Elastic net regularized kernel non-negative matrix factorization algorithm for clustering guided image representation

Due to the capacity of data representation, non-negative matrix factorization has been investigated widely by introducing a variety of constraints. The general processing of non-negative matrix factorization for image clustering consists of two steps: (i) achieving the r-dimensional non-negative ima...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 97; s. 106774
Hlavní autoři: Zhu, Wenjie, Peng, Yishu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2020
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the capacity of data representation, non-negative matrix factorization has been investigated widely by introducing a variety of constraints. The general processing of non-negative matrix factorization for image clustering consists of two steps: (i) achieving the r-dimensional non-negative image representations, where the rank r is set to the expected number of clusters; (ii) adopting the traditional clustering techniques to accomplish the clustering task. Nevertheless, the previous non-negative matrix factorization variants derive image representations from the original space which cannot handle the nonlinear structure of images. This paper focuses on the existing issues and proposes an elastic net regularized kernel non-negative matrix factorization algorithm for clustering guided image representation. In order to explore the nonlinear relations of images, this paper uses the kernel trick to extend original non-negative matrix factorization. A self-organized graph and elastic net regularization are incorporated into the proposed objective of kernel non-negative matrix factorization, besides, the rank is allowed to be larger than the expected number of clusters. By doing so, the graph defined in the feature space is more qualified to represent the intrinsic structure of images. As an accompanying advantage, the clusters of images can be determined using the graph directly without using the two-step trick. According to the proposed alternating update algorithm for solving the optimization problem, the image representation and clustering result can be obtained simultaneously. Extensive experiments on challenging data sets demonstrate the effectiveness of the proposed algorithm compared with the prominent non-negative matrix factorization variants for image clustering. •The geometrical structure of images was preserved by relaxing the rank constraint.•The graph defined in the feature space can well capture the intrinsic structure.•The cluster membership can be obtained from the optimized graph directly.•Clustering-guided representation is optimized using the elastic net based non-negative coding.
AbstractList Due to the capacity of data representation, non-negative matrix factorization has been investigated widely by introducing a variety of constraints. The general processing of non-negative matrix factorization for image clustering consists of two steps: (i) achieving the r-dimensional non-negative image representations, where the rank r is set to the expected number of clusters; (ii) adopting the traditional clustering techniques to accomplish the clustering task. Nevertheless, the previous non-negative matrix factorization variants derive image representations from the original space which cannot handle the nonlinear structure of images. This paper focuses on the existing issues and proposes an elastic net regularized kernel non-negative matrix factorization algorithm for clustering guided image representation. In order to explore the nonlinear relations of images, this paper uses the kernel trick to extend original non-negative matrix factorization. A self-organized graph and elastic net regularization are incorporated into the proposed objective of kernel non-negative matrix factorization, besides, the rank is allowed to be larger than the expected number of clusters. By doing so, the graph defined in the feature space is more qualified to represent the intrinsic structure of images. As an accompanying advantage, the clusters of images can be determined using the graph directly without using the two-step trick. According to the proposed alternating update algorithm for solving the optimization problem, the image representation and clustering result can be obtained simultaneously. Extensive experiments on challenging data sets demonstrate the effectiveness of the proposed algorithm compared with the prominent non-negative matrix factorization variants for image clustering. •The geometrical structure of images was preserved by relaxing the rank constraint.•The graph defined in the feature space can well capture the intrinsic structure.•The cluster membership can be obtained from the optimized graph directly.•Clustering-guided representation is optimized using the elastic net based non-negative coding.
