1016/j.bspc.2023.104917_b0130
  article-title: Improving Alzheimer's disease diagnosis with machine learning techniques
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/155005941104200304
– volume: 38
  start-page: 9390
  issue: 44
  year: 2018
  ident: 10.1016/j.bspc.2023.104917_b0145
  article-title: Latent factors and dynamics in motor cortex and their application to brain-machine interfaces
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1669-18.2018
– volume: 74
  start-page: 202
  issue: 3–4
  year: 2015
  ident: 10.1016/j.bspc.2023.104917_b0075
  article-title: Clinical Neurophysiological and Automated EEG-Based Diagnosis of the Alzheimer's Disease
  publication-title: Eur. Neurol.
  doi: 10.1159/000441447
– volume: 6
  start-page: 7759
  issue: 1
  year: 2015
  ident: 10.1016/j.bspc.2023.104917_b0175
  article-title: Single-trial dynamics of motor cortex and their applications to brain-machine interfaces
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8759
– volume: 72
  year: 2021
  ident: 10.1016/j.bspc.2023.104917_b0095
  article-title: Breakdown of specific functional brain networks in clinical variants of Alzheimer's disease
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2021.101482
– volume: 20
  start-page: 222
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2023.104917_b0225
  article-title: New insights into atypical Alzheimer's disease in the era of biomarkers
  publication-title: The Lancet Neurol.
  doi: 10.1016/S1474-4422(20)30440-3
– volume: 96
  start-page: e81
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.104917_b0220
  article-title: Topographic Distribution of Amyloid-Β, Tau, and Atrophy in Patients with Behavioral/Dysexecutive Alzheimer Disease
  publication-title: Neurology
– volume: 487
  start-page: 51
  issue: 7405
  year: 2012
  ident: 10.1016/j.bspc.2023.104917_b0160
  article-title: Neural population dynamics during reaching
  publication-title: Nature
  doi: 10.1038/nature11129
– volume: 98
  start-page: 1005
  issue: 5
  year: 2018
  ident: 10.1016/j.bspc.2023.104917_b0165
  article-title: Flexible sensorimotor computations through rapid reconfiguration of cortical dynamics
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.05.020
– volume: 45
  start-page: 104
  issue: 2
  year: 2014
  ident: 10.1016/j.bspc.2023.104917_b0210
  article-title: Clinician’s road map to wavelet EEG as an Alzheimer’s Disease Biomarker
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/1550059413486272
– volume: 117
  start-page: 23021
  issue: 37
  year: 2020
  ident: 10.1016/j.bspc.2023.104917_b0170
  article-title: Low-dimensional dynamics for working memory and time encoding
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1915984117
– volume: 82
  start-page: 239
  issue: 4
  year: 1991
  ident: 10.1016/j.bspc.2023.104917_b0005
  article-title: Neuropathological Stageing of Alzheimer-Related Changes
  publication-title: Acta. Neuropathol.
  doi: 10.1007/BF00308809
– volume: 27
  start-page: 221
  issue: 3
  year: 1987
  ident: 10.1016/j.bspc.2023.104917_b0270
  article-title: Simplifying decision trees
  publication-title: Int. J. Man Mach. Stud.
  doi: 10.1016/S0020-7373(87)80053-6
– volume: 28
  start-page: 60
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.104917_b0135
  article-title: Supervised Network-Based Fuzzy Learning of EEG Signals for Alzheimer's Disease Identification
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2903753
– volume: 143
  start-page: 1249
  issue: 4
  year: 2020
  ident: 10.1016/j.bspc.2023.104917_b0080
  article-title: Network localization of clinical, cognitive, and neuropsychiatric symptoms in Alzheimer’s Disease
  publication-title: Brain
  doi: 10.1093/brain/awaa058
– volume: 14
  start-page: 641
  year: 2020
  ident: 10.1016/j.bspc.2023.104917_b0110
  article-title: Identification of Alzheimer's EEG with a WVG Network-Based Fuzzy Learning Approach
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00641
– volume: 16
  start-page: e1008128
  issue: 8
  year: 2020
  ident: 10.1016/j.bspc.2023.104917_b0205
  article-title: Engineering recurrent neural networks from task-relevant manifolds and dynamics
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008128
– volume: 20
  start-page: 391
  issue: 4
  year: 2013
  ident: 10.1016/j.bspc.2023.104917_b0255
  article-title: EEG-based expert system using complexity measures and probability density function control in alpha sub-band
  publication-title: Integr. Comput.-Aided Eng.
  doi: 10.3233/ICA-130439
– volume: 7
  start-page: 53731
  year: 2019
  ident: 10.1016/j.bspc.2023.104917_b0195
  article-title: Spectrum Analysis of EEG Signals Using CNN to model patient's consciousness level based on anesthesiologists' experience
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912273
– volume: 8
  start-page: 1214
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2023.104917_b0035
  article-title: Earliest accumulation of Β-Amyloid occurs within the default-mode network and concurrently affects brain connectivity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01150-x
– volume: 4
  start-page: T332
  issue: 4S_Part_10
  year: 2008
  ident: 10.1016/j.bspc.2023.104917_b0060
  article-title: P1–388: resting-state oscillatory brain dynamics in Alzheimer's disease
  publication-title: Alzheimers Dement.
– volume: 9
  start-page: 291
  issue: 3
  year: 2015
  ident: 10.1016/j.bspc.2023.104917_b0245
  article-title: Power spectral density and coherence analysis of alzheimer's EEG
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-014-9325-x
– volume: 14
  start-page: 43
  year: 2020
  ident: 10.1016/j.bspc.2023.104917_b0190
  article-title: EEG-based emotion classification using a deep neural network and sparse autoencoder
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2020.00043
– start-page: 51. 14
  year: 2020
  ident: 10.1016/j.bspc.2023.104917_b0105
  article-title: Functional integration and segregation in multiplex brain networks for Alzheimer's disease
  publication-title: Front. Neurosci.
– volume: 506
  start-page: 1093
  year: 2018
  ident: 10.1016/j.bspc.2023.104917_b0100
  article-title: Functional brain connectivity in alzheimer's disease: an EEG study based on permutation disalignment index
  publication-title: Physica. A
  doi: 10.1016/j.physa.2018.05.009
– volume: 31
  start-page: 261
  issue: 3
  year: 2005
  ident: 10.1016/j.bspc.2023.104917_b0025
  article-title: Long-term effectiveness of spaced-retrieval memory training for older adults with probable Alzheimer's disease
  publication-title: Exp. Aging Res.
  doi: 10.1080/03610730590948186
– volume: 246
  year: 2022
  ident: 10.1016/j.bspc.2023.104917_b0120
  article-title: A dynamic graph convolutional neural network framework reveals new insights into connectome dysfunctions in Adhd
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118774
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.bspc.2023.104917_b0200
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.104917_b0065
  article-title: A review of methods of diagnosis and complexity analysis of Alzheimer's disease using EEG signals
  publication-title: Biomed Res. Int.
– volume: 65
  start-page: 18
  year: 2018
  ident: 10.1016/j.bspc.2023.104917_b0085
  article-title: Abnormalities of resting-state functional cortical connectivity in patients with dementia due to alzheimer's and lewy body diseases: an EEG Study
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2017.12.023
– volume: 7
  start-page: 487
  issue: 6
  year: 2010
  ident: 10.1016/j.bspc.2023.104917_b0250
  article-title: Diagnosis of Alzheimer's Disease from EEG Signals: where are we standing?
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/156720510792231720
– volume: 33
  start-page: 1564
  issue: 8
  year: 2012
  ident: 10.1016/j.bspc.2023.104917_b0050
  article-title: Resting State fMRI in Alzheimer's Disease: beyond the default mode network
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.06.007
– volume: 27
  start-page: 399
  issue: 3
  year: 2007
  ident: 10.1016/j.bspc.2023.104917_b0020
  article-title: Treatment strategies for the behavioral symptoms of Alzheimer's disease: focus on early pharmacologic intervention
  publication-title: Pharmacotherapy
  doi: 10.1592/phco.27.3.399
– volume: 36
  start-page: 1245
  issue: 3
  year: 2015
  ident: 10.1016/j.bspc.2023.104917_b0055
  article-title: Working Memory and Language Network Dysfunctions in Logopenic Aphasia: a Task-Free fMRI Comparison with Alzheimer's Dementia
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.12.013
– volume: 25
  issue: 8
  year: 2015
  ident: 10.1016/j.bspc.2023.104917_b0240
  article-title: Characterization of complexity in the electroencephalograph activity of Alzheimer's disease based on fuzzy entropy. chaos: an interdisciplinary
  publication-title: J. Nonlinear Sci.
– volume: 58
  start-page: 632
  issue: 4
  year: 2017
  ident: 10.1016/j.bspc.2023.104917_b0230
  article-title: 18F-Fdg pet in posterior cortical atrophy and dementia with Lewy bodies
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.116.179903
– volume: 32
  start-page: 127
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2023.104917_b0090
  article-title: Cortical network topology in prodromal and mild dementia due to alzheimer's disease: graph theory applied to resting state EEG
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-018-0674-3
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.bspc.2023.104917_b0260
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
SSID ssj0048714
Score 2.3607574
Snippet •An automatic EEG-based diagnosis scheme for Alzheimer’s disease (AD) with deep learning methods was proposed.•A Spatial-Temporal Autoencoder (STAE) framework...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104917
SubjectTerms Alzheimer’s disease
Deep learning
Diagnosis
Latent brain dynamics
Spatial-Temporal Autoencoder
Title Efficient identification of Alzheimer’s brain dynamics with Spatial-Temporal Autoencoder: A deep learning approach for diagnosing brain disorders
URI https://dx.doi.org/10.1016/j.bspc.2023.104917
Volume 86
WOSCitedRecordID wos000986554400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2FlgUsEE-1vDQLdpEr22N7bHYRCoIKVSCCFLGxxvNoXUVO1CRVYcU_sOI_-CK-hDvPuAFVgMTGikaeseVzMvfOzL3nIvRMUnCLwbRFPKYsAnutoqpqmkgSnhWSM1HkwhSboEdH5XRavR0MvvtcmPMZ7bry4qJa_FeooQ3A1qmzfwF3GBQa4DeADleAHa5_BPzYiELoI_5WuFCg4BaOZp9PZKsLprgYh2o5bHSRiKGwleldspsuVAxvGk2scBWguF7NteSllhsxuexCyoUvOXEclMlN0KKw0Xu63Y3tFD6Xl06QTd6_Tcpsj7VPvLA5Cz5r0gXRB6uxdlsIx5_WgdAfT5jZ6n23Zp0KBuZNa-499FbZ1B0zNpa1Kzbvb3SkJERyud03n4GzCXfSEzbNtKCyLZR8IHttSVz2Z3kruP2LwbB7F6cHzXKhBS1Tog-9K5tOuiXE_V6Pqx8FqzZ9HltcQ7spzSuYS3dHr8fTQ-8BwBrQaMqHd3PJWjaucPtJv3eIek7O5Da65VYneGRZdQcNZHcX3expVt5DXwO_8GV-4bnCgV8_vnxbYoM-9szCmll4m1m4x6zneIQ1r7DnFfa8wsArvOGVH9nz6j768HI8efEqcpU9Ig7fbhURLkTCMlZywhT42OAkE54wWSoal4xWaUFJmgiaszgpi0w1TU5UUwkSN3Ghmpg8QDvdvJN7COecKE5LGZOGZUqkVUoVh4FlRgXY8WIfJf7z1tzJ3uvqK7Paxzee1hqSWkNSW0j20TD0WVjRlyvvzj1qtXNbrTtaA8mu6PfwH_s9Qjc2f4_HaGd1tpZP0HV-vmqXZ08dF38CQFHDmw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+identification+of+Alzheimer%E2%80%99s+brain+dynamics+with+Spatial-Temporal+Autoencoder%3A+A+deep+learning+approach+for+diagnosing+brain+disorders&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wu%2C+Lingyun&rft.au=Zhao%2C+Quanfa&rft.au=Liu%2C+Jing&rft.au=Yu%2C+Haitao&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=86&rft_id=info:doi/10.1016%2Fj.bspc.2023.104917&rft.externalDocID=S1746809423003506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon