Detecting structural anomalies of quadcopter UAVs based on LSTM autoencoder

Detecting a structural anomaly, such as a damaged propeller or motor, is crucial for mission-critical operation of unmanned aerial vehicles (UAVs). The existing solutions often fail to detect structural anomalies because the pre-defined parameters required for the solution are limited in reflecting...

Full description

Saved in:
Bibliographic Details
Published in:Pervasive and mobile computing Vol. 88; p. 101736
Main Authors: Jeon, Seunghyeok, Kang, Jaeyun, Kim, Jiwon, Cha, Hojung
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2023
Subjects:
ISSN:1574-1192, 1873-1589
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Detecting a structural anomaly, such as a damaged propeller or motor, is crucial for mission-critical operation of unmanned aerial vehicles (UAVs). The existing solutions often fail to detect structural anomalies because the pre-defined parameters required for the solution are limited in reflecting the flight pattern or the external environment, such as wind conditions. In this paper, we propose a method for detecting structural anomalies in quadcopter UAVs, using only regular data and specifically considering flight patterns and runtime flight conditions. To this end, we employ a long short-term memory (LSTM) autoencoder model to learn complex features of regular flight data. While flying the UAV, the trained model estimates the degree of outlierness of the incoming data and assesses abnormal behavior of UAV by adaptively considering its movement. This way, the proposed method accurately detects structural anomalies in UAVs regardless of the runtime environment or flight mission. Our experiment results with an off-the-shelf UAV show that the proposed approach detects diverse structural anomalies by an average of 98.6% specificity and 90.3% sensitivity.
AbstractList Detecting a structural anomaly, such as a damaged propeller or motor, is crucial for mission-critical operation of unmanned aerial vehicles (UAVs). The existing solutions often fail to detect structural anomalies because the pre-defined parameters required for the solution are limited in reflecting the flight pattern or the external environment, such as wind conditions. In this paper, we propose a method for detecting structural anomalies in quadcopter UAVs, using only regular data and specifically considering flight patterns and runtime flight conditions. To this end, we employ a long short-term memory (LSTM) autoencoder model to learn complex features of regular flight data. While flying the UAV, the trained model estimates the degree of outlierness of the incoming data and assesses abnormal behavior of UAV by adaptively considering its movement. This way, the proposed method accurately detects structural anomalies in UAVs regardless of the runtime environment or flight mission. Our experiment results with an off-the-shelf UAV show that the proposed approach detects diverse structural anomalies by an average of 98.6% specificity and 90.3% sensitivity.
ArticleNumber 101736
Author Kim, Jiwon
Kang, Jaeyun
Jeon, Seunghyeok
Cha, Hojung
Author_xml – sequence: 1
  givenname: Seunghyeok
  surname: Jeon
  fullname: Jeon, Seunghyeok
– sequence: 2
  givenname: Jaeyun
  surname: Kang
  fullname: Kang, Jaeyun
– sequence: 3
  givenname: Jiwon
  surname: Kim
  fullname: Kim, Jiwon
– sequence: 4
  givenname: Hojung
  surname: Cha
  fullname: Cha, Hojung
  email: hjcha@yonsei.ac.kr
BookMark eNp9kMtKAzEUhoNUsK2-gKu8wNRc5pIBN6VeseLC1m3IJCeSoZ3UJCP49s5QVy66Oocfvh_-b4Ymne8AoWtKFpTQ8qZdHPa6XTDC2BhUvDxDUyoqntFC1JPhL6o8o7RmF2gWY0tITvOKTNHLHSTQyXWfOKbQ69QHtcOq83u1cxCxt_irV0b7Q4KAt8uPiBsVwWDf4fX75hWrPnnotDcQLtG5VbsIV393jrYP95vVU7Z-e3xeLdeZ5oSkjItCNbVurMmJUIKbpiCsLq3WFai6qoUhjVYVB5vbWllTCigYEMsbBnwI-ByJY68OPsYAVmqXVHK-S0G5naREjlJkK0cpcpQij1IGlP1DD8HtVfg5Dd0eIRhGfTsIMmo3bAbjwuBOGu9O4b8Yr37i
CitedBy_id crossref_primary_10_1016_j_cose_2024_104248
crossref_primary_10_1016_j_jestch_2024_101702
crossref_primary_10_1109_JSEN_2025_3562935
crossref_primary_10_1186_s42492_025_00203_z
crossref_primary_10_1007_s10846_025_02267_8
crossref_primary_10_1145_3758095
crossref_primary_10_3390_aerospace11050393
crossref_primary_10_3390_s24103215
crossref_primary_10_1109_JSEN_2024_3451648
Cites_doi 10.1016/j.neucom.2016.12.038
10.1109/JIOT.2017.2737479
10.1109/TMECH.2019.2947250
10.1162/neco.1997.9.8.1735
10.3390/robotics8030059
10.1111/j.1471-0528.2008.01700.x
10.1016/j.asoc.2019.105650
10.1136/bmj.308.6943.1552
10.1038/nature14542
10.1145/1541880.1541882
10.3390/s21248253
10.1007/978-3-030-63823-8_83
10.1145/3213526.3213531
10.1007/s10846-012-9757-7
10.1007/s10846-015-0284-1
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.pmcj.2022.101736
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-1589
ExternalDocumentID 10_1016_j_pmcj_2022_101736
S1574119222001493
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-385ab9cbfd408a83db50296fcc7ea9798d0bca73ef4f9afd68e52e0f3b2e39af3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972933800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1574-1192
IngestDate Tue Nov 18 22:01:51 EST 2025
Sat Nov 29 07:02:45 EST 2025
Fri Feb 23 02:39:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Structural anomaly detection
LSTM autoencoder
UAV
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-385ab9cbfd408a83db50296fcc7ea9798d0bca73ef4f9afd68e52e0f3b2e39af3
ParticipantIDs crossref_citationtrail_10_1016_j_pmcj_2022_101736
crossref_primary_10_1016_j_pmcj_2022_101736
elsevier_sciencedirect_doi_10_1016_j_pmcj_2022_101736
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Pervasive and mobile computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References P. Misra, G. Kandaswamy, P. Mohapatra, K. Kumar, P. Balamuralidhar, Structural Health Monitoring of Multi-Rotor Micro Aerial Vehicles, in: Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, 2018, pp. 21–26.
B. Schölkopf, R.C. Williamson, A.J. Smola, J. Shawe-Taylor, J.C. Platt, Support vector method for novelty detection, in: Advances in Neural Information Processing Systems, 2000, pp. 582–588.
Patro, Sahu (b37) 2015
Boyd (b23) 2008; 115
Wang, Wang, Liu, Liu, Peng (b21) 2019
A. Hobbs, S.R. Herwitz, Human Challenges in the Maintenance of Unmanned Aircraft Systems, FAA and NASA Report, 2006.
Ghalamchi, Mueller (b24) 2018
Balestrieri, Daponte, De Vito, Picariello, Tudosa (b6) 2021; 21
G. Muchiri, S. Kimathi, A review of applications and potential applications of UAV, in: Proceedings of the Proceedings of the Sustainable Research and Innovation Conference, 2022.
DJI flame wheel F450 ARF kit, [Online]. Available
Hex Cube Black Flight Controller
A. Palmer, Amazon wins FAA approval for prime air drone delivery fleet. [Online]. Available
Chandola, Banerjee, Kumar (b14) 2009; 41
DJI flame wheel F450 ARF kit
Team, A. D. Mission Planner, Mission Planner Home
G.E. Hinton, R.S. Zemel, Autoencoders, minimum description length and Helmholtz free energy, in: Advances in Neural Information Processing Systems, 1994, pp. 3–10.
Hochreiter, Schmidhuber (b31) 1997; 9
Team, A. D. Ardupilot
Baskaya, Bronz, Delahaye (b19) 2017
Wade (b39) 2017
Amoozgar, Chamseddine, Zhang (b8) 2013; 70
Birnbaum, Dolgikh, Skormin, O’Brien, Muller, Stracquodaine (b7) 2016; 84
Lu, Li, Mu, Wang, Kim, Serikawa (b16) 2018; 5
Li, Huang, Tian, Xu (b26) 2003
X. Liu, Z. Lai, X. Wang, L. Huang, P.S. Nielsen, A Contextual Anomaly Detection Framework for Energy Smart Meter Data Stream, in: International Conference on Neural Information Processing, 2020, pp. 733–742.
Mouhssine, Kabbaj, Benbrahim, El Bekkali (b10) 2017
Iannace, Ciaburro, Trematerra (b17) 2019; 8
Nguyen, Berbra, Lesecq, Gentil, Barraud, Godin (b9) 2009
.
Asadi (b12) 2022
Khan, Liew, Yairi, McWilliam (b20) 2019; 83
Ghalamchi, Jia, Mueller (b25) 2019; 25
Chalapathy, Chawla (b15) 2019
Why Amazon, UPS and even Domino’s is investing in drone delivery services, [Online]. Available
Huler (b38) 2007
Kandaswamy, Balamuralidhar (b13) 2017; 11
Floreano, Wood (b3) 2015; 521
Liu, Wang, Liu, Zeng, Liu, Alsaadi (b29) 2017; 234
Freddi, Longhi, Monteriu (b11) 2010
Malhotra, Vig, Shroff, Agarwal (b30) 2015; vol. 89
Altman, Bland (b40) 1994; 308
Malhotra (10.1016/j.pmcj.2022.101736_b30) 2015; vol. 89
Li (10.1016/j.pmcj.2022.101736_b26) 2003
Birnbaum (10.1016/j.pmcj.2022.101736_b7) 2016; 84
Balestrieri (10.1016/j.pmcj.2022.101736_b6) 2021; 21
Ghalamchi (10.1016/j.pmcj.2022.101736_b25) 2019; 25
Huler (10.1016/j.pmcj.2022.101736_b38) 2007
Asadi (10.1016/j.pmcj.2022.101736_b12) 2022
Baskaya (10.1016/j.pmcj.2022.101736_b19) 2017
Chandola (10.1016/j.pmcj.2022.101736_b14) 2009; 41
Iannace (10.1016/j.pmcj.2022.101736_b17) 2019; 8
Altman (10.1016/j.pmcj.2022.101736_b40) 1994; 308
Amoozgar (10.1016/j.pmcj.2022.101736_b8) 2013; 70
10.1016/j.pmcj.2022.101736_b36
10.1016/j.pmcj.2022.101736_b34
Ghalamchi (10.1016/j.pmcj.2022.101736_b24) 2018
10.1016/j.pmcj.2022.101736_b35
10.1016/j.pmcj.2022.101736_b32
10.1016/j.pmcj.2022.101736_b33
Mouhssine (10.1016/j.pmcj.2022.101736_b10) 2017
Patro (10.1016/j.pmcj.2022.101736_b37) 2015
Chalapathy (10.1016/j.pmcj.2022.101736_b15) 2019
10.1016/j.pmcj.2022.101736_b18
Wade (10.1016/j.pmcj.2022.101736_b39) 2017
Floreano (10.1016/j.pmcj.2022.101736_b3) 2015; 521
Khan (10.1016/j.pmcj.2022.101736_b20) 2019; 83
Wang (10.1016/j.pmcj.2022.101736_b21) 2019
Kandaswamy (10.1016/j.pmcj.2022.101736_b13) 2017; 11
10.1016/j.pmcj.2022.101736_b27
10.1016/j.pmcj.2022.101736_b4
10.1016/j.pmcj.2022.101736_b28
10.1016/j.pmcj.2022.101736_b1
10.1016/j.pmcj.2022.101736_b2
Hochreiter (10.1016/j.pmcj.2022.101736_b31) 1997; 9
Nguyen (10.1016/j.pmcj.2022.101736_b9) 2009
10.1016/j.pmcj.2022.101736_b5
10.1016/j.pmcj.2022.101736_b22
Freddi (10.1016/j.pmcj.2022.101736_b11) 2010
Boyd (10.1016/j.pmcj.2022.101736_b23) 2008; 115
Lu (10.1016/j.pmcj.2022.101736_b16) 2018; 5
Liu (10.1016/j.pmcj.2022.101736_b29) 2017; 234
References_xml – start-page: 211
  year: 2009
  end-page: 216
  ident: b9
  article-title: Diagnosis of an inertial measurement unit based on set membership estimation
  publication-title: 2009 17th Mediterranean Conference on Control and Automation
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b31
  article-title: Long short-term memory
  publication-title: Neural Comput.
– year: 2017
  ident: b39
  article-title: When birds attack! — Experienced drone operators discuss this (surprisingly common) mission threat
– year: 2007
  ident: b38
  publication-title: Defining the Wind: The Beaufort Scale and how a 19th-Century Admiral Turned Science Into Poetry
– volume: 21
  start-page: 8253
  year: 2021
  ident: b6
  article-title: Sensors and measurements for UAV safety: An overview
  publication-title: Sensors
– reference: B. Schölkopf, R.C. Williamson, A.J. Smola, J. Shawe-Taylor, J.C. Platt, Support vector method for novelty detection, in: Advances in Neural Information Processing Systems, 2000, pp. 582–588.
– reference: Why Amazon, UPS and even Domino’s is investing in drone delivery services, [Online]. Available:
– volume: 5
  start-page: 2315
  year: 2018
  end-page: 2322
  ident: b16
  article-title: Motor anomaly detection for unmanned aerial vehicles using reinforcement learning
  publication-title: IEEE Internet Things J.
– start-page: 2055
  year: 2010
  end-page: 2060
  ident: b11
  article-title: Actuator fault detection system for a mini-quadrotor
  publication-title: 2010 IEEE International Symposium on Industrial Electronics
– volume: 83
  year: 2019
  ident: b20
  article-title: Unsupervised anomaly detection in unmanned aerial vehicles
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 1080
  year: 2017
  end-page: 1089
  ident: b13
  article-title: Health monitoring and failure detection of electronic and structural components in small unmanned aerial vehicles
  publication-title: Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng.
– volume: vol. 89
  start-page: 89
  year: 2015
  end-page: 94
  ident: b30
  article-title: Long short term memory networks for anomaly detection in time series
  publication-title: Proceedings
– volume: 41
  start-page: 1
  year: 2009
  end-page: 58
  ident: b14
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv.
– reference: Team, A. D. Ardupilot,
– start-page: 325
  year: 2017
  end-page: 330
  ident: b10
  article-title: Quadrotor fault detection and isolation based on nonlinear analytical redundancy relations
  publication-title: 2017 14th International Multi-Conference on Systems, Signals & Devices
– reference: X. Liu, Z. Lai, X. Wang, L. Huang, P.S. Nielsen, A Contextual Anomaly Detection Framework for Energy Smart Meter Data Stream, in: International Conference on Neural Information Processing, 2020, pp. 733–742.
– start-page: 3077
  year: 2003
  end-page: 3081
  ident: b26
  article-title: Improving one-class SVM for anomaly detection
  publication-title: Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), vol. 5
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: b29
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– reference: DJI flame wheel F450 ARF kit, [Online]. Available:
– reference: Hex Cube Black Flight Controller,
– year: 2019
  ident: b15
  article-title: Deep learning for anomaly detection: A survey
– start-page: 1
  year: 2022
  end-page: 13
  ident: b12
  article-title: Model-based fault detection and identification of a quadrotor with rotor fault
  publication-title: Int. J. Aeronaut. Space Sci.
– reference: A. Palmer, Amazon wins FAA approval for prime air drone delivery fleet. [Online]. Available:
– reference: .
– start-page: 286
  year: 2019
  end-page: 290
  ident: b21
  article-title: Data-driven anomaly detection for UAV sensor data based on deep learning prediction model
  publication-title: 2019 Prognostics and System Health Management Conference
– reference: P. Misra, G. Kandaswamy, P. Mohapatra, K. Kumar, P. Balamuralidhar, Structural Health Monitoring of Multi-Rotor Micro Aerial Vehicles, in: Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, 2018, pp. 21–26.
– start-page: 1
  year: 2017
  end-page: 6
  ident: b19
  article-title: Fault detection & diagnosis for small UAVs via machine learning
  publication-title: 2017 IEEE/AIAA 36th Digital Avionics Systems Conference
– volume: 84
  start-page: 107
  year: 2016
  end-page: 120
  ident: b7
  article-title: Unmanned aerial vehicle security using recursive parameter estimation
  publication-title: J. Intell. Robot. Syst.
– reference: Team, A. D. Mission Planner, Mission Planner Home,
– year: 2015
  ident: b37
  article-title: Normalization: A preprocessing stage
– reference: G. Muchiri, S. Kimathi, A review of applications and potential applications of UAV, in: Proceedings of the Proceedings of the Sustainable Research and Innovation Conference, 2022.
– volume: 8
  start-page: 59
  year: 2019
  ident: b17
  article-title: Fault diagnosis for UAV blades using artificial neural network
  publication-title: Robotics
– reference: G.E. Hinton, R.S. Zemel, Autoencoders, minimum description length and Helmholtz free energy, in: Advances in Neural Information Processing Systems, 1994, pp. 3–10.
– volume: 115
  start-page: 689
  year: 2008
  end-page: 696
  ident: b23
  article-title: Survey of prenatal screening policies in Europe for structural malformations and chromosome anomalies, and their impact on detection and termination rates for neural tube defects and Down’s syndrome
  publication-title: BJOG: Int. J. Obstet. Gynaecol.
– reference: DJI flame wheel F450 ARF kit,
– volume: 521
  start-page: 460
  year: 2015
  end-page: 466
  ident: b3
  article-title: Science, technology and the future of small autonomous drones
  publication-title: Nature
– reference: A. Hobbs, S.R. Herwitz, Human Challenges in the Maintenance of Unmanned Aircraft Systems, FAA and NASA Report, 2006.
– volume: 308
  start-page: 1552
  year: 1994
  ident: b40
  article-title: Diagnostic tests. 1: Sensitivity and specificity
  publication-title: Br. Med. J.
– volume: 25
  start-page: 395
  year: 2019
  end-page: 405
  ident: b25
  article-title: Real-time vibration-based propeller fault diagnosis for multicopters
  publication-title: IEEE/ASME Trans. Mechatronics
– volume: 70
  start-page: 107
  year: 2013
  end-page: 117
  ident: b8
  article-title: Experimental test of a two-stage Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter
  publication-title: J. Intell. Robot. Syst.
– start-page: 1041
  year: 2018
  end-page: 1047
  ident: b24
  article-title: Vibration-based propeller fault diagnosis for multicopters
  publication-title: 2018 International Conference on Unmanned Aircraft Systems
– start-page: 1041
  year: 2018
  ident: 10.1016/j.pmcj.2022.101736_b24
  article-title: Vibration-based propeller fault diagnosis for multicopters
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.pmcj.2022.101736_b29
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– start-page: 211
  year: 2009
  ident: 10.1016/j.pmcj.2022.101736_b9
  article-title: Diagnosis of an inertial measurement unit based on set membership estimation
– volume: 11
  start-page: 1080
  year: 2017
  ident: 10.1016/j.pmcj.2022.101736_b13
  article-title: Health monitoring and failure detection of electronic and structural components in small unmanned aerial vehicles
  publication-title: Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng.
– start-page: 325
  year: 2017
  ident: 10.1016/j.pmcj.2022.101736_b10
  article-title: Quadrotor fault detection and isolation based on nonlinear analytical redundancy relations
– volume: 5
  start-page: 2315
  issue: 4
  year: 2018
  ident: 10.1016/j.pmcj.2022.101736_b16
  article-title: Motor anomaly detection for unmanned aerial vehicles using reinforcement learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2737479
– volume: 25
  start-page: 395
  issue: 1
  year: 2019
  ident: 10.1016/j.pmcj.2022.101736_b25
  article-title: Real-time vibration-based propeller fault diagnosis for multicopters
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2019.2947250
– start-page: 1
  year: 2017
  ident: 10.1016/j.pmcj.2022.101736_b19
  article-title: Fault detection & diagnosis for small UAVs via machine learning
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.pmcj.2022.101736_b31
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 8
  start-page: 59
  issue: 3
  year: 2019
  ident: 10.1016/j.pmcj.2022.101736_b17
  article-title: Fault diagnosis for UAV blades using artificial neural network
  publication-title: Robotics
  doi: 10.3390/robotics8030059
– start-page: 3077
  year: 2003
  ident: 10.1016/j.pmcj.2022.101736_b26
  article-title: Improving one-class SVM for anomaly detection
– year: 2019
  ident: 10.1016/j.pmcj.2022.101736_b15
– ident: 10.1016/j.pmcj.2022.101736_b35
– ident: 10.1016/j.pmcj.2022.101736_b33
– ident: 10.1016/j.pmcj.2022.101736_b27
– start-page: 2055
  year: 2010
  ident: 10.1016/j.pmcj.2022.101736_b11
  article-title: Actuator fault detection system for a mini-quadrotor
– volume: 115
  start-page: 689
  issue: 6
  year: 2008
  ident: 10.1016/j.pmcj.2022.101736_b23
  article-title: Survey of prenatal screening policies in Europe for structural malformations and chromosome anomalies, and their impact on detection and termination rates for neural tube defects and Down’s syndrome
  publication-title: BJOG: Int. J. Obstet. Gynaecol.
  doi: 10.1111/j.1471-0528.2008.01700.x
– volume: 83
  year: 2019
  ident: 10.1016/j.pmcj.2022.101736_b20
  article-title: Unsupervised anomaly detection in unmanned aerial vehicles
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105650
– volume: 308
  start-page: 1552
  issue: 6943
  year: 1994
  ident: 10.1016/j.pmcj.2022.101736_b40
  article-title: Diagnostic tests. 1: Sensitivity and specificity
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.308.6943.1552
– volume: 521
  start-page: 460
  issue: 7553
  year: 2015
  ident: 10.1016/j.pmcj.2022.101736_b3
  article-title: Science, technology and the future of small autonomous drones
  publication-title: Nature
  doi: 10.1038/nature14542
– ident: 10.1016/j.pmcj.2022.101736_b5
– year: 2007
  ident: 10.1016/j.pmcj.2022.101736_b38
– ident: 10.1016/j.pmcj.2022.101736_b1
– start-page: 1
  year: 2022
  ident: 10.1016/j.pmcj.2022.101736_b12
  article-title: Model-based fault detection and identification of a quadrotor with rotor fault
  publication-title: Int. J. Aeronaut. Space Sci.
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  ident: 10.1016/j.pmcj.2022.101736_b14
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– ident: 10.1016/j.pmcj.2022.101736_b36
– volume: 21
  start-page: 8253
  issue: 24
  year: 2021
  ident: 10.1016/j.pmcj.2022.101736_b6
  article-title: Sensors and measurements for UAV safety: An overview
  publication-title: Sensors
  doi: 10.3390/s21248253
– volume: vol. 89
  start-page: 89
  year: 2015
  ident: 10.1016/j.pmcj.2022.101736_b30
  article-title: Long short term memory networks for anomaly detection in time series
– ident: 10.1016/j.pmcj.2022.101736_b32
  doi: 10.1007/978-3-030-63823-8_83
– ident: 10.1016/j.pmcj.2022.101736_b34
– year: 2017
  ident: 10.1016/j.pmcj.2022.101736_b39
– ident: 10.1016/j.pmcj.2022.101736_b28
– ident: 10.1016/j.pmcj.2022.101736_b18
  doi: 10.1145/3213526.3213531
– start-page: 286
  year: 2019
  ident: 10.1016/j.pmcj.2022.101736_b21
  article-title: Data-driven anomaly detection for UAV sensor data based on deep learning prediction model
– ident: 10.1016/j.pmcj.2022.101736_b4
– volume: 70
  start-page: 107
  issue: 1–4
  year: 2013
  ident: 10.1016/j.pmcj.2022.101736_b8
  article-title: Experimental test of a two-stage Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-012-9757-7
– ident: 10.1016/j.pmcj.2022.101736_b22
– volume: 84
  start-page: 107
  issue: 1–4
  year: 2016
  ident: 10.1016/j.pmcj.2022.101736_b7
  article-title: Unmanned aerial vehicle security using recursive parameter estimation
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-015-0284-1
– ident: 10.1016/j.pmcj.2022.101736_b2
– year: 2015
  ident: 10.1016/j.pmcj.2022.101736_b37
SSID ssj0041470
Score 2.378485
Snippet Detecting a structural anomaly, such as a damaged propeller or motor, is crucial for mission-critical operation of unmanned aerial vehicles (UAVs). The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101736
SubjectTerms LSTM autoencoder
Structural anomaly detection
UAV
Title Detecting structural anomalies of quadcopter UAVs based on LSTM autoencoder
URI https://dx.doi.org/10.1016/j.pmcj.2022.101736
Volume 88
WOSCitedRecordID wos000972933800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-1589
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041470
  issn: 1574-1192
  databaseCode: AIEXJ
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELYg5QAHxFP0AfKBW7TVrr0b28eoLSotVJWSotxWfopGzW4g2T7-PX7tJkpRBUhcVpEVr6OZL-PxzPgbAD46jnTEU5NorIokF9r-54yj3CfSmkJDGCfCN5sgZ2d0MmHnsdx24dsJkKqit7ds_l9Vbcesst3V2b9Qd_dSO2A_W6Xbp1W7ff6R4g-1ywuEMIHjhvW8GryqZ9bjDgyzPxquZD139IgXw2-LvtvJlMsafBmNv_Z5s6wdu6WKdbvRcz130Vtf6-5C7bNaWHPiC9KbZbv7-TrEkMUfaWtEvt_pursIdBoD0ydc3zVrqf9wS_vyZlUOcBByUMf1tIkvjlEJhDeiEvevywTrSvIky0Lzu30dxijBSVaEPkKtSQ6d_u5Z9xBomO7PZ3Jqj_YIeZYovEGl7TfnkVvLLYWQPwXix2ALkYLRHtgafj6anLTbdZ7lvqNg99vizapQBLi50u-9lzWPZPwCPI9HCTgMEHgJHunqFXi2RjD5Gpx2YIArMMAODLA2cAUG6MAAPRhgXUEHBrgGhjfg4tPR-OA4ie0zEonTdJlgWnDBpDAqTymnWIkiRWxgpCSaM8KoSoXkBGuTG8aNGlBdIJ0aLJDGdgC_Bb2qrvQ7AHkm0oHMlUbWw2c6F4XERhPJFCs4k2obZK1YShm55V2Lk6uyLSKclk6UpRNlGUS5DfrdnHlgVnnw20Ur7TL6hsHnKy04Hpi384_zdsHTFaz3QM_qSL8HT-T18nLx80PE0C_iHInx
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+structural+anomalies+of+quadcopter+UAVs+based+on+LSTM+autoencoder&rft.jtitle=Pervasive+and+mobile+computing&rft.au=Jeon%2C+Seunghyeok&rft.au=Kang%2C+Jaeyun&rft.au=Kim%2C+Jiwon&rft.au=Cha%2C+Hojung&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=1574-1192&rft.eissn=1873-1589&rft.volume=88&rft_id=info:doi/10.1016%2Fj.pmcj.2022.101736&rft.externalDocID=S1574119222001493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-1192&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-1192&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-1192&client=summon