ArticleNumber 106774
Author Peng, Yishu
Zhu, Wenjie
Author_xml – sequence: 1
  givenname: Wenjie
  surname: Zhu
  fullname: Zhu, Wenjie
  email: zhwj@cjlu.edu.cn
  organization: Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China
– sequence: 2
  givenname: Yishu
  surname: Peng
  fullname: Peng, Yishu
  organization: School of Information Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
BookMark eNp9kMtOwzAQRS1UJFrgB1j5B1JiJ3FsiQ2qykOqxAbWluuMg0vqVLZTAV-PQ1ix6GoemnNn5i7QzPUOELoh-ZLkhN3ulir0eklzOjZYXZdnaE54TTPBOJmlvGI8K0XJLtAihF2eIEH5HA3rToVoNXYQsYd26JS339DgD_AOOpz2ZA5aFe0R8F5Fbz-xUTr2aSo1e4dV16Yivu-x6T3W3RAieOta3A62SUJ2r1pI0gcPAVz8ha7QuVFdgOu_eIneHtavq6ds8_L4vLrfZLrI85gVrOKmKJjgpq5oqfmWcSMqURgqtpRSXpQlA0KMYg1rlKlNow0UILY1LxmhxSWik672fQgejDz4dI__kiSXo3FyJ0fj5GicnIxLEP8HaTudHb2y3Wn0bkIhPXW04GXQFpyGxnrQUTa9PYX_AE6VjrY
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3242286
crossref_primary_10_1016_j_asoc_2021_107514
crossref_primary_10_1007_s10489_022_03756_1
crossref_primary_10_1007_s00530_023_01187_7
crossref_primary_10_3390_math10224167
Cites_doi 10.1007/978-3-642-21735-7_31
10.1016/j.neucom.2014.01.043
10.1145/1150402.1150420
10.1016/j.jvcir.2018.07.009
10.1109/ICCV.2003.1238361
10.1016/j.apacoust.2018.08.018
10.1109/TKDE.2010.165
10.1109/TPAMI.2016.2554555
10.1016/j.engappai.2017.10.018
10.1109/TCYB.2013.2281332
10.1016/S0167-6377(99)00074-7
10.1109/TIP.2011.2105496
10.1016/j.patcog.2017.06.025
10.1016/j.neucom.2017.04.068
10.1016/j.patcog.2012.04.030
10.1109/BIBM.2010.5706574
10.1016/j.asoc.2016.12.019
10.1016/j.asoc.2019.03.004
10.1109/CVPR.2014.31
10.1016/j.image.2018.01.001
10.1109/5.726791
10.1137/0105003
10.1109/TPAMI.2010.231
10.1137/1.9781611972757.70
10.1007/s00521-018-3572-4
10.1609/aaai.v25i1.7900
10.1109/TCYB.2015.2399533
10.1109/IJCNN.2008.4634046
10.1109/ACCESS.2018.2854232
10.1109/ICDM.2012.39
10.1109/TPAMI.2011.217
10.1109/TGRS.2008.2002882
10.1016/j.patcog.2011.10.014
10.1093/bioinformatics/btm134
10.1109/ICDM.2006.160
10.1016/j.ins.2016.05.001
10.1007/s11222-007-9033-z
10.1016/j.asoc.2019.02.009
10.1109/LSP.2009.2027163
10.1038/44565
10.1016/j.patcog.2018.07.007
10.1007/11499145_35
10.1109/TCSVT.2016.2539779
10.1109/TKDE.2005.198
10.1023/B:NEPL.0000011135.19145.1b
10.1016/j.ins.2013.05.038
10.1109/TCYB.2018.2842052
10.1109/TNN.2006.873291
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106774
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106774
S1568494620307122
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-3658f33698f7524c8b68f9593f29b22283446e11fa6d6daf7fdcfe3e9b7846123
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000602872100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 21:42:03 EST 2025
Sat Nov 29 07:00:51 EST 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Self-organized graph
Kernel non-negative matrix factorization
Elastic net regularization
Clustering guided image representation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-3658f33698f7524c8b68f9593f29b22283446e11fa6d6daf7fdcfe3e9b7846123
ParticipantIDs crossref_primary_10_1016_j_asoc_2020_106774
crossref_citationtrail_10_1016_j_asoc_2020_106774
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106774
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cai, He, Han (b52) 2011; 23
Jia, Qian (b1) 2009; 47
Zafeiriou, Tefas, Buciu, Pitas (b18) 2006; 17
Cai, He, Han, Huang (b28) 2011; 33
Z. Yang, Z. He, Z. Yuan, E. Oja, Z. Yang, Z. He, Z. Yuan, E. Oja, Kullback–leibler divergence for nonnegative matrix factorization, in: International Conference on Artificial Neural Networks, 2011, pp. 14–17.
Xiong, Kong (b33) 2019; 90
Lee, Seung (b6) 1999; 401
Lu, Lai, Xu, You, Li, Yuan (b29) 2016; 364–365
W. Liu, S. Zheng, S. Jia, L. Shen, X. Fu, Sparse nonnegative matrix factorization with the elastic net, in: IEEE International Conference on Bioinformatics and Biomedicine, BIBM, 2010, pp. 265–268.
Zhu, Yan (b26) 2018; 6
Zeng, Yu, Li, You, Jin (b42) 2014; 138
Luxburg (b47) 2007; 17
Casalino, Del Buono, Mencar (b16) 2014; 257
Wang, Tianzhen, Xinbo (b30) 2019; 49
Mohar, Alavi, Chartrand, Oellermann, Schwenk (b44) 1991
Hayashi, Watanabe (b14) 2017; 266
Gao, Woo, Ling (b15) 2014; 44
D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: International Conference on Neural Information Processing Systems, 2000, pp. 535–541.
Mousavirad, Ebrahimpour-Komleh, Schaefer (b9) 2019; 78
M.M. Kalayeh, H. Idrees, M. Shah, NMF–KNN: image annotation using weighted multi-view non-negative matrix factorization, in: IEEE Conference on Computer Vision and Pattern Recognition, 2014, 2014, pp. 184–191.
Lu, Lai, Yong, Li, Yuan (b21) 2017; 27
L. Du, X. Li, Y.D. Shen, Robust nonnegative matrix factorization via half-quadratic minimization, in: IEEE International Conference on Data Mining, 2013, 2013, pp. 201–210.
Guan, Tao, Luo, Yuan (b19) 2011; 20
Grippoa, Sciandrone (b49) 2000; 26
X. Chen, D. Cai, Large scale spectral clustering with landmark-based representation, in: AAAI Conference on Artificial Intelligence, 2011, 2011, pp. 313–318.
Cai, He, Han (b51) 2005; 17
Binesh, Rezghi (b3) 2018; 69
Liu, Wu, Cai, Huang (b24) 2012; 34
James (b54) 1957; 5
Seema, Keshavamurthy (b8) 2018; 55
Zhu, Yunhui, Yishu (b34) 2019; 31
Yang, Oja (b11) 2012; 45
Pompili, Gillis, Absil, Glineur (b40) 2012; 141
Lécun, Bottou, Bengio, Haffner (b50) 1998; 86
Zhu, Yan (b22) 2018; 62
C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix tri-factorizations for clustering, in: 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, 2006, pp. 126–135.
Y. Wang, Y. Jia, C. Hu, M. Turk, Fisher non-negative matrix factorization for learning local features,in: Asian Conference of Computer Vision, 2004, 2004, pp.27–30.
Lee, Yoo, Choi (b23) 2010; 17
AliAbin (b10) 2019; 80
Kim, Park (b48) 2007; 23
C. Ding, X. He, H.D. Simon, R. Jin, On the equivalence of nonnegative matrix factorization and k-means spectral clustering, in: 2005 SIAM International Conference on Data Mining, SDM 2005, 2005, pp. 606–610.
T. Li, C. Ding, The relationships among various nonnegative matrix factorization methods for clustering, in: International Conference on Data Mining, 2007, 2007, pp. 362–371.
Z. Yuan, E. Oja, Projective nonnegative matrix factorization for image compression and feature extraction, in: Scandinavian Conference on Image Analysis, 2005, 2005, pp. 333–342.
Ma, Sun, Qin (b2) 2017; 71
Zhang, Chen (b43) 2003; 18
Wang, Song, Zhang (b4) 2018; 68
Nikitidis, Tefas, Nikolaidis, Pitas (b20) 2012; 45
S.X. Yu, J. Shi, Multiclass spectral clustering, in: IEEE International Conference on Computer Vision, 2003, pp. 313–319.
S. Choi, Algorithms for orthogonal nonnegative matrix factorization, in: IEEE International Joint Conference on Neural Networks, 2008, 2008, pp. 1828–1832.
Wang, Gao, Wang (b25) 2016; 46
Hopcroft, Tarjan (b45) 1971
Trigeorgis, Bousmalis, Zafeiriou, Schuller (b31) 2017; 39
S.Z. Li, X.W. Hou, H.J. Zhang, Q.S. Cheng, Learning spatially localized, parts-based representation, in: IEEE Conference on Computer Vision and Pattern Recognition, 2003, 2003, pp. 207–212.
Gloaguen, Can, Lagrange, Petiot (b5) 2019; 143
Ma (10.1016/j.asoc.2020.106774_b2) 2017; 71
Wang (10.1016/j.asoc.2020.106774_b4) 2018; 68
Zhang (10.1016/j.asoc.2020.106774_b43) 2003; 18
Mousavirad (10.1016/j.asoc.2020.106774_b9) 2019; 78
10.1016/j.asoc.2020.106774_b41
Lu (10.1016/j.asoc.2020.106774_b21) 2017; 27
AliAbin (10.1016/j.asoc.2020.106774_b10) 2019; 80
10.1016/j.asoc.2020.106774_b46
Lécun (10.1016/j.asoc.2020.106774_b50) 1998; 86
Cai (10.1016/j.asoc.2020.106774_b52) 2011; 23
10.1016/j.asoc.2020.106774_b17
Yang (10.1016/j.asoc.2020.106774_b11) 2012; 45
10.1016/j.asoc.2020.106774_b13
Zafeiriou (10.1016/j.asoc.2020.106774_b18) 2006; 17
Liu (10.1016/j.asoc.2020.106774_b24) 2012; 34
Zhu (10.1016/j.asoc.2020.106774_b34) 2019; 31
10.1016/j.asoc.2020.106774_b53
10.1016/j.asoc.2020.106774_b12
Binesh (10.1016/j.asoc.2020.106774_b3) 2018; 69
Pompili (10.1016/j.asoc.2020.106774_b40) 2012; 141
Kim (10.1016/j.asoc.2020.106774_b48) 2007; 23
Cai (10.1016/j.asoc.2020.106774_b51) 2005; 17
Zhu (10.1016/j.asoc.2020.106774_b22) 2018; 62
Xiong (10.1016/j.asoc.2020.106774_b33) 2019; 90
Hayashi (10.1016/j.asoc.2020.106774_b14) 2017; 266
Lee (10.1016/j.asoc.2020.106774_b23) 2010; 17
Lee (10.1016/j.asoc.2020.106774_b6) 1999; 401
10.1016/j.asoc.2020.106774_b27
Cai (10.1016/j.asoc.2020.106774_b28) 2011; 33
Lu (10.1016/j.asoc.2020.106774_b29) 2016; 364–365
10.1016/j.asoc.2020.106774_b39
James (10.1016/j.asoc.2020.106774_b54) 1957; 5
Jia (10.1016/j.asoc.2020.106774_b1) 2009; 47
10.1016/j.asoc.2020.106774_b7
Nikitidis (10.1016/j.asoc.2020.106774_b20) 2012; 45
Guan (10.1016/j.asoc.2020.106774_b19) 2011; 20
Wang (10.1016/j.asoc.2020.106774_b30) 2019; 49
Zeng (10.1016/j.asoc.2020.106774_b42) 2014; 138
Gloaguen (10.1016/j.asoc.2020.106774_b5) 2019; 143
Grippoa (10.1016/j.asoc.2020.106774_b49) 2000; 26
Seema (10.1016/j.asoc.2020.106774_b8) 2018; 55
Mohar (10.1016/j.asoc.2020.106774_b44) 1991
Hopcroft (10.1016/j.asoc.2020.106774_b45) 1971
Wang (10.1016/j.asoc.2020.106774_b25) 2016; 46
Trigeorgis (10.1016/j.asoc.2020.106774_b31) 2017; 39
Zhu (10.1016/j.asoc.2020.106774_b26) 2018; 6
10.1016/j.asoc.2020.106774_b35
10.1016/j.asoc.2020.106774_b36
10.1016/j.asoc.2020.106774_b37
Gao (10.1016/j.asoc.2020.106774_b15) 2014; 44
10.1016/j.asoc.2020.106774_b38
10.1016/j.asoc.2020.106774_b32
Casalino (10.1016/j.asoc.2020.106774_b16) 2014; 257
Luxburg (10.1016/j.asoc.2020.106774_b47) 2007; 17
References_xml – reference: M.M. Kalayeh, H. Idrees, M. Shah, NMF–KNN: image annotation using weighted multi-view non-negative matrix factorization, in: IEEE Conference on Computer Vision and Pattern Recognition, 2014, 2014, pp. 184–191.
– volume: 17
  start-page: 1624
  year: 2005
  end-page: 1637
  ident: b51
  article-title: Document clustering using locality preserving indexing
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: S.X. Yu, J. Shi, Multiclass spectral clustering, in: IEEE International Conference on Computer Vision, 2003, pp. 313–319.
– reference: T. Li, C. Ding, The relationships among various nonnegative matrix factorization methods for clustering, in: International Conference on Data Mining, 2007, 2007, pp. 362–371.
– volume: 266
  start-page: 21
  year: 2017
  end-page: 28
  ident: b14
  article-title: Upper bound of bayesian generalization error in non-negative matrix factorization
  publication-title: Neurocomputing
– volume: 44
  start-page: 1169
  year: 2014
  end-page: 1179
  ident: b15
  article-title: Machine learning source separation using maximum a posteriori nonnegative matrix factorization
  publication-title: IEEE Trans. Cybern.
– volume: 39
  start-page: 417
  year: 2017
  end-page: 429
  ident: b31
  article-title: A deep matrix factorization method for learning attribute representations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 31
  start-page: 7381
  year: 2019
  end-page: 7399
  ident: b34
  article-title: Topological structure regularized nonnegative matrix factorization for image clustering
  publication-title: Neural Comput. Appl.
– volume: 62
  start-page: 139
  year: 2018
  end-page: 148
  ident: b22
  article-title: Label and orthogonality regularized non-negative matrix factorization for image classification
  publication-title: Signal Process., Image Commun.
– volume: 143
  start-page: 229
  year: 2019
  end-page: 238
  ident: b5
  article-title: Road traffic sound level estimation from realistic urban sound mixtures by non-negative matrix factorization
  publication-title: Appl. Acoust.
– volume: 33
  start-page: 1548
  year: 2011
  end-page: 1560
  ident: b28
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 364–365
  start-page: 16
  year: 2016
  end-page: 32
  ident: b29
  article-title: Projective robust nonnegative factorization
  publication-title: Inform. Sci.
– volume: 46
  start-page: 233
  year: 2016
  end-page: 244
  ident: b25
  article-title: Semi-supervised nonnegative matrix factorization via constraint propagation
  publication-title: IEEE Trans. Cybern.
– reference: D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: International Conference on Neural Information Processing Systems, 2000, pp. 535–541.
– volume: 17
  start-page: 4
  year: 2010
  end-page: 7
  ident: b23
  article-title: Semi-supervised nonnegative matrix factorization
  publication-title: IEEE Signal Process. Lett.
– volume: 80
  start-page: 31
  year: 2019
  end-page: 41
  ident: b10
  article-title: Querying informative constraints for data clustering: an embedding approach
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 155
  year: 2003
  end-page: 162
  ident: b43
  article-title: Clustering incomplete data using kernel-based fuzzy c-means algorithm
  publication-title: Neural Process. Lett.
– reference: Z. Yang, Z. He, Z. Yuan, E. Oja, Z. Yang, Z. He, Z. Yuan, E. Oja, Kullback–leibler divergence for nonnegative matrix factorization, in: International Conference on Artificial Neural Networks, 2011, pp. 14–17.
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: b47
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
– volume: 49
  start-page: 3333
  year: 2019
  end-page: 3346
  ident: b30
  article-title: Multiview clustering based on non-negative matrix factorization and pairwise measurements
  publication-title: IEEE Trans. Cybern.
– volume: 257
  start-page: 369
  year: 2014
  end-page: 387
  ident: b16
  article-title: Subtractive clustering for seeding non-negative matrix factorizations
  publication-title: Inform. Sci.
– volume: 34
  start-page: 1299
  year: 2012
  end-page: 1311
  ident: b24
  article-title: Constrained nonnegative matrix factorization for image representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: L. Du, X. Li, Y.D. Shen, Robust nonnegative matrix factorization via half-quadratic minimization, in: IEEE International Conference on Data Mining, 2013, 2013, pp. 201–210.
– volume: 20
  start-page: 2030
  year: 2011
  end-page: 2048
  ident: b19
  article-title: Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent
  publication-title: IEEE Trans. Image Process.
– volume: 138
  start-page: 209
  year: 2014
  end-page: 217
  ident: b42
  article-title: Image clustering by hyper-graph regularized non-negative matrix factorization
  publication-title: Neurocomputing
– year: 1971
  ident: b45
  article-title: Efficient Algorithms for Graph Manipulation
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: b6
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– reference: C. Ding, X. He, H.D. Simon, R. Jin, On the equivalence of nonnegative matrix factorization and k-means spectral clustering, in: 2005 SIAM International Conference on Data Mining, SDM 2005, 2005, pp. 606–610.
– reference: W. Liu, S. Zheng, S. Jia, L. Shen, X. Fu, Sparse nonnegative matrix factorization with the elastic net, in: IEEE International Conference on Bioinformatics and Biomedicine, BIBM, 2010, pp. 265–268.
– volume: 78
  start-page: 209
  year: 2019
  end-page: 220
  ident: b9
  article-title: Effective image clustering based on human mental search
  publication-title: Appl. Soft Comput.
– volume: 17
  start-page: 683
  year: 2006
  end-page: 695
  ident: b18
  article-title: Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification
  publication-title: IEEE Trans. Neural Netw.
– volume: 6
  start-page: 38820
  year: 2018
  end-page: 38834
  ident: b26
  article-title: Joint linear regression and nonnegative matrix factorization based on self-organized graph for image clustering and classification
  publication-title: IEEE Access
– volume: 68
  start-page: 32
  year: 2018
  end-page: 39
  ident: b4
  article-title: Graph regularized nonnegative matrix factorization with sample diversity for image representation
  publication-title: Eng. Appl. Artif. Intell.
– reference: Z. Yuan, E. Oja, Projective nonnegative matrix factorization for image compression and feature extraction, in: Scandinavian Conference on Image Analysis, 2005, 2005, pp. 333–342.
– volume: 23
  start-page: 1495
  year: 2007
  end-page: 1502
  ident: b48
  article-title: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
  publication-title: Bioinformatics
– volume: 141
  start-page: 15
  year: 2012
  end-page: 25
  ident: b40
  article-title: Two algorithms for orthogonal nonnegative matrix factorization with application to clustering
  publication-title: Neurocomputing
– volume: 45
  start-page: 4080
  year: 2012
  end-page: 4091
  ident: b20
  article-title: Subclass discriminant nonnegative matrix factorization for facial image analysis
  publication-title: Pattern Recognit.
– volume: 71
  start-page: 361
  year: 2017
  end-page: 374
  ident: b2
  article-title: Nonnegative matrix factorization algorithms for link prediction in temporal networks using graph communicability
  publication-title: Pattern Recognit.
– volume: 45
  start-page: 1500
  year: 2012
  end-page: 1510
  ident: b11
  article-title: Quadratic nonnegative matrix factorization
  publication-title: Pattern Recognit.
– volume: 26
  start-page: 127
  year: 2000
  end-page: 136
  ident: b49
  article-title: On the convergence of the block nonlinear Gauss–Seidel method under convex constraints
  publication-title: Oper. Res. Lett.
– volume: 69
  start-page: 689
  year: 2018
  end-page: 703
  ident: b3
  article-title: Fuzzy clustering in community detection based on nonnegative matrix factorization with two novel evaluation criteria
  publication-title: Appl. Soft Comput.
– reference: S. Choi, Algorithms for orthogonal nonnegative matrix factorization, in: IEEE International Joint Conference on Neural Networks, 2008, 2008, pp. 1828–1832.
– volume: 23
  start-page: 902
  year: 2011
  end-page: 913
  ident: b52
  article-title: Locally consistent concept factorization for document clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b50
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 27
  start-page: 1392
  year: 2017
  end-page: 1405
  ident: b21
  article-title: Nonnegative discriminant matrix factorization
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: X. Chen, D. Cai, Large scale spectral clustering with landmark-based representation, in: AAAI Conference on Artificial Intelligence, 2011, 2011, pp. 313–318.
– volume: 5
  start-page: 32
  year: 1957
  end-page: 38
  ident: b54
  article-title: Algorithms for the assignment and transportation problems
  publication-title: J. Soc. Ind. Appl. Math.
– reference: S.Z. Li, X.W. Hou, H.J. Zhang, Q.S. Cheng, Learning spatially localized, parts-based representation, in: IEEE Conference on Computer Vision and Pattern Recognition, 2003, 2003, pp. 207–212.
– volume: 90
  start-page: 464
  year: 2019
  end-page: 475
  ident: b33
  article-title: Elastic nonnegative matrix factorization
  publication-title: Pattern Recognit.
– start-page: 871
  year: 1991
  end-page: 898
  ident: b44
  article-title: The laplacian spectrum of graphs
  publication-title: Graph Theory, Combinatorics, and Applications, 1991
– reference: Y. Wang, Y. Jia, C. Hu, M. Turk, Fisher non-negative matrix factorization for learning local features,in: Asian Conference of Computer Vision, 2004, 2004, pp.27–30.
– volume: 55
  start-page: 596
  year: 2018
  end-page: 626
  ident: b8
  article-title: A survey on image data analysis through clustering techniques for real world applications
  publication-title: J. Vis. Commun. Image Represent.
– reference: C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix tri-factorizations for clustering, in: 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, 2006, pp. 126–135.
– volume: 47
  start-page: 161
  year: 2009
  end-page: 173
  ident: b1
  article-title: Constrained nonnegative matrix factorization for hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 10.1016/j.asoc.2020.106774_b35
  doi: 10.1007/978-3-642-21735-7_31
– volume: 138
  start-page: 209
  issue: 11
  year: 2014
  ident: 10.1016/j.asoc.2020.106774_b42
  article-title: Image clustering by hyper-graph regularized non-negative matrix factorization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.043
– volume: 141
  start-page: 15
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2020.106774_b40
  article-title: Two algorithms for orthogonal nonnegative matrix factorization with application to clustering
  publication-title: Neurocomputing
– start-page: 871
  year: 1991
  ident: 10.1016/j.asoc.2020.106774_b44
  article-title: The laplacian spectrum of graphs
– ident: 10.1016/j.asoc.2020.106774_b37
  doi: 10.1145/1150402.1150420
– volume: 55
  start-page: 596
  year: 2018
  ident: 10.1016/j.asoc.2020.106774_b8
  article-title: A survey on image data analysis through clustering techniques for real world applications
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2018.07.009
– ident: 10.1016/j.asoc.2020.106774_b46
  doi: 10.1109/ICCV.2003.1238361
– volume: 143
  start-page: 229
  year: 2019
  ident: 10.1016/j.asoc.2020.106774_b5
  article-title: Road traffic sound level estimation from realistic urban sound mixtures by non-negative matrix factorization
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2018.08.018
– volume: 23
  start-page: 902
  issue: 6
  year: 2011
  ident: 10.1016/j.asoc.2020.106774_b52
  article-title: Locally consistent concept factorization for document clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2010.165
– volume: 39
  start-page: 417
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2020.106774_b31
  article-title: A deep matrix factorization method for learning attribute representations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2554555
– volume: 68
  start-page: 32
  year: 2018
  ident: 10.1016/j.asoc.2020.106774_b4
  article-title: Graph regularized nonnegative matrix factorization with sample diversity for image representation
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.018
– volume: 44
  start-page: 1169
  issue: 7
  year: 2014
  ident: 10.1016/j.asoc.2020.106774_b15
  article-title: Machine learning source separation using maximum a posteriori nonnegative matrix factorization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2281332
– volume: 26
  start-page: 127
  year: 2000
  ident: 10.1016/j.asoc.2020.106774_b49
  article-title: On the convergence of the block nonlinear Gauss–Seidel method under convex constraints
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(99)00074-7
– volume: 20
  start-page: 2030
  issue: 7
  year: 2011
  ident: 10.1016/j.asoc.2020.106774_b19
  article-title: Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2105496
– volume: 71
  start-page: 361
  year: 2017
  ident: 10.1016/j.asoc.2020.106774_b2
  article-title: Nonnegative matrix factorization algorithms for link prediction in temporal networks using graph communicability
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.06.025
– volume: 266
  start-page: 21
  year: 2017
  ident: 10.1016/j.asoc.2020.106774_b14
  article-title: Upper bound of bayesian generalization error in non-negative matrix factorization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.068
– volume: 45
  start-page: 4080
  issue: 12
  year: 2012
  ident: 10.1016/j.asoc.2020.106774_b20
  article-title: Subclass discriminant nonnegative matrix factorization for facial image analysis
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.04.030
– ident: 10.1016/j.asoc.2020.106774_b27
– ident: 10.1016/j.asoc.2020.106774_b32
  doi: 10.1109/BIBM.2010.5706574
– volume: 69
  start-page: 689
  year: 2018
  ident: 10.1016/j.asoc.2020.106774_b3
  article-title: Fuzzy clustering in community detection based on nonnegative matrix factorization with two novel evaluation criteria
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.019
– volume: 80
  start-page: 31
  year: 2019
  ident: 10.1016/j.asoc.2020.106774_b10
  article-title: Querying informative constraints for data clustering: an embedding approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.004
– ident: 10.1016/j.asoc.2020.106774_b13
  doi: 10.1109/CVPR.2014.31
– volume: 62
  start-page: 139
  year: 2018
  ident: 10.1016/j.asoc.2020.106774_b22
  article-title: Label and orthogonality regularized non-negative matrix factorization for image classification
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2018.01.001
– year: 1971
  ident: 10.1016/j.asoc.2020.106774_b45
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.asoc.2020.106774_b50
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: 10.1016/j.asoc.2020.106774_b17
– volume: 5
  start-page: 32
  issue: 1
  year: 1957
  ident: 10.1016/j.asoc.2020.106774_b54
  article-title: Algorithms for the assignment and transportation problems
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0105003
– volume: 33
  start-page: 1548
  issue: 8
  year: 2011
  ident: 10.1016/j.asoc.2020.106774_b28
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.231
– ident: 10.1016/j.asoc.2020.106774_b36
  doi: 10.1137/1.9781611972757.70
– volume: 31
  start-page: 7381
  issue: 11
  year: 2019
  ident: 10.1016/j.asoc.2020.106774_b34
  article-title: Topological structure regularized nonnegative matrix factorization for image clustering
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3572-4
– ident: 10.1016/j.asoc.2020.106774_b53
  doi: 10.1609/aaai.v25i1.7900
– volume: 46
  start-page: 233
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2020.106774_b25
  article-title: Semi-supervised nonnegative matrix factorization via constraint propagation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2399533
– ident: 10.1016/j.asoc.2020.106774_b39
  doi: 10.1109/IJCNN.2008.4634046
– volume: 6
  start-page: 38820
  year: 2018
  ident: 10.1016/j.asoc.2020.106774_b26
  article-title: Joint linear regression and nonnegative matrix factorization based on self-organized graph for image clustering and classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2854232
– ident: 10.1016/j.asoc.2020.106774_b12
  doi: 10.1109/ICDM.2012.39
– volume: 34
  start-page: 1299
  issue: 7
  year: 2012
  ident: 10.1016/j.asoc.2020.106774_b24
  article-title: Constrained nonnegative matrix factorization for image representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.217
– volume: 47
  start-page: 161
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2020.106774_b1
  article-title: Constrained nonnegative matrix factorization for hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2002882
– volume: 45
  start-page: 1500
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2020.106774_b11
  article-title: Quadratic nonnegative matrix factorization
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.10.014
– volume: 23
  start-page: 1495
  issue: 12
  year: 2007
  ident: 10.1016/j.asoc.2020.106774_b48
  article-title: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm134
– ident: 10.1016/j.asoc.2020.106774_b38
  doi: 10.1109/ICDM.2006.160
– volume: 364–365
  start-page: 16
  issue: C
  year: 2016
  ident: 10.1016/j.asoc.2020.106774_b29
  article-title: Projective robust nonnegative factorization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.05.001
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 10.1016/j.asoc.2020.106774_b47
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 78
  start-page: 209
  year: 2019
  ident: 10.1016/j.asoc.2020.106774_b9
  article-title: Effective image clustering based on human mental search
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.02.009
– volume: 17
  start-page: 4
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2020.106774_b23
  article-title: Semi-supervised nonnegative matrix factorization
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2009.2027163
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.asoc.2020.106774_b6
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 90
  start-page: 464
  year: 2019
  ident: 10.1016/j.asoc.2020.106774_b33
  article-title: Elastic nonnegative matrix factorization
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.07.007
– ident: 10.1016/j.asoc.2020.106774_b7
– ident: 10.1016/j.asoc.2020.106774_b41
  doi: 10.1007/11499145_35
– volume: 27
  start-page: 1392
  issue: 7
  year: 2017
  ident: 10.1016/j.asoc.2020.106774_b21
  article-title: Nonnegative discriminant matrix factorization
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2016.2539779
– volume: 17
  start-page: 1624
  issue: 12
  year: 2005
  ident: 10.1016/j.asoc.2020.106774_b51
  article-title: Document clustering using locality preserving indexing
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.198
– volume: 18
  start-page: 155
  issue: 3
  year: 2003
  ident: 10.1016/j.asoc.2020.106774_b43
  article-title: Clustering incomplete data using kernel-based fuzzy c-means algorithm
  publication-title: Neural Process. Lett.
  doi: 10.1023/B:NEPL.0000011135.19145.1b
– volume: 257
  start-page: 369
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2020.106774_b16
  article-title: Subtractive clustering for seeding non-negative matrix factorizations
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.05.038
– volume: 49
  start-page: 3333
  issue: 9
  year: 2019
  ident: 10.1016/j.asoc.2020.106774_b30
  article-title: Multiview clustering based on non-negative matrix factorization and pairwise measurements
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2842052
– volume: 17
  start-page: 683
  issue: 3
  year: 2006
  ident: 10.1016/j.asoc.2020.106774_b18
  article-title: Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.873291
SSID ssj0016928
Score 2.3714783
Snippet Due to the capacity of data representation, non-negative matrix factorization has been investigated widely by introducing a variety of constraints. The general...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106774
SubjectTerms Clustering guided image representation
Elastic net regularization
Kernel non-negative matrix factorization
Self-organized graph
Title Elastic net regularized kernel non-negative matrix factorization algorithm for clustering guided image representation
URI https://dx.doi.org/10.1016/j.asoc.2020.106774
Volume 97
WOSCitedRecordID wos000602872100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBYj3cNeum5dabtu6GFvQcEXRZYey8jYxiiDdZA-GV-k1GliimOP0F_fo4sdJx1lK_TF2MKyjM7no0_H54LQJ1jTdVHtiAiaKkLVmJNUKI9AW67GUZZnyiRx_RFdXPDpVPx04YorU04gKku-XovbZxU1tIGwdejsf4i7eyg0wDkIHY4gdjj-k-AnwId1FtZS1sPKVJqvijuglTeyKuViCNt9UsqZzfe91An6167ojovIHCaLGVzU10vjgpgtGp1LQVsUZk2Rw4OKpfbzMdkw28ilss9xW2K7Ag1vXNabul0fjYW6MX59spwXcqOYrcq5KlbXTd8QEew6dTyMkLEKlXFChTMzStvGo4AIZku1tFrYeuk-UOjWtjAfJYDVkR51ZHLe0c3y1TkV_tJj6aECrbj8ABbmvQC2Q94A7Z1_m0y_d3-XmDA1d7t3c8FU1u9vd6S_E5YeCbk8QPtu94DPrdTfoBeyfItet5U5sFPUh6hxIMAAAtwDAbYgwH0QYAsCvAUC3IEAAwjwBgTYggAbEOBtELxDv79MLj9_Ja7ABslCz6tJCPRThSETXEXjgGY8ZVzpTNUqEKk2DYaUMun7KmE5yxMVKfh0ZShFGgFtBc5zhAbwwvIYYc6AC4Xco1JRqgImfJXDFWNpEiovyU6Q385inLns87oIyiJu3QznsZ75WM98bGf-BA27Prc298qjd49b4cSOPVpWGAOWHul3-sR-79GrzVdwhgZ11cgP6GX2py5W1UcHuXsvXZkK
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elastic+net+regularized+kernel+non-negative+matrix+factorization+algorithm+for+clustering+guided+image+representation&rft.jtitle=Applied+soft+computing&rft.au=Zhu%2C+Wenjie&rft.au=Peng%2C+Yishu&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=97&rft_id=info:doi/10.1016%2Fj.asoc.2020.106774&rft.externalDocID=S1568494620307122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon