Elastic net regularized kernel non-negative matrix factorization algorithm for clustering guided image representation
Due to the capacity of data representation, non-negative matrix factorization has been investigated widely by introducing a variety of constraints. The general processing of non-negative matrix factorization for image clustering consists of two steps: (i) achieving the r-dimensional non-negative ima...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 97; s. 106774 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.12.2020
|
| Témata: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Due to the capacity of data representation, non-negative matrix factorization has been investigated widely by introducing a variety of constraints. The general processing of non-negative matrix factorization for image clustering consists of two steps: (i) achieving the r-dimensional non-negative image representations, where the rank r is set to the expected number of clusters; (ii) adopting the traditional clustering techniques to accomplish the clustering task. Nevertheless, the previous non-negative matrix factorization variants derive image representations from the original space which cannot handle the nonlinear structure of images. This paper focuses on the existing issues and proposes an elastic net regularized kernel non-negative matrix factorization algorithm for clustering guided image representation. In order to explore the nonlinear relations of images, this paper uses the kernel trick to extend original non-negative matrix factorization. A self-organized graph and elastic net regularization are incorporated into the proposed objective of kernel non-negative matrix factorization, besides, the rank is allowed to be larger than the expected number of clusters. By doing so, the graph defined in the feature space is more qualified to represent the intrinsic structure of images. As an accompanying advantage, the clusters of images can be determined using the graph directly without using the two-step trick. According to the proposed alternating update algorithm for solving the optimization problem, the image representation and clustering result can be obtained simultaneously. Extensive experiments on challenging data sets demonstrate the effectiveness of the proposed algorithm compared with the prominent non-negative matrix factorization variants for image clustering.
•The geometrical structure of images was preserved by relaxing the rank constraint.•The graph defined in the feature space can well capture the intrinsic structure.•The cluster membership can be obtained from the optimized graph directly.•Clustering-guided representation is optimized using the elastic net based non-negative coding. |
|---|---|
| AbstractList | Due to the capacity of data representation, non-negative matrix factorization has been investigated widely by introducing a variety of constraints. The general processing of non-negative matrix factorization for image clustering consists of two steps: (i) achieving the r-dimensional non-negative image representations, where the rank r is set to the expected number of clusters; (ii) adopting the traditional clustering techniques to accomplish the clustering task. Nevertheless, the previous non-negative matrix factorization variants derive image representations from the original space which cannot handle the nonlinear structure of images. This paper focuses on the existing issues and proposes an elastic net regularized kernel non-negative matrix factorization algorithm for clustering guided image representation. In order to explore the nonlinear relations of images, this paper uses the kernel trick to extend original non-negative matrix factorization. A self-organized graph and elastic net regularization are incorporated into the proposed objective of kernel non-negative matrix factorization, besides, the rank is allowed to be larger than the expected number of clusters. By doing so, the graph defined in the feature space is more qualified to represent the intrinsic structure of images. As an accompanying advantage, the clusters of images can be determined using the graph directly without using the two-step trick. According to the proposed alternating update algorithm for solving the optimization problem, the image representation and clustering result can be obtained simultaneously. Extensive experiments on challenging data sets demonstrate the effectiveness of the proposed algorithm compared with the prominent non-negative matrix factorization variants for image clustering.
•The geometrical structure of images was preserved by relaxing the rank constraint.•The graph defined in the feature space can well capture the intrinsic structure.•The cluster membership can be obtained from the optimized graph directly.•Clustering-guided representation is optimized using the elastic net based non-negative coding. |
| ArticleNumber | 106774 |
| Author | Peng, Yishu Zhu, Wenjie |
| Author_xml | – sequence: 1 givenname: Wenjie surname: Zhu fullname: Zhu, Wenjie email: zhwj@cjlu.edu.cn organization: Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China – sequence: 2 givenname: Yishu surname: Peng fullname: Peng, Yishu organization: School of Information Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China |
| BookMark | eNp9kMtOwzAQRS1UJFrgB1j5B1JiJ3FsiQ2qykOqxAbWluuMg0vqVLZTAV-PQ1ix6GoemnNn5i7QzPUOELoh-ZLkhN3ulir0eklzOjZYXZdnaE54TTPBOJmlvGI8K0XJLtAihF2eIEH5HA3rToVoNXYQsYd26JS339DgD_AOOpz2ZA5aFe0R8F5Fbz-xUTr2aSo1e4dV16Yivu-x6T3W3RAieOta3A62SUJ2r1pI0gcPAVz8ha7QuVFdgOu_eIneHtavq6ds8_L4vLrfZLrI85gVrOKmKJjgpq5oqfmWcSMqURgqtpRSXpQlA0KMYg1rlKlNow0UILY1LxmhxSWik672fQgejDz4dI__kiSXo3FyJ0fj5GicnIxLEP8HaTudHb2y3Wn0bkIhPXW04GXQFpyGxnrQUTa9PYX_AE6VjrY |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3242286 crossref_primary_10_1016_j_asoc_2021_107514 crossref_primary_10_1007_s10489_022_03756_1 crossref_primary_10_1007_s00530_023_01187_7 crossref_primary_10_3390_math10224167 |
| Cites_doi | 10.1007/978-3-642-21735-7_31 10.1016/j.neucom.2014.01.043 10.1145/1150402.1150420 10.1016/j.jvcir.2018.07.009 10.1109/ICCV.2003.1238361 10.1016/j.apacoust.2018.08.018 10.1109/TKDE.2010.165 10.1109/TPAMI.2016.2554555 10.1016/j.engappai.2017.10.018 10.1109/TCYB.2013.2281332 10.1016/S0167-6377(99)00074-7 10.1109/TIP.2011.2105496 10.1016/j.patcog.2017.06.025 10.1016/j.neucom.2017.04.068 10.1016/j.patcog.2012.04.030 10.1109/BIBM.2010.5706574 10.1016/j.asoc.2016.12.019 10.1016/j.asoc.2019.03.004 10.1109/CVPR.2014.31 10.1016/j.image.2018.01.001 10.1109/5.726791 10.1137/0105003 10.1109/TPAMI.2010.231 10.1137/1.9781611972757.70 10.1007/s00521-018-3572-4 10.1609/aaai.v25i1.7900 10.1109/TCYB.2015.2399533 10.1109/IJCNN.2008.4634046 10.1109/ACCESS.2018.2854232 10.1109/ICDM.2012.39 10.1109/TPAMI.2011.217 10.1109/TGRS.2008.2002882 10.1016/j.patcog.2011.10.014 10.1093/bioinformatics/btm134 10.1109/ICDM.2006.160 10.1016/j.ins.2016.05.001 10.1007/s11222-007-9033-z 10.1016/j.asoc.2019.02.009 10.1109/LSP.2009.2027163 10.1038/44565 10.1016/j.patcog.2018.07.007 10.1007/11499145_35 10.1109/TCSVT.2016.2539779 10.1109/TKDE.2005.198 10.1023/B:NEPL.0000011135.19145.1b 10.1016/j.ins.2013.05.038 10.1109/TCYB.2018.2842052 10.1109/TNN.2006.873291 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2020.106774 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2020_106774 S1568494620307122 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-3658f33698f7524c8b68f9593f29b22283446e11fa6d6daf7fdcfe3e9b7846123 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000602872100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 21:42:03 EST 2025 Sat Nov 29 07:00:51 EST 2025 Fri Feb 23 02:46:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Self-organized graph Kernel non-negative matrix factorization Elastic net regularization Clustering guided image representation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-3658f33698f7524c8b68f9593f29b22283446e11fa6d6daf7fdcfe3e9b7846123 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2020_106774 crossref_citationtrail_10_1016_j_asoc_2020_106774 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106774 |
| PublicationCentury | 2000 |
| PublicationDate | December 2020 2020-12-00 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cai, He, Han (b52) 2011; 23 Jia, Qian (b1) 2009; 47 Zafeiriou, Tefas, Buciu, Pitas (b18) 2006; 17 Cai, He, Han, Huang (b28) 2011; 33 Z. Yang, Z. He, Z. Yuan, E. Oja, Z. Yang, Z. He, Z. Yuan, E. Oja, Kullback–leibler divergence for nonnegative matrix factorization, in: International Conference on Artificial Neural Networks, 2011, pp. 14–17. Xiong, Kong (b33) 2019; 90 Lee, Seung (b6) 1999; 401 Lu, Lai, Xu, You, Li, Yuan (b29) 2016; 364–365 W. Liu, S. Zheng, S. Jia, L. Shen, X. Fu, Sparse nonnegative matrix factorization with the elastic net, in: IEEE International Conference on Bioinformatics and Biomedicine, BIBM, 2010, pp. 265–268. Zhu, Yan (b26) 2018; 6 Zeng, Yu, Li, You, Jin (b42) 2014; 138 Luxburg (b47) 2007; 17 Casalino, Del Buono, Mencar (b16) 2014; 257 Wang, Tianzhen, Xinbo (b30) 2019; 49 Mohar, Alavi, Chartrand, Oellermann, Schwenk (b44) 1991 Hayashi, Watanabe (b14) 2017; 266 Gao, Woo, Ling (b15) 2014; 44 D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: International Conference on Neural Information Processing Systems, 2000, pp. 535–541. Mousavirad, Ebrahimpour-Komleh, Schaefer (b9) 2019; 78 M.M. Kalayeh, H. Idrees, M. Shah, NMF–KNN: image annotation using weighted multi-view non-negative matrix factorization, in: IEEE Conference on Computer Vision and Pattern Recognition, 2014, 2014, pp. 184–191. Lu, Lai, Yong, Li, Yuan (b21) 2017; 27 L. Du, X. Li, Y.D. Shen, Robust nonnegative matrix factorization via half-quadratic minimization, in: IEEE International Conference on Data Mining, 2013, 2013, pp. 201–210. Guan, Tao, Luo, Yuan (b19) 2011; 20 Grippoa, Sciandrone (b49) 2000; 26 X. Chen, D. Cai, Large scale spectral clustering with landmark-based representation, in: AAAI Conference on Artificial Intelligence, 2011, 2011, pp. 313–318. Cai, He, Han (b51) 2005; 17 Binesh, Rezghi (b3) 2018; 69 Liu, Wu, Cai, Huang (b24) 2012; 34 James (b54) 1957; 5 Seema, Keshavamurthy (b8) 2018; 55 Zhu, Yunhui, Yishu (b34) 2019; 31 Yang, Oja (b11) 2012; 45 Pompili, Gillis, Absil, Glineur (b40) 2012; 141 Lécun, Bottou, Bengio, Haffner (b50) 1998; 86 Zhu, Yan (b22) 2018; 62 C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix tri-factorizations for clustering, in: 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, 2006, pp. 126–135. Y. Wang, Y. Jia, C. Hu, M. Turk, Fisher non-negative matrix factorization for learning local features,in: Asian Conference of Computer Vision, 2004, 2004, pp.27–30. Lee, Yoo, Choi (b23) 2010; 17 AliAbin (b10) 2019; 80 Kim, Park (b48) 2007; 23 C. Ding, X. He, H.D. Simon, R. Jin, On the equivalence of nonnegative matrix factorization and k-means spectral clustering, in: 2005 SIAM International Conference on Data Mining, SDM 2005, 2005, pp. 606–610. T. Li, C. Ding, The relationships among various nonnegative matrix factorization methods for clustering, in: International Conference on Data Mining, 2007, 2007, pp. 362–371. Z. Yuan, E. Oja, Projective nonnegative matrix factorization for image compression and feature extraction, in: Scandinavian Conference on Image Analysis, 2005, 2005, pp. 333–342. Ma, Sun, Qin (b2) 2017; 71 Zhang, Chen (b43) 2003; 18 Wang, Song, Zhang (b4) 2018; 68 Nikitidis, Tefas, Nikolaidis, Pitas (b20) 2012; 45 S.X. Yu, J. Shi, Multiclass spectral clustering, in: IEEE International Conference on Computer Vision, 2003, pp. 313–319. S. Choi, Algorithms for orthogonal nonnegative matrix factorization, in: IEEE International Joint Conference on Neural Networks, 2008, 2008, pp. 1828–1832. Wang, Gao, Wang (b25) 2016; 46 Hopcroft, Tarjan (b45) 1971 Trigeorgis, Bousmalis, Zafeiriou, Schuller (b31) 2017; 39 S.Z. Li, X.W. Hou, H.J. Zhang, Q.S. Cheng, Learning spatially localized, parts-based representation, in: IEEE Conference on Computer Vision and Pattern Recognition, 2003, 2003, pp. 207–212. Gloaguen, Can, Lagrange, Petiot (b5) 2019; 143 Ma (10.1016/j.asoc.2020.106774_b2) 2017; 71 Wang (10.1016/j.asoc.2020.106774_b4) 2018; 68 Zhang (10.1016/j.asoc.2020.106774_b43) 2003; 18 Mousavirad (10.1016/j.asoc.2020.106774_b9) 2019; 78 10.1016/j.asoc.2020.106774_b41 Lu (10.1016/j.asoc.2020.106774_b21) 2017; 27 AliAbin (10.1016/j.asoc.2020.106774_b10) 2019; 80 10.1016/j.asoc.2020.106774_b46 Lécun (10.1016/j.asoc.2020.106774_b50) 1998; 86 Cai (10.1016/j.asoc.2020.106774_b52) 2011; 23 10.1016/j.asoc.2020.106774_b17 Yang (10.1016/j.asoc.2020.106774_b11) 2012; 45 10.1016/j.asoc.2020.106774_b13 Zafeiriou (10.1016/j.asoc.2020.106774_b18) 2006; 17 Liu (10.1016/j.asoc.2020.106774_b24) 2012; 34 Zhu (10.1016/j.asoc.2020.106774_b34) 2019; 31 10.1016/j.asoc.2020.106774_b53 10.1016/j.asoc.2020.106774_b12 Binesh (10.1016/j.asoc.2020.106774_b3) 2018; 69 Pompili (10.1016/j.asoc.2020.106774_b40) 2012; 141 Kim (10.1016/j.asoc.2020.106774_b48) 2007; 23 Cai (10.1016/j.asoc.2020.106774_b51) 2005; 17 Zhu (10.1016/j.asoc.2020.106774_b22) 2018; 62 Xiong (10.1016/j.asoc.2020.106774_b33) 2019; 90 Hayashi (10.1016/j.asoc.2020.106774_b14) 2017; 266 Lee (10.1016/j.asoc.2020.106774_b23) 2010; 17 Lee (10.1016/j.asoc.2020.106774_b6) 1999; 401 10.1016/j.asoc.2020.106774_b27 Cai (10.1016/j.asoc.2020.106774_b28) 2011; 33 Lu (10.1016/j.asoc.2020.106774_b29) 2016; 364–365 10.1016/j.asoc.2020.106774_b39 James (10.1016/j.asoc.2020.106774_b54) 1957; 5 Jia (10.1016/j.asoc.2020.106774_b1) 2009; 47 10.1016/j.asoc.2020.106774_b7 Nikitidis (10.1016/j.asoc.2020.106774_b20) 2012; 45 Guan (10.1016/j.asoc.2020.106774_b19) 2011; 20 Wang (10.1016/j.asoc.2020.106774_b30) 2019; 49 Zeng (10.1016/j.asoc.2020.106774_b42) 2014; 138 Gloaguen (10.1016/j.asoc.2020.106774_b5) 2019; 143 Grippoa (10.1016/j.asoc.2020.106774_b49) 2000; 26 Seema (10.1016/j.asoc.2020.106774_b8) 2018; 55 Mohar (10.1016/j.asoc.2020.106774_b44) 1991 Hopcroft (10.1016/j.asoc.2020.106774_b45) 1971 Wang (10.1016/j.asoc.2020.106774_b25) 2016; 46 Trigeorgis (10.1016/j.asoc.2020.106774_b31) 2017; 39 Zhu (10.1016/j.asoc.2020.106774_b26) 2018; 6 10.1016/j.asoc.2020.106774_b35 10.1016/j.asoc.2020.106774_b36 10.1016/j.asoc.2020.106774_b37 Gao (10.1016/j.asoc.2020.106774_b15) 2014; 44 10.1016/j.asoc.2020.106774_b38 10.1016/j.asoc.2020.106774_b32 Casalino (10.1016/j.asoc.2020.106774_b16) 2014; 257 Luxburg (10.1016/j.asoc.2020.106774_b47) 2007; 17 |
| References_xml | – reference: M.M. Kalayeh, H. Idrees, M. Shah, NMF–KNN: image annotation using weighted multi-view non-negative matrix factorization, in: IEEE Conference on Computer Vision and Pattern Recognition, 2014, 2014, pp. 184–191. – volume: 17 start-page: 1624 year: 2005 end-page: 1637 ident: b51 article-title: Document clustering using locality preserving indexing publication-title: IEEE Trans. Knowl. Data Eng. – reference: S.X. Yu, J. Shi, Multiclass spectral clustering, in: IEEE International Conference on Computer Vision, 2003, pp. 313–319. – reference: T. Li, C. Ding, The relationships among various nonnegative matrix factorization methods for clustering, in: International Conference on Data Mining, 2007, 2007, pp. 362–371. – volume: 266 start-page: 21 year: 2017 end-page: 28 ident: b14 article-title: Upper bound of bayesian generalization error in non-negative matrix factorization publication-title: Neurocomputing – volume: 44 start-page: 1169 year: 2014 end-page: 1179 ident: b15 article-title: Machine learning source separation using maximum a posteriori nonnegative matrix factorization publication-title: IEEE Trans. Cybern. – volume: 39 start-page: 417 year: 2017 end-page: 429 ident: b31 article-title: A deep matrix factorization method for learning attribute representations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 31 start-page: 7381 year: 2019 end-page: 7399 ident: b34 article-title: Topological structure regularized nonnegative matrix factorization for image clustering publication-title: Neural Comput. Appl. – volume: 62 start-page: 139 year: 2018 end-page: 148 ident: b22 article-title: Label and orthogonality regularized non-negative matrix factorization for image classification publication-title: Signal Process., Image Commun. – volume: 143 start-page: 229 year: 2019 end-page: 238 ident: b5 article-title: Road traffic sound level estimation from realistic urban sound mixtures by non-negative matrix factorization publication-title: Appl. Acoust. – volume: 33 start-page: 1548 year: 2011 end-page: 1560 ident: b28 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 364–365 start-page: 16 year: 2016 end-page: 32 ident: b29 article-title: Projective robust nonnegative factorization publication-title: Inform. Sci. – volume: 46 start-page: 233 year: 2016 end-page: 244 ident: b25 article-title: Semi-supervised nonnegative matrix factorization via constraint propagation publication-title: IEEE Trans. Cybern. – reference: D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: International Conference on Neural Information Processing Systems, 2000, pp. 535–541. – volume: 17 start-page: 4 year: 2010 end-page: 7 ident: b23 article-title: Semi-supervised nonnegative matrix factorization publication-title: IEEE Signal Process. Lett. – volume: 80 start-page: 31 year: 2019 end-page: 41 ident: b10 article-title: Querying informative constraints for data clustering: an embedding approach publication-title: Appl. Soft Comput. – volume: 18 start-page: 155 year: 2003 end-page: 162 ident: b43 article-title: Clustering incomplete data using kernel-based fuzzy c-means algorithm publication-title: Neural Process. Lett. – reference: Z. Yang, Z. He, Z. Yuan, E. Oja, Z. Yang, Z. He, Z. Yuan, E. Oja, Kullback–leibler divergence for nonnegative matrix factorization, in: International Conference on Artificial Neural Networks, 2011, pp. 14–17. – volume: 17 start-page: 395 year: 2007 end-page: 416 ident: b47 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. – volume: 49 start-page: 3333 year: 2019 end-page: 3346 ident: b30 article-title: Multiview clustering based on non-negative matrix factorization and pairwise measurements publication-title: IEEE Trans. Cybern. – volume: 257 start-page: 369 year: 2014 end-page: 387 ident: b16 article-title: Subtractive clustering for seeding non-negative matrix factorizations publication-title: Inform. Sci. – volume: 34 start-page: 1299 year: 2012 end-page: 1311 ident: b24 article-title: Constrained nonnegative matrix factorization for image representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: L. Du, X. Li, Y.D. Shen, Robust nonnegative matrix factorization via half-quadratic minimization, in: IEEE International Conference on Data Mining, 2013, 2013, pp. 201–210. – volume: 20 start-page: 2030 year: 2011 end-page: 2048 ident: b19 article-title: Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent publication-title: IEEE Trans. Image Process. – volume: 138 start-page: 209 year: 2014 end-page: 217 ident: b42 article-title: Image clustering by hyper-graph regularized non-negative matrix factorization publication-title: Neurocomputing – year: 1971 ident: b45 article-title: Efficient Algorithms for Graph Manipulation – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: b6 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – reference: C. Ding, X. He, H.D. Simon, R. Jin, On the equivalence of nonnegative matrix factorization and k-means spectral clustering, in: 2005 SIAM International Conference on Data Mining, SDM 2005, 2005, pp. 606–610. – reference: W. Liu, S. Zheng, S. Jia, L. Shen, X. Fu, Sparse nonnegative matrix factorization with the elastic net, in: IEEE International Conference on Bioinformatics and Biomedicine, BIBM, 2010, pp. 265–268. – volume: 78 start-page: 209 year: 2019 end-page: 220 ident: b9 article-title: Effective image clustering based on human mental search publication-title: Appl. Soft Comput. – volume: 17 start-page: 683 year: 2006 end-page: 695 ident: b18 article-title: Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification publication-title: IEEE Trans. Neural Netw. – volume: 6 start-page: 38820 year: 2018 end-page: 38834 ident: b26 article-title: Joint linear regression and nonnegative matrix factorization based on self-organized graph for image clustering and classification publication-title: IEEE Access – volume: 68 start-page: 32 year: 2018 end-page: 39 ident: b4 article-title: Graph regularized nonnegative matrix factorization with sample diversity for image representation publication-title: Eng. Appl. Artif. Intell. – reference: Z. Yuan, E. Oja, Projective nonnegative matrix factorization for image compression and feature extraction, in: Scandinavian Conference on Image Analysis, 2005, 2005, pp. 333–342. – volume: 23 start-page: 1495 year: 2007 end-page: 1502 ident: b48 article-title: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis publication-title: Bioinformatics – volume: 141 start-page: 15 year: 2012 end-page: 25 ident: b40 article-title: Two algorithms for orthogonal nonnegative matrix factorization with application to clustering publication-title: Neurocomputing – volume: 45 start-page: 4080 year: 2012 end-page: 4091 ident: b20 article-title: Subclass discriminant nonnegative matrix factorization for facial image analysis publication-title: Pattern Recognit. – volume: 71 start-page: 361 year: 2017 end-page: 374 ident: b2 article-title: Nonnegative matrix factorization algorithms for link prediction in temporal networks using graph communicability publication-title: Pattern Recognit. – volume: 45 start-page: 1500 year: 2012 end-page: 1510 ident: b11 article-title: Quadratic nonnegative matrix factorization publication-title: Pattern Recognit. – volume: 26 start-page: 127 year: 2000 end-page: 136 ident: b49 article-title: On the convergence of the block nonlinear Gauss–Seidel method under convex constraints publication-title: Oper. Res. Lett. – volume: 69 start-page: 689 year: 2018 end-page: 703 ident: b3 article-title: Fuzzy clustering in community detection based on nonnegative matrix factorization with two novel evaluation criteria publication-title: Appl. Soft Comput. – reference: S. Choi, Algorithms for orthogonal nonnegative matrix factorization, in: IEEE International Joint Conference on Neural Networks, 2008, 2008, pp. 1828–1832. – volume: 23 start-page: 902 year: 2011 end-page: 913 ident: b52 article-title: Locally consistent concept factorization for document clustering publication-title: IEEE Trans. Knowl. Data Eng. – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b50 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 27 start-page: 1392 year: 2017 end-page: 1405 ident: b21 article-title: Nonnegative discriminant matrix factorization publication-title: IEEE Trans. Circuits Syst. Video Technol. – reference: X. Chen, D. Cai, Large scale spectral clustering with landmark-based representation, in: AAAI Conference on Artificial Intelligence, 2011, 2011, pp. 313–318. – volume: 5 start-page: 32 year: 1957 end-page: 38 ident: b54 article-title: Algorithms for the assignment and transportation problems publication-title: J. Soc. Ind. Appl. Math. – reference: S.Z. Li, X.W. Hou, H.J. Zhang, Q.S. Cheng, Learning spatially localized, parts-based representation, in: IEEE Conference on Computer Vision and Pattern Recognition, 2003, 2003, pp. 207–212. – volume: 90 start-page: 464 year: 2019 end-page: 475 ident: b33 article-title: Elastic nonnegative matrix factorization publication-title: Pattern Recognit. – start-page: 871 year: 1991 end-page: 898 ident: b44 article-title: The laplacian spectrum of graphs publication-title: Graph Theory, Combinatorics, and Applications, 1991 – reference: Y. Wang, Y. Jia, C. Hu, M. Turk, Fisher non-negative matrix factorization for learning local features,in: Asian Conference of Computer Vision, 2004, 2004, pp.27–30. – volume: 55 start-page: 596 year: 2018 end-page: 626 ident: b8 article-title: A survey on image data analysis through clustering techniques for real world applications publication-title: J. Vis. Commun. Image Represent. – reference: C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix tri-factorizations for clustering, in: 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, 2006, pp. 126–135. – volume: 47 start-page: 161 year: 2009 end-page: 173 ident: b1 article-title: Constrained nonnegative matrix factorization for hyperspectral unmixing publication-title: IEEE Trans. Geosci. Remote Sens. – ident: 10.1016/j.asoc.2020.106774_b35 doi: 10.1007/978-3-642-21735-7_31 – volume: 138 start-page: 209 issue: 11 year: 2014 ident: 10.1016/j.asoc.2020.106774_b42 article-title: Image clustering by hyper-graph regularized non-negative matrix factorization publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.043 – volume: 141 start-page: 15 issue: 4 year: 2012 ident: 10.1016/j.asoc.2020.106774_b40 article-title: Two algorithms for orthogonal nonnegative matrix factorization with application to clustering publication-title: Neurocomputing – start-page: 871 year: 1991 ident: 10.1016/j.asoc.2020.106774_b44 article-title: The laplacian spectrum of graphs – ident: 10.1016/j.asoc.2020.106774_b37 doi: 10.1145/1150402.1150420 – volume: 55 start-page: 596 year: 2018 ident: 10.1016/j.asoc.2020.106774_b8 article-title: A survey on image data analysis through clustering techniques for real world applications publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2018.07.009 – ident: 10.1016/j.asoc.2020.106774_b46 doi: 10.1109/ICCV.2003.1238361 – volume: 143 start-page: 229 year: 2019 ident: 10.1016/j.asoc.2020.106774_b5 article-title: Road traffic sound level estimation from realistic urban sound mixtures by non-negative matrix factorization publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2018.08.018 – volume: 23 start-page: 902 issue: 6 year: 2011 ident: 10.1016/j.asoc.2020.106774_b52 article-title: Locally consistent concept factorization for document clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2010.165 – volume: 39 start-page: 417 issue: 3 year: 2017 ident: 10.1016/j.asoc.2020.106774_b31 article-title: A deep matrix factorization method for learning attribute representations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2554555 – volume: 68 start-page: 32 year: 2018 ident: 10.1016/j.asoc.2020.106774_b4 article-title: Graph regularized nonnegative matrix factorization with sample diversity for image representation publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.10.018 – volume: 44 start-page: 1169 issue: 7 year: 2014 ident: 10.1016/j.asoc.2020.106774_b15 article-title: Machine learning source separation using maximum a posteriori nonnegative matrix factorization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2281332 – volume: 26 start-page: 127 year: 2000 ident: 10.1016/j.asoc.2020.106774_b49 article-title: On the convergence of the block nonlinear Gauss–Seidel method under convex constraints publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(99)00074-7 – volume: 20 start-page: 2030 issue: 7 year: 2011 ident: 10.1016/j.asoc.2020.106774_b19 article-title: Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2105496 – volume: 71 start-page: 361 year: 2017 ident: 10.1016/j.asoc.2020.106774_b2 article-title: Nonnegative matrix factorization algorithms for link prediction in temporal networks using graph communicability publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.06.025 – volume: 266 start-page: 21 year: 2017 ident: 10.1016/j.asoc.2020.106774_b14 article-title: Upper bound of bayesian generalization error in non-negative matrix factorization publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.068 – volume: 45 start-page: 4080 issue: 12 year: 2012 ident: 10.1016/j.asoc.2020.106774_b20 article-title: Subclass discriminant nonnegative matrix factorization for facial image analysis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.04.030 – ident: 10.1016/j.asoc.2020.106774_b27 – ident: 10.1016/j.asoc.2020.106774_b32 doi: 10.1109/BIBM.2010.5706574 – volume: 69 start-page: 689 year: 2018 ident: 10.1016/j.asoc.2020.106774_b3 article-title: Fuzzy clustering in community detection based on nonnegative matrix factorization with two novel evaluation criteria publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.019 – volume: 80 start-page: 31 year: 2019 ident: 10.1016/j.asoc.2020.106774_b10 article-title: Querying informative constraints for data clustering: an embedding approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.03.004 – ident: 10.1016/j.asoc.2020.106774_b13 doi: 10.1109/CVPR.2014.31 – volume: 62 start-page: 139 year: 2018 ident: 10.1016/j.asoc.2020.106774_b22 article-title: Label and orthogonality regularized non-negative matrix factorization for image classification publication-title: Signal Process., Image Commun. doi: 10.1016/j.image.2018.01.001 – year: 1971 ident: 10.1016/j.asoc.2020.106774_b45 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.asoc.2020.106774_b50 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: 10.1016/j.asoc.2020.106774_b17 – volume: 5 start-page: 32 issue: 1 year: 1957 ident: 10.1016/j.asoc.2020.106774_b54 article-title: Algorithms for the assignment and transportation problems publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0105003 – volume: 33 start-page: 1548 issue: 8 year: 2011 ident: 10.1016/j.asoc.2020.106774_b28 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.231 – ident: 10.1016/j.asoc.2020.106774_b36 doi: 10.1137/1.9781611972757.70 – volume: 31 start-page: 7381 issue: 11 year: 2019 ident: 10.1016/j.asoc.2020.106774_b34 article-title: Topological structure regularized nonnegative matrix factorization for image clustering publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3572-4 – ident: 10.1016/j.asoc.2020.106774_b53 doi: 10.1609/aaai.v25i1.7900 – volume: 46 start-page: 233 issue: 1 year: 2016 ident: 10.1016/j.asoc.2020.106774_b25 article-title: Semi-supervised nonnegative matrix factorization via constraint propagation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2399533 – ident: 10.1016/j.asoc.2020.106774_b39 doi: 10.1109/IJCNN.2008.4634046 – volume: 6 start-page: 38820 year: 2018 ident: 10.1016/j.asoc.2020.106774_b26 article-title: Joint linear regression and nonnegative matrix factorization based on self-organized graph for image clustering and classification publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2854232 – ident: 10.1016/j.asoc.2020.106774_b12 doi: 10.1109/ICDM.2012.39 – volume: 34 start-page: 1299 issue: 7 year: 2012 ident: 10.1016/j.asoc.2020.106774_b24 article-title: Constrained nonnegative matrix factorization for image representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.217 – volume: 47 start-page: 161 issue: 1 year: 2009 ident: 10.1016/j.asoc.2020.106774_b1 article-title: Constrained nonnegative matrix factorization for hyperspectral unmixing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2002882 – volume: 45 start-page: 1500 issue: 4 year: 2012 ident: 10.1016/j.asoc.2020.106774_b11 article-title: Quadratic nonnegative matrix factorization publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.10.014 – volume: 23 start-page: 1495 issue: 12 year: 2007 ident: 10.1016/j.asoc.2020.106774_b48 article-title: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm134 – ident: 10.1016/j.asoc.2020.106774_b38 doi: 10.1109/ICDM.2006.160 – volume: 364–365 start-page: 16 issue: C year: 2016 ident: 10.1016/j.asoc.2020.106774_b29 article-title: Projective robust nonnegative factorization publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.05.001 – volume: 17 start-page: 395 issue: 4 year: 2007 ident: 10.1016/j.asoc.2020.106774_b47 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – volume: 78 start-page: 209 year: 2019 ident: 10.1016/j.asoc.2020.106774_b9 article-title: Effective image clustering based on human mental search publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.02.009 – volume: 17 start-page: 4 issue: 1 year: 2010 ident: 10.1016/j.asoc.2020.106774_b23 article-title: Semi-supervised nonnegative matrix factorization publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2027163 – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 10.1016/j.asoc.2020.106774_b6 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 90 start-page: 464 year: 2019 ident: 10.1016/j.asoc.2020.106774_b33 article-title: Elastic nonnegative matrix factorization publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.07.007 – ident: 10.1016/j.asoc.2020.106774_b7 – ident: 10.1016/j.asoc.2020.106774_b41 doi: 10.1007/11499145_35 – volume: 27 start-page: 1392 issue: 7 year: 2017 ident: 10.1016/j.asoc.2020.106774_b21 article-title: Nonnegative discriminant matrix factorization publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2016.2539779 – volume: 17 start-page: 1624 issue: 12 year: 2005 ident: 10.1016/j.asoc.2020.106774_b51 article-title: Document clustering using locality preserving indexing publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.198 – volume: 18 start-page: 155 issue: 3 year: 2003 ident: 10.1016/j.asoc.2020.106774_b43 article-title: Clustering incomplete data using kernel-based fuzzy c-means algorithm publication-title: Neural Process. Lett. doi: 10.1023/B:NEPL.0000011135.19145.1b – volume: 257 start-page: 369 issue: 2 year: 2014 ident: 10.1016/j.asoc.2020.106774_b16 article-title: Subtractive clustering for seeding non-negative matrix factorizations publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.05.038 – volume: 49 start-page: 3333 issue: 9 year: 2019 ident: 10.1016/j.asoc.2020.106774_b30 article-title: Multiview clustering based on non-negative matrix factorization and pairwise measurements publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2842052 – volume: 17 start-page: 683 issue: 3 year: 2006 ident: 10.1016/j.asoc.2020.106774_b18 article-title: Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.873291 |
| SSID | ssj0016928 |
| Score | 2.3714783 |
| Snippet | Due to the capacity of data representation, non-negative matrix factorization has been investigated widely by introducing a variety of constraints. The general... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106774 |
| SubjectTerms | Clustering guided image representation Elastic net regularization Kernel non-negative matrix factorization Self-organized graph |
| Title | Elastic net regularized kernel non-negative matrix factorization algorithm for clustering guided image representation |
| URI | https://dx.doi.org/10.1016/j.asoc.2020.106774 |
| Volume | 97 |
| WOSCitedRecordID | wos000602872100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBYj3cNeum5dabtu6GFvQcEXRZYey8jYxiiDdZA-GV-k1GliimOP0F_fo4sdJx1lK_TF2MKyjM7no0_H54LQJ1jTdVHtiAiaKkLVmJNUKI9AW67GUZZnyiRx_RFdXPDpVPx04YorU04gKku-XovbZxU1tIGwdejsf4i7eyg0wDkIHY4gdjj-k-AnwId1FtZS1sPKVJqvijuglTeyKuViCNt9UsqZzfe91An6167ojovIHCaLGVzU10vjgpgtGp1LQVsUZk2Rw4OKpfbzMdkw28ilss9xW2K7Ag1vXNabul0fjYW6MX59spwXcqOYrcq5KlbXTd8QEew6dTyMkLEKlXFChTMzStvGo4AIZku1tFrYeuk-UOjWtjAfJYDVkR51ZHLe0c3y1TkV_tJj6aECrbj8ABbmvQC2Q94A7Z1_m0y_d3-XmDA1d7t3c8FU1u9vd6S_E5YeCbk8QPtu94DPrdTfoBeyfItet5U5sFPUh6hxIMAAAtwDAbYgwH0QYAsCvAUC3IEAAwjwBgTYggAbEOBtELxDv79MLj9_Ja7ABslCz6tJCPRThSETXEXjgGY8ZVzpTNUqEKk2DYaUMun7KmE5yxMVKfh0ZShFGgFtBc5zhAbwwvIYYc6AC4Xco1JRqgImfJXDFWNpEiovyU6Q385inLns87oIyiJu3QznsZ75WM98bGf-BA27Prc298qjd49b4cSOPVpWGAOWHul3-sR-79GrzVdwhgZ11cgP6GX2py5W1UcHuXsvXZkK |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elastic+net+regularized+kernel+non-negative+matrix+factorization+algorithm+for+clustering+guided+image+representation&rft.jtitle=Applied+soft+computing&rft.au=Zhu%2C+Wenjie&rft.au=Peng%2C+Yishu&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=97&rft_id=info:doi/10.1016%2Fj.asoc.2020.106774&rft.externalDocID=S1568494620307122 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |