Gait phase recognition of lower limb exoskeleton system based on the integrated network model

[Display omitted] •A new gait recognition method based on integrated network model is proposed for identifying four phases in the gait cycle, including heel strike, foot flat, heel off and swing phase.•This paper adopts sparse autoencoder into the model to extract key features of gait information an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical signal processing and control Jg. 76; S. 103693
Hauptverfasser: Zhang, Zaifang, Wang, Zhaoyang, Lei, Han, Gu, Wenquan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.07.2022
Schlagworte:
ISSN:1746-8094, 1746-8108
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •A new gait recognition method based on integrated network model is proposed for identifying four phases in the gait cycle, including heel strike, foot flat, heel off and swing phase.•This paper adopts sparse autoencoder into the model to extract key features of gait information and use bidirectional long short-term memory for learning more critical information from gait data.•The proposed integrated network model has more effective recognition results and better generalization performance for gait phase recognition of the lower limb exoskeleton system compared with other models. Exoskeleton robots have become an emerging technology in medical, industrial and military applications. Human gait phase recognition is the crucial technology for recognizing movement intention of the exoskeleton wearer and controlling the exoskeleton robot. As a new biometric recognition method, gait phase recognition also plays an important role in clinical disease diagnosis, rehabilitation training and other fields. This paper proposes an integrated network model SBLSTM that combines sparse autoencoder (SAE), bidirectional long short-term memory (BiLSTM) and deep neural network (DNN) aiming at gait phase recognition during human movement. The model can accurately identify four phases in the gait cycle, including heel strike (HS), foot flat (FF), heel off (HO) and swing phase (SW). Normalization and feature extraction of collected sensor signals are performed to enhance the accuracy of recognition during the gait identification process. The processed data are input into the SBLSTM model. The introduction of SAE into the model can extract key information from gait characteristics. BiLSTM is used to learn temporal patterns and periodic changes in gait data. DNN is adopted to identify gait phases and output classification results. Different algorithms such as DNN, LSTM and SBLSTM are applied to the gait phase detection of subjects. The experimental results show that the SBLSTM algorithm is effective in gait recognition. The accuracy and F-score are outperformed by other algorithms, which verifies the effectiveness of the SBLSTM in practice.
AbstractList [Display omitted] •A new gait recognition method based on integrated network model is proposed for identifying four phases in the gait cycle, including heel strike, foot flat, heel off and swing phase.•This paper adopts sparse autoencoder into the model to extract key features of gait information and use bidirectional long short-term memory for learning more critical information from gait data.•The proposed integrated network model has more effective recognition results and better generalization performance for gait phase recognition of the lower limb exoskeleton system compared with other models. Exoskeleton robots have become an emerging technology in medical, industrial and military applications. Human gait phase recognition is the crucial technology for recognizing movement intention of the exoskeleton wearer and controlling the exoskeleton robot. As a new biometric recognition method, gait phase recognition also plays an important role in clinical disease diagnosis, rehabilitation training and other fields. This paper proposes an integrated network model SBLSTM that combines sparse autoencoder (SAE), bidirectional long short-term memory (BiLSTM) and deep neural network (DNN) aiming at gait phase recognition during human movement. The model can accurately identify four phases in the gait cycle, including heel strike (HS), foot flat (FF), heel off (HO) and swing phase (SW). Normalization and feature extraction of collected sensor signals are performed to enhance the accuracy of recognition during the gait identification process. The processed data are input into the SBLSTM model. The introduction of SAE into the model can extract key information from gait characteristics. BiLSTM is used to learn temporal patterns and periodic changes in gait data. DNN is adopted to identify gait phases and output classification results. Different algorithms such as DNN, LSTM and SBLSTM are applied to the gait phase detection of subjects. The experimental results show that the SBLSTM algorithm is effective in gait recognition. The accuracy and F-score are outperformed by other algorithms, which verifies the effectiveness of the SBLSTM in practice.
ArticleNumber 103693
Author Wang, Zhaoyang
Zhang, Zaifang
Lei, Han
Gu, Wenquan
Author_xml – sequence: 1
  givenname: Zaifang
  surname: Zhang
  fullname: Zhang, Zaifang
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
– sequence: 2
  givenname: Zhaoyang
  surname: Wang
  fullname: Wang, Zhaoyang
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
– sequence: 3
  givenname: Han
  surname: Lei
  fullname: Lei, Han
  organization: Shanghai Punan Hospital, Shanghai 200125, China
– sequence: 4
  givenname: Wenquan
  surname: Gu
  fullname: Gu, Wenquan
  email: pdnl3885gwq@126.com
  organization: Shanghai Punan Hospital, Shanghai 200125, China
BookMark eNp9kMFKAzEQhoNUsK2-gKe8wNZks2az4EWKVqHgRY8Ssslsm3Z3U5Jg7dubZfXioaeZ-YdvYL4ZmvSuB4RuKVlQQvndblGHg17kJM9TwHjFLtCUlgXPBCVi8teTqrhCsxB2hBSipMUUfa6UjfiwVQGwB-02vY3W9dg1uHVH8Li1XY3h24U9tBDTJpxChA7XiTA4zXEL2PYRNl7FlPQQj87vcecMtNfoslFtgJvfOkcfz0_vy5ds_bZ6XT6uM80IiRnjRVVwel-VSohKGMEboAXk2pSl0ZxpqrSuFROG56WhrKpBGKooVSWtNeRsjvLxrvYuBA-NPHjbKX-SlMhBkNzJQZAcBMlRUILEP0jbqIbvo1e2PY8-jCikp74seBm0hV6DsUlilMbZc_gPSayFHw
CitedBy_id crossref_primary_10_1109_TNSRE_2023_3336360
crossref_primary_10_1088_1741_2552_accd22
crossref_primary_10_1016_j_gaitpost_2024_12_028
crossref_primary_10_3390_s24051505
crossref_primary_10_1109_ACCESS_2025_3544758
crossref_primary_10_1177_09544062241235084
crossref_primary_10_1109_JSEN_2023_3328615
crossref_primary_10_1007_s11227_023_05156_9
crossref_primary_10_1016_j_measen_2025_101865
crossref_primary_10_1007_s42235_025_00723_7
crossref_primary_10_1109_ACCESS_2024_3414175
crossref_primary_10_3390_electronics14010107
crossref_primary_10_1016_j_engappai_2025_110106
crossref_primary_10_1007_s41315_024_00334_1
crossref_primary_10_1007_s00521_023_09154_z
crossref_primary_10_3390_s24186014
crossref_primary_10_1016_j_bspc_2022_104163
crossref_primary_10_1007_s12008_024_02076_7
crossref_primary_10_1186_s12984_025_01605_z
crossref_primary_10_1016_j_measurement_2024_114416
crossref_primary_10_1115_1_4068865
crossref_primary_10_1016_j_jneumeth_2025_110469
crossref_primary_10_1109_ACCESS_2025_3598038
crossref_primary_10_1109_TASE_2024_3421276
crossref_primary_10_1109_JSEN_2025_3546182
crossref_primary_10_3390_bios15050305
crossref_primary_10_3390_s23115311
crossref_primary_10_3390_s23135905
Cites_doi 10.3390/s20143972
10.3390/app8091462
10.1016/j.neucom.2019.07.104
10.3390/s19132988
10.1109/TCDS.2020.2968845
10.3390/a12120253
10.1007/s11517-021-02335-9
10.1016/j.patcog.2013.06.028
10.1016/j.bspc.2021.102587
10.1631/FITEE.1800601
10.1109/TNSRE.2014.2337914
10.1016/j.robot.2019.06.008
10.1016/j.neucom.2020.01.098
10.1109/JSEN.2019.2959639
10.1007/s11370-021-00367-6
10.1016/j.jot.2015.09.007
10.3390/ijerph17165633
10.1016/j.mechmachtheory.2019.01.016
10.3390/s21082807
10.1016/j.bspc.2021.102781
10.1080/00140139.2016.1174314
10.1109/SAS48726.2020.9220037
10.3390/s20174966
10.1109/UR52253.2021.9494647
10.1007/s12369-021-00794-6
10.1016/j.irbm.2019.11.001
10.3390/s20041104
10.3390/s16010066
10.1016/j.robot.2014.08.012
10.1049/ccs2.12007
10.1016/j.smhl.2020.100162
10.1016/j.gaitpost.2017.06.019
10.1007/s40430-021-03016-2
10.1016/j.bspc.2020.102279
10.3390/bios10090109
10.3390/s19183960
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.103693
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_103693
S1746809422002154
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-3649461597a8898d86fe14e2cd77dc63c1accba38d627d139be8d1a11a71bce23
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793535800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Sat Nov 29 07:03:33 EST 2025
Tue Nov 18 21:51:11 EST 2025
Fri Feb 23 02:40:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep neural network
Sparse autoencoder
Gait phase recognition
Bidirectional long short-term memory
Exoskeleton robot
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-3649461597a8898d86fe14e2cd77dc63c1accba38d627d139be8d1a11a71bce23
ParticipantIDs crossref_primary_10_1016_j_bspc_2022_103693
crossref_citationtrail_10_1016_j_bspc_2022_103693
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103693
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Akhil, Ashmi, Rajendrakumar, Sivanandan (b0045) 2020; 41
Zhen, Yan, Yuan (b0070) 2019; 12
Qin, Yang, Wen, Chen, Bao, Dong, Dou, Yang (b0100) 2021; 14
Taborri, Palermo, Rossi, Cappa (b0065) 2016; 16
Mangialardi, Kim (b0075) 2013
Kim, Lee (b0090) 2017; 60
Lu, Wang, Hu, Zhou, Xi (b0125) 2021; 59
Lu, Wang, Qi, Xi (b0195) 2021; 64
Huang, Zheng, Hu (b0150) 2022; 14
Zeng, Qu, Ma, Qu, Yin, Zhao, Xia (b0020) 2021; 43
Zhou, Shan, Fang, Zhang, Sun, Ding, Wang, Zhang (b0160) 2021; 3
S.U. Yunas, K.B. Ozanyan, Gait Activity Classification using Multi-Modality Sensor Fusion: A Deep Learning Approach, IEEE Sens. J., (2021) 1-1.
Novak, Riener (b0130) 2015; 73
Tong, Liu, Peng (b0185) 2020; 20
Zhang, Sun, Li, Tang (b0010) 2018; 8
Moon, Kim, Hong (b0015) 2019; 19
Wang, Wu, Ma, Wu, Luo (b0080) 2018; 2018
Liu, Zhou, Mai, Wang (b0030) 2019; 119
Sheng, Li (b0180) 2020; 395
Y.P. Zhang, G.Z. Cao, Z.Q. Ling, B.B. He, H.R. Cheng, W.Z. Li, S.B. Cao, A Real-Time Gait Phase Recognition Method Based on Multi-Information Fusion, 2021 18th International Conference on Ubiquitous Robots (UR), 2021, pp. 249-255.
Qiu, Liu, Guo (b0110) 2021; 2021
Yu, Li, Zhang, Xue, Wang (b0050) 2020; 390
Papavasileiou, Qiao, Zhang, Zhang, Bi, Han (b0175) 2021; 19
Ma, Liu, Song, Wang (b0165) 2020; 20
Qiu, Guo, Caldwell, Chen (b0035) 2021; 13
Sánchez Manchola, Bernal, Munera, Cifuentes (b0095) 2019; 19
Chen, Zi, Wang, Qin, Liao (b0060) 2019; 134
Chen, Ma, Qin, Gao, Chan, Law, Qin, Liao (b0005) 2016; 5
Lee, Kim, Lee (b0040) 2021; 21
Ding, Yang, Xing, Ma, Yang, Guo, Yi, Jiang (b0085) 2018; 2018
Su, Smith, Gutierrez Farewik (b0115) 2020; 10
R. Caldas, M. Mundt, W. Potthast, F. Buarque de Lima Neto, B. Markert, A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms, Gait Posture, 57 (2017) 204-210.
Vu, Dong, Cao, Verstraten, Lefeber, Vanderborght, Geeroms (b0135) 2020; 20
Ngo, Makihara, Nagahara, Mukaigawa, Yagi (b0205) 2014; 47
Zhen, Yan, Kong (b0170) 2020; 17
Wang, Dong, Chi, Wang, Miao, An, Gavrilov (b0200) 2021; 68
Xie, Li, Zhao, Li (b0055) 2020; 20
Wei, Zhang, Tian, Hong (b0105) 2021; 68
Bejarano, Ambrosini, Pedrocchi, Ferrigno, Monticone, Ferrante (b0140) 2015; 23
Kyeong, Shin, Yang, Heo, Feng, Kim (b0025) 2019; 20
X. Wu, Y. Yuan, X. Zhang, C. Wang, T. Xu, D. Tao, Gait Phase Classification for a Lower Limb Exoskeleton System Based on a Graph Convolutional Network Model, IEEE Trans. Ind. Electron. (2021) 1-1.
Xie (10.1016/j.bspc.2022.103693_b0055) 2020; 20
Lu (10.1016/j.bspc.2022.103693_b0125) 2021; 59
10.1016/j.bspc.2022.103693_b0155
Chen (10.1016/j.bspc.2022.103693_b0060) 2019; 134
Lee (10.1016/j.bspc.2022.103693_b0040) 2021; 21
Akhil (10.1016/j.bspc.2022.103693_b0045) 2020; 41
Kim (10.1016/j.bspc.2022.103693_b0090) 2017; 60
Ma (10.1016/j.bspc.2022.103693_b0165) 2020; 20
Ngo (10.1016/j.bspc.2022.103693_b0205) 2014; 47
Wei (10.1016/j.bspc.2022.103693_b0105) 2021; 68
Zhen (10.1016/j.bspc.2022.103693_b0170) 2020; 17
Zhen (10.1016/j.bspc.2022.103693_b0070) 2019; 12
Wang (10.1016/j.bspc.2022.103693_b0200) 2021; 68
Su (10.1016/j.bspc.2022.103693_b0115) 2020; 10
Liu (10.1016/j.bspc.2022.103693_b0030) 2019; 119
10.1016/j.bspc.2022.103693_b0145
Taborri (10.1016/j.bspc.2022.103693_b0065) 2016; 16
Huang (10.1016/j.bspc.2022.103693_b0150) 2022; 14
10.1016/j.bspc.2022.103693_b0120
Vu (10.1016/j.bspc.2022.103693_b0135) 2020; 20
Sánchez Manchola (10.1016/j.bspc.2022.103693_b0095) 2019; 19
Sheng (10.1016/j.bspc.2022.103693_b0180) 2020; 395
Zeng (10.1016/j.bspc.2022.103693_b0020) 2021; 43
Moon (10.1016/j.bspc.2022.103693_b0015) 2019; 19
Mangialardi (10.1016/j.bspc.2022.103693_b0075) 2013
Ding (10.1016/j.bspc.2022.103693_b0085) 2018; 2018
Qin (10.1016/j.bspc.2022.103693_b0100) 2021; 14
Tong (10.1016/j.bspc.2022.103693_b0185) 2020; 20
Kyeong (10.1016/j.bspc.2022.103693_b0025) 2019; 20
Wang (10.1016/j.bspc.2022.103693_b0080) 2018; 2018
Qiu (10.1016/j.bspc.2022.103693_b0035) 2021; 13
Chen (10.1016/j.bspc.2022.103693_b0005) 2016; 5
Novak (10.1016/j.bspc.2022.103693_b0130) 2015; 73
Bejarano (10.1016/j.bspc.2022.103693_b0140) 2015; 23
Zhang (10.1016/j.bspc.2022.103693_b0010) 2018; 8
Qiu (10.1016/j.bspc.2022.103693_b0110) 2021; 2021
Lu (10.1016/j.bspc.2022.103693_b0195) 2021; 64
10.1016/j.bspc.2022.103693_b0190
Zhou (10.1016/j.bspc.2022.103693_b0160) 2021; 3
Papavasileiou (10.1016/j.bspc.2022.103693_b0175) 2021; 19
Yu (10.1016/j.bspc.2022.103693_b0050) 2020; 390
References_xml – volume: 21
  start-page: 2807
  year: 2021
  ident: b0040
  article-title: Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network
  publication-title: Sensors (Basel)
– volume: 16
  start-page: 66
  year: 2016
  ident: b0065
  article-title: Gait partitioning methods: A systematic review
  publication-title: Sensors
– volume: 12
  start-page: 253
  year: 2019
  ident: b0070
  article-title: Walking Gait Phase Detection Based on Acceleration Signals Using LSTM-DNN Algorithm
  publication-title: Algorithms
– volume: 68
  start-page: 102781
  year: 2021
  ident: b0200
  article-title: sEMG-based consecutive estimation of human lower limb movement by using multi-branch neural network
  publication-title: Biomed. Signal Process. Control
– volume: 10
  start-page: 109
  year: 2020
  ident: b0115
  article-title: Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units
  publication-title: Biosensors (Basel)
– volume: 390
  start-page: 268
  year: 2020
  end-page: 279
  ident: b0050
  article-title: Estimation of human impedance and motion intention for constrained human–robot interaction
  publication-title: Neurocomputing
– volume: 60
  start-page: 384
  year: 2017
  end-page: 403
  ident: b0090
  article-title: Development of an IMU-based foot-ground contact detection (FGCD) algorithm
  publication-title: Ergonomics
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0080
  article-title: A Flexible Lower Extremity Exoskeleton Robot with Deep Locomotion Mode Identification
  publication-title: Complexity
– volume: 14
  start-page: 413
  year: 2022
  end-page: 428
  ident: b0150
  article-title: Online Gait Phase Detection in Complex Environment Based on Distance and Multi-Sensors Information Fusion Using Inertial Measurement Units
  publication-title: Int. J. Soc. Robot.
– volume: 20
  start-page: 3972
  year: 2020
  ident: b0135
  article-title: A Review of Gait Phase Detection Algorithms for Lower Limb Prostheses
  publication-title: Sensors (Basel)
– volume: 19
  start-page: 100162
  year: 2021
  ident: b0175
  article-title: GaitCode: Gait-based continuous authentication using multimodal learning and wearable sensors
  publication-title: Smart Health
– volume: 17
  start-page: 5633
  year: 2020
  ident: b0170
  article-title: An Acceleration Based Fusion of Multiple Spatiotemporal Networks for Gait Phase Detection
  publication-title: Int. J. Environ. Res. Public Health
– volume: 5
  start-page: 26
  year: 2016
  end-page: 37
  ident: b0005
  article-title: Recent developments and challenges of lower extremity exoskeletons
  publication-title: J. Orthop. Translat.
– reference: Y.P. Zhang, G.Z. Cao, Z.Q. Ling, B.B. He, H.R. Cheng, W.Z. Li, S.B. Cao, A Real-Time Gait Phase Recognition Method Based on Multi-Information Fusion, 2021 18th International Conference on Ubiquitous Robots (UR), 2021, pp. 249-255.
– volume: 64
  start-page: 102279
  year: 2021
  ident: b0195
  article-title: Evaluation of classification performance in human lower limb jump phases of signal correlation information and LSTM models
  publication-title: Biomed. Signal Process. Control
– volume: 19
  start-page: 3960
  year: 2019
  ident: b0015
  article-title: Development of a single leg knee exoskeleton and sensing knee center of rotation change for intention detection
  publication-title: Sensors
– volume: 14
  start-page: 445
  year: 2021
  end-page: 457
  ident: b0100
  article-title: Research on human gait prediction and recognition algorithm of lower limb-assisted exoskeleton robot
  publication-title: Intel. Serv. Robot.
– volume: 20
  start-page: 3667
  year: 2020
  end-page: 3677
  ident: b0185
  article-title: LSTM-Based Lower Limbs Motion Reconstruction Using Low-Dimensional Input of Inertial Motion Capture System
  publication-title: IEEE Sens. J.
– volume: 20
  start-page: 342
  year: 2019
  end-page: 352
  ident: b0025
  article-title: Recognition of walking environments and gait period by surface electromyography
  publication-title: Front. Inform. Technol. Electron. Eng.
– volume: 47
  start-page: 228
  year: 2014
  end-page: 237
  ident: b0205
  article-title: The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication
  publication-title: Pattern Recogn.
– volume: 20
  start-page: 4966
  year: 2020
  ident: b0165
  article-title: Continuous Estimation of Knee Joint Angle Based on Surface Electromyography Using a Long Short-Term Memory Neural Network and Time-Advanced Feature
  publication-title: Sensors (Basel)
– volume: 43
  year: 2021
  ident: b0020
  article-title: Research on a gait detection system and recognition algorithm for lower limb exoskeleton robot
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 8
  start-page: 1462
  year: 2018
  ident: b0010
  article-title: Impact of load variation on the accuracy of gait recognition from surface EMG signals
  publication-title: Appl. Sci.
– volume: 2018
  start-page: 33
  year: 2018
  end-page: 38
  ident: b0085
  article-title: The Real Time Gait Phase Detection Based on Long Short-Term Memory
  publication-title: IEEE Third International Conference on Data Science in Cyberspace (DSC)
– volume: 3
  start-page: 61
  year: 2021
  end-page: 69
  ident: b0160
  article-title: Personal-specific gait recognition based on latent orthogonal feature space
  publication-title: Cognit. Comput. Syst.
– volume: 119
  start-page: 209
  year: 2019
  end-page: 220
  ident: b0030
  article-title: Real-time mode recognition based assistive torque control of bionic knee exoskeleton for sit-to-stand and stand-to-sit transitions
  publication-title: Rob. Auton. Syst.
– year: 2013
  ident: b0075
  article-title: Quantifying Dynamic Characteristics of Human Walking for Comprehensive Gait
  publication-title: Cycle
– volume: 20
  start-page: 1104
  year: 2020
  ident: b0055
  article-title: Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer
  publication-title: Sensors (Basel)
– volume: 23
  start-page: 413
  year: 2015
  end-page: 422
  ident: b0140
  article-title: A Novel Adaptive, Real-Time Algorithm to Detect Gait Events From Wearable Sensors
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 59
  start-page: 883
  year: 2021
  end-page: 899
  ident: b0125
  article-title: Effective recognition of human lower limb jump locomotion phases based on multi-sensor information fusion and machine learning
  publication-title: Med. Biol. Eng. Comput.
– volume: 73
  start-page: 155
  year: 2015
  end-page: 170
  ident: b0130
  article-title: A survey of sensor fusion methods in wearable robotics
  publication-title: Rob. Auton. Syst.
– volume: 395
  start-page: 86
  year: 2020
  end-page: 94
  ident: b0180
  article-title: Siamese denoising autoencoders for joints trajectories reconstruction and robust gait recognition
  publication-title: Neurocomputing
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 13
  ident: b0110
  article-title: Gait Recognition for Human-Exoskeleton System in Locomotion Based on Ensemble Empirical Mode Decomposition
  publication-title: Math. Probl. Eng.
– volume: 19
  start-page: 2988
  year: 2019
  ident: b0095
  article-title: Gait phase detection for lower-limb exoskeletons using foot motion data from a single inertial measurement unit in hemiparetic individuals
  publication-title: Sensors
– volume: 68
  year: 2021
  ident: b0105
  article-title: A comparison of neural networks algorithms for EEG and sEMG features based gait phases recognition
  publication-title: Biomed. Signal Process. Control
– reference: S.U. Yunas, K.B. Ozanyan, Gait Activity Classification using Multi-Modality Sensor Fusion: A Deep Learning Approach, IEEE Sens. J., (2021) 1-1.
– volume: 13
  start-page: 67
  year: 2021
  end-page: 79
  ident: b0035
  article-title: Exoskeleton Online Learning and Estimation of Human Walking Intention Based on Dynamical Movement Primitives
  publication-title: IEEE Trans. Cognit. Devel. Syst.
– volume: 134
  start-page: 499
  year: 2019
  end-page: 511
  ident: b0060
  article-title: Knee exoskeletons for gait rehabilitation and human performance augmentation: A state-of-the-art
  publication-title: Mech. Mach. Theory
– volume: 41
  start-page: 133
  year: 2020
  end-page: 140
  ident: b0045
  article-title: Human Gait Recognition Using Hip, Knee and Ankle Joint Ratios
  publication-title: IRBM
– reference: X. Wu, Y. Yuan, X. Zhang, C. Wang, T. Xu, D. Tao, Gait Phase Classification for a Lower Limb Exoskeleton System Based on a Graph Convolutional Network Model, IEEE Trans. Ind. Electron. (2021) 1-1.
– reference: R. Caldas, M. Mundt, W. Potthast, F. Buarque de Lima Neto, B. Markert, A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms, Gait Posture, 57 (2017) 204-210.
– volume: 20
  start-page: 3972
  issue: 14
  year: 2020
  ident: 10.1016/j.bspc.2022.103693_b0135
  article-title: A Review of Gait Phase Detection Algorithms for Lower Limb Prostheses
  publication-title: Sensors (Basel)
  doi: 10.3390/s20143972
– volume: 8
  start-page: 1462
  year: 2018
  ident: 10.1016/j.bspc.2022.103693_b0010
  article-title: Impact of load variation on the accuracy of gait recognition from surface EMG signals
  publication-title: Appl. Sci.
  doi: 10.3390/app8091462
– volume: 390
  start-page: 268
  year: 2020
  ident: 10.1016/j.bspc.2022.103693_b0050
  article-title: Estimation of human impedance and motion intention for constrained human–robot interaction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.104
– volume: 19
  start-page: 2988
  year: 2019
  ident: 10.1016/j.bspc.2022.103693_b0095
  article-title: Gait phase detection for lower-limb exoskeletons using foot motion data from a single inertial measurement unit in hemiparetic individuals
  publication-title: Sensors
  doi: 10.3390/s19132988
– volume: 13
  start-page: 67
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2022.103693_b0035
  article-title: Exoskeleton Online Learning and Estimation of Human Walking Intention Based on Dynamical Movement Primitives
  publication-title: IEEE Trans. Cognit. Devel. Syst.
  doi: 10.1109/TCDS.2020.2968845
– volume: 12
  start-page: 253
  issue: 12
  year: 2019
  ident: 10.1016/j.bspc.2022.103693_b0070
  article-title: Walking Gait Phase Detection Based on Acceleration Signals Using LSTM-DNN Algorithm
  publication-title: Algorithms
  doi: 10.3390/a12120253
– volume: 59
  start-page: 883
  year: 2021
  ident: 10.1016/j.bspc.2022.103693_b0125
  article-title: Effective recognition of human lower limb jump locomotion phases based on multi-sensor information fusion and machine learning
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-021-02335-9
– volume: 47
  start-page: 228
  year: 2014
  ident: 10.1016/j.bspc.2022.103693_b0205
  article-title: The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2013.06.028
– volume: 2018
  start-page: 33
  year: 2018
  ident: 10.1016/j.bspc.2022.103693_b0085
  article-title: The Real Time Gait Phase Detection Based on Long Short-Term Memory
  publication-title: IEEE Third International Conference on Data Science in Cyberspace (DSC)
– volume: 68
  year: 2021
  ident: 10.1016/j.bspc.2022.103693_b0105
  article-title: A comparison of neural networks algorithms for EEG and sEMG features based gait phases recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102587
– volume: 20
  start-page: 342
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2022.103693_b0025
  article-title: Recognition of walking environments and gait period by surface electromyography
  publication-title: Front. Inform. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1800601
– volume: 23
  start-page: 413
  year: 2015
  ident: 10.1016/j.bspc.2022.103693_b0140
  article-title: A Novel Adaptive, Real-Time Algorithm to Detect Gait Events From Wearable Sensors
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2337914
– volume: 119
  start-page: 209
  year: 2019
  ident: 10.1016/j.bspc.2022.103693_b0030
  article-title: Real-time mode recognition based assistive torque control of bionic knee exoskeleton for sit-to-stand and stand-to-sit transitions
  publication-title: Rob. Auton. Syst.
  doi: 10.1016/j.robot.2019.06.008
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.bspc.2022.103693_b0080
  article-title: A Flexible Lower Extremity Exoskeleton Robot with Deep Locomotion Mode Identification
  publication-title: Complexity
– volume: 395
  start-page: 86
  year: 2020
  ident: 10.1016/j.bspc.2022.103693_b0180
  article-title: Siamese denoising autoencoders for joints trajectories reconstruction and robust gait recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.098
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2022.103693_b0110
  article-title: Gait Recognition for Human-Exoskeleton System in Locomotion Based on Ensemble Empirical Mode Decomposition
  publication-title: Math. Probl. Eng.
– volume: 20
  start-page: 3667
  year: 2020
  ident: 10.1016/j.bspc.2022.103693_b0185
  article-title: LSTM-Based Lower Limbs Motion Reconstruction Using Low-Dimensional Input of Inertial Motion Capture System
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2959639
– volume: 14
  start-page: 445
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2022.103693_b0100
  article-title: Research on human gait prediction and recognition algorithm of lower limb-assisted exoskeleton robot
  publication-title: Intel. Serv. Robot.
  doi: 10.1007/s11370-021-00367-6
– volume: 5
  start-page: 26
  year: 2016
  ident: 10.1016/j.bspc.2022.103693_b0005
  article-title: Recent developments and challenges of lower extremity exoskeletons
  publication-title: J. Orthop. Translat.
  doi: 10.1016/j.jot.2015.09.007
– volume: 17
  start-page: 5633
  issue: 16
  year: 2020
  ident: 10.1016/j.bspc.2022.103693_b0170
  article-title: An Acceleration Based Fusion of Multiple Spatiotemporal Networks for Gait Phase Detection
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17165633
– volume: 134
  start-page: 499
  year: 2019
  ident: 10.1016/j.bspc.2022.103693_b0060
  article-title: Knee exoskeletons for gait rehabilitation and human performance augmentation: A state-of-the-art
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2019.01.016
– volume: 21
  start-page: 2807
  issue: 8
  year: 2021
  ident: 10.1016/j.bspc.2022.103693_b0040
  article-title: Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network
  publication-title: Sensors (Basel)
  doi: 10.3390/s21082807
– volume: 68
  start-page: 102781
  year: 2021
  ident: 10.1016/j.bspc.2022.103693_b0200
  article-title: sEMG-based consecutive estimation of human lower limb movement by using multi-branch neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102781
– volume: 60
  start-page: 384
  year: 2017
  ident: 10.1016/j.bspc.2022.103693_b0090
  article-title: Development of an IMU-based foot-ground contact detection (FGCD) algorithm
  publication-title: Ergonomics
  doi: 10.1080/00140139.2016.1174314
– ident: 10.1016/j.bspc.2022.103693_b0190
  doi: 10.1109/SAS48726.2020.9220037
– volume: 20
  start-page: 4966
  issue: 17
  year: 2020
  ident: 10.1016/j.bspc.2022.103693_b0165
  article-title: Continuous Estimation of Knee Joint Angle Based on Surface Electromyography Using a Long Short-Term Memory Neural Network and Time-Advanced Feature
  publication-title: Sensors (Basel)
  doi: 10.3390/s20174966
– ident: 10.1016/j.bspc.2022.103693_b0155
  doi: 10.1109/UR52253.2021.9494647
– volume: 14
  start-page: 413
  issue: 2
  year: 2022
  ident: 10.1016/j.bspc.2022.103693_b0150
  article-title: Online Gait Phase Detection in Complex Environment Based on Distance and Multi-Sensors Information Fusion Using Inertial Measurement Units
  publication-title: Int. J. Soc. Robot.
  doi: 10.1007/s12369-021-00794-6
– volume: 41
  start-page: 133
  year: 2020
  ident: 10.1016/j.bspc.2022.103693_b0045
  article-title: Human Gait Recognition Using Hip, Knee and Ankle Joint Ratios
  publication-title: IRBM
  doi: 10.1016/j.irbm.2019.11.001
– volume: 20
  start-page: 1104
  issue: 4
  year: 2020
  ident: 10.1016/j.bspc.2022.103693_b0055
  article-title: Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer
  publication-title: Sensors (Basel)
  doi: 10.3390/s20041104
– volume: 16
  start-page: 66
  year: 2016
  ident: 10.1016/j.bspc.2022.103693_b0065
  article-title: Gait partitioning methods: A systematic review
  publication-title: Sensors
  doi: 10.3390/s16010066
– volume: 73
  start-page: 155
  year: 2015
  ident: 10.1016/j.bspc.2022.103693_b0130
  article-title: A survey of sensor fusion methods in wearable robotics
  publication-title: Rob. Auton. Syst.
  doi: 10.1016/j.robot.2014.08.012
– volume: 3
  start-page: 61
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2022.103693_b0160
  article-title: Personal-specific gait recognition based on latent orthogonal feature space
  publication-title: Cognit. Comput. Syst.
  doi: 10.1049/ccs2.12007
– volume: 19
  start-page: 100162
  year: 2021
  ident: 10.1016/j.bspc.2022.103693_b0175
  article-title: GaitCode: Gait-based continuous authentication using multimodal learning and wearable sensors
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2020.100162
– ident: 10.1016/j.bspc.2022.103693_b0145
  doi: 10.1016/j.gaitpost.2017.06.019
– volume: 43
  issue: 6
  year: 2021
  ident: 10.1016/j.bspc.2022.103693_b0020
  article-title: Research on a gait detection system and recognition algorithm for lower limb exoskeleton robot
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-021-03016-2
– volume: 64
  start-page: 102279
  year: 2021
  ident: 10.1016/j.bspc.2022.103693_b0195
  article-title: Evaluation of classification performance in human lower limb jump phases of signal correlation information and LSTM models
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102279
– year: 2013
  ident: 10.1016/j.bspc.2022.103693_b0075
  article-title: Quantifying Dynamic Characteristics of Human Walking for Comprehensive Gait
  publication-title: Cycle
– volume: 10
  start-page: 109
  issue: 9
  year: 2020
  ident: 10.1016/j.bspc.2022.103693_b0115
  article-title: Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units
  publication-title: Biosensors (Basel)
  doi: 10.3390/bios10090109
– ident: 10.1016/j.bspc.2022.103693_b0120
– volume: 19
  start-page: 3960
  year: 2019
  ident: 10.1016/j.bspc.2022.103693_b0015
  article-title: Development of a single leg knee exoskeleton and sensing knee center of rotation change for intention detection
  publication-title: Sensors
  doi: 10.3390/s19183960
SSID ssj0048714
Score 2.4495893
Snippet [Display omitted] •A new gait recognition method based on integrated network model is proposed for identifying four phases in the gait cycle, including heel...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103693
SubjectTerms Bidirectional long short-term memory
Deep neural network
Exoskeleton robot
Gait phase recognition
Sparse autoencoder
Title Gait phase recognition of lower limb exoskeleton system based on the integrated network model
URI https://dx.doi.org/10.1016/j.bspc.2022.103693
Volume 76
WOSCitedRecordID wos000793535800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF_O1gd9ED-xamUffAspySa3H49FaquUIljlECRsdjc29czF3l056T_f2Y9cYitFBV_C3XCbHDM_dmYnM79B6JVKBDfKVDHJtYlzWVVxSVUSS05NKYjU3BVjfjpkR0d8MhHvR6OLrhfmfMqahq9Wov2vpgYZGNu2zv6Fudc3BQF8BqPDFcwO1z8y_L6sF1F7At4pWlcH-aBwaieiRdP6exmZ1Wz-DTyOJdXwZM6R9Wc6vDvoWSR01PhCcT8z55d3wK5z37dV1l9tVNv6roOu7zGUwV_LTX-WdSWDx3S5_CA-kbOfA_mh8RO1e_zuL11JoGl-LIMw5CtIX9sakmhdI01ftWT3XZZbXmQ_73jHDGRpwoebtR8Wc23f9ymI051y3lpeSkIsmQD1sxev8Gl_sPe1jyKuPmWc30KbhI0FbImbu2_3Ju86Rw5HOUcNv_5voefKlwdefdLv45pBrHJ8H90Lhwy868HxAI1M8xDdHVBPPkJfLEywgwkewATPKuxggi1M8AAm2MMEO5hg-A4wwT1McIAJdjB5jD6-2Tt-fRCHURuxypJkEWc0FzkEt4JJzgXXnFYmzQ1RmjGtaKZSqVQpM64pYRpODaXhOpVpKllaKkOyJ2ijmTXmKcJ0TKihKmdwuMgltZybmRHCQNwOsb0kWyjtFFWowENvx6FMi67g8LSwyi2scguv3C0Urde0noXlxl-PO_0XIY708WEBcLlh3bN_XPcc3emB_gJtLM6WZhvdVueLen72MqDqEjXFmqA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gait+phase+recognition+of+lower+limb+exoskeleton+system+based+on+the+integrated+network+model&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Zaifang&rft.au=Wang%2C+Zhaoyang&rft.au=Lei%2C+Han&rft.au=Gu%2C+Wenquan&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=76&rft_id=info:doi/10.1016%2Fj.bspc.2022.103693&rft.externalDocID=S1746809422002154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon