Archimedes Fire Hawk Optimization enabled feature selection with deep maxout for network intrusion detection

Network intrusion detection systems (NIDSs) are fundamental for protecting computer networks. In this paper, the Archimedes Fire Hawk Optimization (AFHO) enabled Deep Learning (DL) is developed. At first, the Wireless Network is initialized, and then the recorded log file is passed through the pre-p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & security Ročník 140; s. 103751
Hlavní autoři: Rani, B. Selva, Vairamuthu, S, Subramanian, Suresh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2024
Témata:
ISSN:0167-4048, 1872-6208
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Network intrusion detection systems (NIDSs) are fundamental for protecting computer networks. In this paper, the Archimedes Fire Hawk Optimization (AFHO) enabled Deep Learning (DL) is developed. At first, the Wireless Network is initialized, and then the recorded log file is passed through the pre-processing phase utilizing quantile normalization, and missing data imputation process. Next to this, the feature selection is done with the help of AFHO, where AFHO is the combination of Archimedes optimization algorithm (AOA), and Fire Hawk optimization (FHO). At last, the intrusion detection (ID) is accomplished by Deep Maxout Network (DMN), which is tuned employing the proposed AFHO. The performance measures such as precision, recall and F-measure based on training data, where the K- fold acquired 93.7 %, 97.7 %, and 95.6 %.
AbstractList Network intrusion detection systems (NIDSs) are fundamental for protecting computer networks. In this paper, the Archimedes Fire Hawk Optimization (AFHO) enabled Deep Learning (DL) is developed. At first, the Wireless Network is initialized, and then the recorded log file is passed through the pre-processing phase utilizing quantile normalization, and missing data imputation process. Next to this, the feature selection is done with the help of AFHO, where AFHO is the combination of Archimedes optimization algorithm (AOA), and Fire Hawk optimization (FHO). At last, the intrusion detection (ID) is accomplished by Deep Maxout Network (DMN), which is tuned employing the proposed AFHO. The performance measures such as precision, recall and F-measure based on training data, where the K- fold acquired 93.7 %, 97.7 %, and 95.6 %.
ArticleNumber 103751
Author Vairamuthu, S
Rani, B. Selva
Subramanian, Suresh
Author_xml – sequence: 1
  givenname: B. Selva
  surname: Rani
  fullname: Rani, B. Selva
  email: bselvarani@vit.ac.in
  organization: Department of Information Technology, School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore. Tamilnadu, 632014, India
– sequence: 2
  givenname: S
  surname: Vairamuthu
  fullname: Vairamuthu, S
  email: svairamuthu@vit.ac.in
  organization: Department of Software Systems, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore. Tamilnadu, 632014, India
– sequence: 3
  givenname: Suresh
  surname: Subramanian
  fullname: Subramanian, Suresh
  email: ssubramanian@ahlia.edu.bh
  organization: Chairperson of Multimedia Science Department, College of Information Technology, Ahlia University, Kingdom of Bahrain
BookMark eNp9kMtOAjEUhhuDiYC-gKu-wGBvM9NJ3BAiYkLCRtdNpz0TCnMhbRH16Z0BVy5YneSc_zvJ_03QqO1aQOiRkhklNHvazUwXYMYIE_2C5ym9QWMqc5ZkjMgRGvehPBFEyDs0CWFHCM0zKceonnuzdQ1YCHjpPOCVPu3x5hBd4350dF2LodVlDRZXoOOxTwSowZwvJxe32AIccKO_umPEVedxC_HU-T12bfTHMMQsxAtwj24rXQd4-JtT9LF8eV-skvXm9W0xXyeGExITzg3JdFpaWsiSCwkkZ8wKrpm2xuYGMlGmXKR5URiuS2ZJJtIstZIWFS8F41MkL3-N70LwUCnj4rlM9NrVihI1WFM7NVhTgzV1sdaj7B968K7R_vs69HyBoC_16cCrYBy0Bmxv1ERlO3cN_wWahIpz
CitedBy_id crossref_primary_10_1007_s10586_024_04995_2
crossref_primary_10_1016_j_cose_2024_104028
crossref_primary_10_1109_ACCESS_2025_3598777
crossref_primary_10_1007_s00202_025_03009_7
crossref_primary_10_1016_j_cose_2024_104174
crossref_primary_10_1080_03081079_2025_2526086
crossref_primary_10_1007_s10586_024_04581_6
crossref_primary_10_1016_j_cose_2024_104132
crossref_primary_10_1016_j_cose_2025_104512
crossref_primary_10_1016_j_csi_2025_104074
crossref_primary_10_3389_fcomp_2025_1574211
Cites_doi 10.1155/2020/8833767
10.1109/ACCESS.2019.2899721
10.1109/ACCESS.2019.2895334
10.1109/TETCI.2017.2772792
10.1109/ACCESS.2020.2973730
10.1016/j.comcom.2015.02.004
10.1007/s10489-020-01893-z
10.1016/j.neucom.2017.05.103
10.1109/COMST.2014.2336610
10.46253/j.mr.v4i4.a5
10.1016/j.iotcps.2021.08.001
10.1016/j.eswa.2009.05.029
10.1155/2020/8867792
10.1007/s10462-022-10173-w
10.1109/ACCESS.2019.2917299
10.1109/ACCESS.2020.2972627
10.1109/ACCESS.2018.2841987
10.1016/j.comcom.2014.01.012
10.1109/ACCESS.2019.2905041
10.1109/ACCESS.2019.2905633
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.cose.2024.103751
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6208
ExternalDocumentID 10_1016_j_cose_2024_103751
S016740482400052X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADHUB
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLX
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG8
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SBM
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TAE
TN5
TWZ
WH7
WUQ
XJE
XPP
XSW
YK3
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-33c06a5bd198b348e0722d43a2adcd7ce64b5345799c3ab2d064565d819f3b423
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001195711800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-4048
IngestDate Tue Nov 18 21:37:43 EST 2025
Sat Nov 29 07:25:50 EST 2025
Sat Apr 13 16:39:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Wireless network
Deep Maxout network (DMN)
Archimedes optimization algorithm (AOA)
Fire Hawk optimization (FHO)
Network intrusion detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-33c06a5bd198b348e0722d43a2adcd7ce64b5345799c3ab2d064565d819f3b423
ParticipantIDs crossref_citationtrail_10_1016_j_cose_2024_103751
crossref_primary_10_1016_j_cose_2024_103751
elsevier_sciencedirect_doi_10_1016_j_cose_2024_103751
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Computers & security
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Wang (bib0025) 2019; 7
Shone, Ngoc, Phai, Shi (bib0018) 2018; 2
Tsai, Hsu, Lin, Lin (bib0022) 2009; 36
Kasongo, Sun (bib0013) 2019; 7
Azizi, Talatahari, Gandomi (bib0008) 2023; 56
Vinayakumar, Alazab, Soman, Poornachandran, Al-Nemrat, Venkatraman (bib0023) 2019; 7
Zhang, Han, Li, Massetto (bib0027) 2020
Choudhury, Bhowal (bib0009) 2015
Su, Sun, Zhu, Wang, Li (bib0019) 2020; 8
NSL-KDD dataset taken from
Mitchell, Chen (bib0016) 2014; 42
accessed on January 2023.
Weller-Fahy, Borghetti, Sodemann (bib0024) 2014; 17
Zhang, Chen, Jin, Wang, Guo (bib0028) 2019; 7
Ashraf (bib0005) 2021; 1
Jiang, Wang, Wang, Wu (bib0012) 2022; 8
Dong, Wang (bib0010) 2016
Kumar Gajawada (bib0015) 2021; 4
Tang, Mhamdi, McLernon, Zaidi, Ghogho (bib0021) 2016
BOT-IoT Dataset taken from
Rama Krishna (bib0017) 2021; 4
Ahmad, Ullah, Feng, Khan, Ashraf, Adnan, Nazir, Khan (bib0003) 2020; 2020
Yu, Long, Liu, Cai (bib0026) 2016; 13
Zhao, Wong, Goh (bib0029) 2020; 10
Ashraf, Alfandi, Ahmad, Masood Khattak, Hayat, Kim, Ullah (bib0007) 2020
Sun, Su, Wang (bib0020) 2018; 278
Ahmad, Basheri, Iqbal, Rahim (bib0004) 2018; 6
Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (bib0011) 2021; 51
Khan, Gumaei, Derhab, Hussain (bib0014) 2019; 7
Ashraf, Ahmad, Masood Khattak, Hayat, Kim, Ullah (bib0006) 2020; 2020
Zheng, Cai, Zhang, Wang, Yang (bib0030) 2015; 62
Ashraf (10.1016/j.cose.2024.103751_bib0006) 2020; 2020
Weller-Fahy (10.1016/j.cose.2024.103751_bib0024) 2014; 17
Yu (10.1016/j.cose.2024.103751_bib0026) 2016; 13
Khan (10.1016/j.cose.2024.103751_bib0014) 2019; 7
Su (10.1016/j.cose.2024.103751_bib0019) 2020; 8
Vinayakumar (10.1016/j.cose.2024.103751_bib0023) 2019; 7
10.1016/j.cose.2024.103751_bib0001
10.1016/j.cose.2024.103751_bib0002
Zhao (10.1016/j.cose.2024.103751_bib0029) 2020; 10
Kasongo (10.1016/j.cose.2024.103751_bib0013) 2019; 7
Yang (10.1016/j.cose.2024.103751_bib0025) 2019; 7
Zhang (10.1016/j.cose.2024.103751_bib0027) 2020
Zhang (10.1016/j.cose.2024.103751_bib0028) 2019; 7
Ashraf (10.1016/j.cose.2024.103751_bib0005) 2021; 1
Zheng (10.1016/j.cose.2024.103751_bib0030) 2015; 62
Shone (10.1016/j.cose.2024.103751_bib0018) 2018; 2
Tsai (10.1016/j.cose.2024.103751_bib0022) 2009; 36
Hashim (10.1016/j.cose.2024.103751_bib0011) 2021; 51
Rama Krishna (10.1016/j.cose.2024.103751_bib0017) 2021; 4
Kumar Gajawada (10.1016/j.cose.2024.103751_bib0015) 2021; 4
Ahmad (10.1016/j.cose.2024.103751_bib0004) 2018; 6
Ahmad (10.1016/j.cose.2024.103751_bib0003) 2020; 2020
Mitchell (10.1016/j.cose.2024.103751_bib0016) 2014; 42
Choudhury (10.1016/j.cose.2024.103751_bib0009) 2015
Jiang (10.1016/j.cose.2024.103751_bib0012) 2022; 8
Ashraf (10.1016/j.cose.2024.103751_bib0007) 2020
Azizi (10.1016/j.cose.2024.103751_bib0008) 2023; 56
Dong (10.1016/j.cose.2024.103751_bib0010) 2016
Sun (10.1016/j.cose.2024.103751_bib0020) 2018; 278
Tang (10.1016/j.cose.2024.103751_bib0021) 2016
References_xml – volume: 2020
  year: 2020
  ident: bib0006
  article-title: Bodacious-instance coverage mechanism for wireless sensor network
  publication-title: Wirel. Commun. Mobile Comput.
– volume: 51
  start-page: 1531
  year: 2021
  end-page: 1551
  ident: bib0011
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib0029
  article-title: How to do quantile normalization correctly for gene expression data analyses
  publication-title: Sci. Rep.
– volume: 62
  start-page: 47
  year: 2015
  end-page: 58
  ident: bib0030
  article-title: Algorithms to speedup pattern matching for network intrusion detection systems
  publication-title: Comput. Commun.
– volume: 1
  start-page: 8
  year: 2021
  end-page: 13
  ident: bib0005
  article-title: A proactive role of IoT devices in building smart
  publication-title: Internet of Thing. Cyber-Phys. Syst.
– volume: 42
  start-page: 1
  year: 2014
  end-page: 23
  ident: bib0016
  article-title: A survey of intrusion detection in wireless network applications
  publication-title: Comput. Commun.
– volume: 4
  start-page: 31
  year: 2021
  end-page: 38
  ident: bib0017
  article-title: Hybrid grasshopper optimization and bat algorithm based dbn for intrusion detection in cloud
  publication-title: Multim. Res.
– volume: 13
  start-page: 239
  year: 2016
  end-page: 249
  ident: bib0026
  article-title: Machine learning combining with visualization for intrusion detection: a survey
  publication-title: Modeling Decisions for Artificial Intelligence: 13th International Conference, MDAI 2016 September, Proceedings
– start-page: 581
  year: 2016
  end-page: 585
  ident: bib0010
  article-title: Comparison deep learning method to traditional methods using for network intrusion detection
  publication-title: 8th IEEE international conference on communication software and networks (ICCSN)
– reference: NSL-KDD dataset taken from “
– volume: 6
  start-page: 33789
  year: 2018
  end-page: 33795
  ident: bib0004
  article-title: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection
  publication-title: IEEE Access.
– volume: 56
  start-page: 287
  year: 2023
  end-page: 363
  ident: bib0008
  article-title: Fire Hawk Optimizer: a novel metaheuristic algorithm
  publication-title: Artif. Intell. Rev.
– volume: 4
  year: 2021
  ident: bib0015
  article-title: Wireless communication network using hybrid WOA and GWO algorithm
  publication-title: Multim. Res.
– volume: 7
  start-page: 37004
  year: 2019
  end-page: 37016
  ident: bib0028
  article-title: Network intrusion detection: based on deep hierarchical network and original flow data
  publication-title: IEEE Access.
– reference: BOT-IoT Dataset taken from “
– volume: 7
  start-page: 41525
  year: 2019
  end-page: 41550
  ident: bib0023
  article-title: Deep learning approach for intelligent intrusion detection system
  publication-title: IEEE Access.
– start-page: 258
  year: 2016
  end-page: 263
  ident: bib0021
  article-title: Deep learning approach for network intrusion detection in software defined networking
  publication-title: In international conference on wireless networks and mobile communications (WINCOM), October
– volume: 17
  start-page: 70
  year: 2014
  end-page: 91
  ident: bib0024
  article-title: A survey of distance and similarity measures used within network intrusion anomaly detection
  publication-title: IEEE Commun. Surv. Tutor.
– reference: ”, accessed on January 2023.
– volume: 8
  start-page: 29575
  year: 2020
  end-page: 29585
  ident: bib0019
  article-title: BAT: deep learning methods on network intrusion detection using NSL-KDD dataset
  publication-title: IEEE Access.
– volume: 36
  start-page: 11994
  year: 2009
  end-page: 12000
  ident: bib0022
  article-title: Intrusion detection by machine learning: a review
  publication-title: Expert. Syst. Appl.
– start-page: 1
  year: 2020
  end-page: 14
  ident: bib0027
  article-title: Wireless sensor network intrusion detection system based on MK-ELM
  publication-title: Soft. Comput.
– volume: 7
  start-page: 30373
  year: 2019
  end-page: 30385
  ident: bib0014
  article-title: A novel two-stage deep learning model for efficient network intrusion detection
  publication-title: IEEE Access.
– volume: 7
  start-page: 38597
  year: 2019
  end-page: 38607
  ident: bib0013
  article-title: A deep learning method with filter based feature engineering for wireless intrusion detection system
  publication-title: IEEE Access.
– volume: 8
  start-page: 32464
  year: 2022
  end-page: 32476
  ident: bib0012
  article-title: Network intrusion detection combined hybrid sampling with deep hierarchical network
  publication-title: IEEE Access.
– volume: 2020
  year: 2020
  ident: bib0003
  article-title: Towards an improved energy efficient and end-to-end secure protocol for IoT healthcare applications
  publication-title: Secur. Commun. Netw.
– volume: 2
  start-page: 41
  year: 2018
  end-page: 50
  ident: bib0018
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– year: 2020
  ident: bib0007
  article-title: Bodacious-instance coverage mechanism for wireless sensor network
  publication-title: Wirel. Commun. Mobile Comput.
– volume: 278
  start-page: 34
  year: 2018
  end-page: 40
  ident: bib0020
  article-title: Improving deep neural networks with multi-layer maxout networks and a novel initialization method
  publication-title: Neurocomputing
– start-page: 89
  year: 2015
  end-page: 95
  ident: bib0009
  article-title: Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection
  publication-title: International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), May
– volume: 7
  start-page: 64366
  year: 2019
  end-page: 64374
  ident: bib0025
  article-title: Wireless network intrusion detection based on improved convolutional neural network
  publication-title: IEEE Access.
– year: 2020
  ident: 10.1016/j.cose.2024.103751_bib0007
  article-title: Bodacious-instance coverage mechanism for wireless sensor network
  publication-title: Wirel. Commun. Mobile Comput.
  doi: 10.1155/2020/8833767
– start-page: 258
  year: 2016
  ident: 10.1016/j.cose.2024.103751_bib0021
  article-title: Deep learning approach for network intrusion detection in software defined networking
– volume: 7
  start-page: 30373
  year: 2019
  ident: 10.1016/j.cose.2024.103751_bib0014
  article-title: A novel two-stage deep learning model for efficient network intrusion detection
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2899721
– volume: 7
  start-page: 41525
  year: 2019
  ident: 10.1016/j.cose.2024.103751_bib0023
  article-title: Deep learning approach for intelligent intrusion detection system
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2895334
– start-page: 1
  year: 2020
  ident: 10.1016/j.cose.2024.103751_bib0027
  article-title: Wireless sensor network intrusion detection system based on MK-ELM
  publication-title: Soft. Comput.
– volume: 2020
  year: 2020
  ident: 10.1016/j.cose.2024.103751_bib0006
  article-title: Bodacious-instance coverage mechanism for wireless sensor network
  publication-title: Wirel. Commun. Mobile Comput.
  doi: 10.1155/2020/8833767
– volume: 2
  start-page: 41
  issue: 1
  year: 2018
  ident: 10.1016/j.cose.2024.103751_bib0018
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2017.2772792
– start-page: 89
  year: 2015
  ident: 10.1016/j.cose.2024.103751_bib0009
  article-title: Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection
– volume: 8
  start-page: 32464
  year: 2022
  ident: 10.1016/j.cose.2024.103751_bib0012
  article-title: Network intrusion detection combined hybrid sampling with deep hierarchical network
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2973730
– volume: 4
  issue: 4
  year: 2021
  ident: 10.1016/j.cose.2024.103751_bib0015
  article-title: Wireless communication network using hybrid WOA and GWO algorithm
  publication-title: Multim. Res.
– ident: 10.1016/j.cose.2024.103751_bib0001
– volume: 62
  start-page: 47
  year: 2015
  ident: 10.1016/j.cose.2024.103751_bib0030
  article-title: Algorithms to speedup pattern matching for network intrusion detection systems
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2015.02.004
– volume: 51
  start-page: 1531
  year: 2021
  ident: 10.1016/j.cose.2024.103751_bib0011
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01893-z
– volume: 278
  start-page: 34
  year: 2018
  ident: 10.1016/j.cose.2024.103751_bib0020
  article-title: Improving deep neural networks with multi-layer maxout networks and a novel initialization method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.103
– start-page: 581
  year: 2016
  ident: 10.1016/j.cose.2024.103751_bib0010
  article-title: Comparison deep learning method to traditional methods using for network intrusion detection
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.cose.2024.103751_bib0029
  article-title: How to do quantile normalization correctly for gene expression data analyses
  publication-title: Sci. Rep.
– volume: 17
  start-page: 70
  issue: 1
  year: 2014
  ident: 10.1016/j.cose.2024.103751_bib0024
  article-title: A survey of distance and similarity measures used within network intrusion anomaly detection
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2014.2336610
– volume: 13
  start-page: 239
  year: 2016
  ident: 10.1016/j.cose.2024.103751_bib0026
  article-title: Machine learning combining with visualization for intrusion detection: a survey
– volume: 4
  start-page: 31
  issue: 4
  year: 2021
  ident: 10.1016/j.cose.2024.103751_bib0017
  article-title: Hybrid grasshopper optimization and bat algorithm based dbn for intrusion detection in cloud
  publication-title: Multim. Res.
  doi: 10.46253/j.mr.v4i4.a5
– volume: 1
  start-page: 8
  year: 2021
  ident: 10.1016/j.cose.2024.103751_bib0005
  article-title: A proactive role of IoT devices in building smart
  publication-title: Internet of Thing. Cyber-Phys. Syst.
  doi: 10.1016/j.iotcps.2021.08.001
– volume: 36
  start-page: 11994
  issue: 10
  year: 2009
  ident: 10.1016/j.cose.2024.103751_bib0022
  article-title: Intrusion detection by machine learning: a review
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2009.05.029
– ident: 10.1016/j.cose.2024.103751_bib0002
– volume: 2020
  year: 2020
  ident: 10.1016/j.cose.2024.103751_bib0003
  article-title: Towards an improved energy efficient and end-to-end secure protocol for IoT healthcare applications
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2020/8867792
– volume: 56
  start-page: 287
  issue: 1
  year: 2023
  ident: 10.1016/j.cose.2024.103751_bib0008
  article-title: Fire Hawk Optimizer: a novel metaheuristic algorithm
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10173-w
– volume: 7
  start-page: 64366
  year: 2019
  ident: 10.1016/j.cose.2024.103751_bib0025
  article-title: Wireless network intrusion detection based on improved convolutional neural network
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2917299
– volume: 8
  start-page: 29575
  year: 2020
  ident: 10.1016/j.cose.2024.103751_bib0019
  article-title: BAT: deep learning methods on network intrusion detection using NSL-KDD dataset
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2972627
– volume: 6
  start-page: 33789
  year: 2018
  ident: 10.1016/j.cose.2024.103751_bib0004
  article-title: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2018.2841987
– volume: 42
  start-page: 1
  year: 2014
  ident: 10.1016/j.cose.2024.103751_bib0016
  article-title: A survey of intrusion detection in wireless network applications
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2014.01.012
– volume: 7
  start-page: 37004
  year: 2019
  ident: 10.1016/j.cose.2024.103751_bib0028
  article-title: Network intrusion detection: based on deep hierarchical network and original flow data
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2905041
– volume: 7
  start-page: 38597
  year: 2019
  ident: 10.1016/j.cose.2024.103751_bib0013
  article-title: A deep learning method with filter based feature engineering for wireless intrusion detection system
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2905633
SSID ssj0017688
Score 2.4589508
Snippet Network intrusion detection systems (NIDSs) are fundamental for protecting computer networks. In this paper, the Archimedes Fire Hawk Optimization (AFHO)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103751
SubjectTerms Archimedes optimization algorithm (AOA)
Deep Maxout network (DMN)
Fire Hawk optimization (FHO)
Network intrusion detection
Wireless network
Title Archimedes Fire Hawk Optimization enabled feature selection with deep maxout for network intrusion detection
URI https://dx.doi.org/10.1016/j.cose.2024.103751
Volume 140
WOSCitedRecordID wos001195711800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEOXvoumj4BDN0KGJIqmNKZFgiRD2iEtvAkUSSNJbcWwbNc_v3ciRTlpGyRDF0GgSZrQfToeT3ffEfJJJDaxsakiXmUyAoSoSGmFEY5gK3AOKrPSbbEJeXaWj8fFt8Fg3eXCrKeyrvPNppj_V1FDGwgbU2cfIO4wKTTAPQgdriB2uN5L8C2XLOxxtmFHoM_Ysfr1k30FzTDzKZfMtvlShk1sy-rJmrYWDv7SemWNtXM2UxuMWMYgxNpFiiOzxGKFzjXosXQDtk3brj5E06Kp8XXx-u9Ibe0o9nkI6mm6DpvBD3W5ULPV8mJ1ww8L-gyaYYz3z8Iym4ttD0Wa9fGAndMSudVjx6gZtK5jafJ6E7MVHfHsHyrdeReuhhi_P8Tph33nm_zZt_a1EG3YBbJdlThHiXOUbo5HZDeVogBtuHtwcjg-Dd-f4BCWB1Z4WLlPt3KRgbdX8neTZstMOX9OnvrzBT1wuHhBBrZ-SZ51sqFelb8i0x4mFGFCESZ0GybUw4R6mNAAE4owoQgT6mBCASbUw4QGmNAAk9fk-9Hh-ZfjyFfeiDSP42XEuY5HSlQmKfKKZ7mNZZqajKtUGW2ktqOsEjwTsig0V1VqkPVwJAyYlxN46VP-huzU17V9S6hKtBxZgcSSNjNwvFfFRE5yNGSlLoTZI0n38ErtaemxOsq0_LfY9ggLY-aOlOXO3qKTSenNSmculgCxO8a9e9C_vCdPeux_IDvwqO1H8livl5fNYt_j6zdvKpuC
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Archimedes+Fire+Hawk+Optimization+enabled+feature+selection+with+deep+maxout+for+network+intrusion+detection&rft.jtitle=Computers+%26+security&rft.au=Rani%2C+B.+Selva&rft.au=Vairamuthu%2C+S&rft.au=Subramanian%2C+Suresh&rft.date=2024-05-01&rft.issn=0167-4048&rft.volume=140&rft.spage=103751&rft_id=info:doi/10.1016%2Fj.cose.2024.103751&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cose_2024_103751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon