Deep-ASL enhancement technique in arterial spin labeling MRI – A novel approach for the error reduction of partial volume correction technique with linear regression algorithm

•Reduce CBF quantification error by enhancing ASL image quality with a novel model.•For clinical use, sufficiency of simulated ASL data to train the model is proved.•Developed Deep-ASL ENHANCE as a preprocessing step to Linear Regression algorithm Arterial Spin Labelling MRI is a noninvasive quantit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational science Vol. 58; p. 101546
Main Authors: A, Shyna, C., Ushadevi Amma, John, Ansamma, C., Kesavadas, Thomas, Bejoy
Format: Journal Article
Language:English
Published: Elsevier B.V 01.02.2022
Subjects:
ISSN:1877-7503, 1877-7511
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Reduce CBF quantification error by enhancing ASL image quality with a novel model.•For clinical use, sufficiency of simulated ASL data to train the model is proved.•Developed Deep-ASL ENHANCE as a preprocessing step to Linear Regression algorithm Arterial Spin Labelling MRI is a noninvasive quantitative imaging technique for measuring Cerebral Blood Flow (CBF) that plays a vital role in diagnosing different neurological disorders. Limited signal-to-noise ratio and significant partial volume effect due to the low resolution of ASL images make an accurate CBF estimation difficult. This work proposes a deep learning based ASL enhancement algorithm (Deep-ASL ENHANCE), based on the principle of single image super resolution and multi-loss joint strategy with two reconstruction modules and one weighted fusion module that employ residual dense block as the basic building block. Lack of huge amount of low quality and high quality images for training this deep learning network, is addressed by generating simulated ASL images from structural images of ADNI2. The experiment is conducted and results are evaluated on a simulated dataset in terms of different metrics such as RMSE, PSNR and SSIM. The model is also validated using clinical ASL images with the help of two independent radiologists and the results are compared using Visual Quality Score (VQS). The deep learning model trained by using simulated ASL images shows more promising results on clinical ASL data. The effectiveness of using Deep-ASL ENHANCE as a preprocessing step to the partial volume correction technique with Linear Regression algorithm (LR) has been investigated using RMSE score and it is found that CBF quantification accuracy is improved compared to the standalone LR algorithm.
AbstractList •Reduce CBF quantification error by enhancing ASL image quality with a novel model.•For clinical use, sufficiency of simulated ASL data to train the model is proved.•Developed Deep-ASL ENHANCE as a preprocessing step to Linear Regression algorithm Arterial Spin Labelling MRI is a noninvasive quantitative imaging technique for measuring Cerebral Blood Flow (CBF) that plays a vital role in diagnosing different neurological disorders. Limited signal-to-noise ratio and significant partial volume effect due to the low resolution of ASL images make an accurate CBF estimation difficult. This work proposes a deep learning based ASL enhancement algorithm (Deep-ASL ENHANCE), based on the principle of single image super resolution and multi-loss joint strategy with two reconstruction modules and one weighted fusion module that employ residual dense block as the basic building block. Lack of huge amount of low quality and high quality images for training this deep learning network, is addressed by generating simulated ASL images from structural images of ADNI2. The experiment is conducted and results are evaluated on a simulated dataset in terms of different metrics such as RMSE, PSNR and SSIM. The model is also validated using clinical ASL images with the help of two independent radiologists and the results are compared using Visual Quality Score (VQS). The deep learning model trained by using simulated ASL images shows more promising results on clinical ASL data. The effectiveness of using Deep-ASL ENHANCE as a preprocessing step to the partial volume correction technique with Linear Regression algorithm (LR) has been investigated using RMSE score and it is found that CBF quantification accuracy is improved compared to the standalone LR algorithm.
ArticleNumber 101546
Author C., Kesavadas
C., Ushadevi Amma
John, Ansamma
Thomas, Bejoy
A, Shyna
Author_xml – sequence: 1
  givenname: Shyna
  surname: A
  fullname: A, Shyna
  email: s4shyna@gmail.com
  organization: Department of Computer Science and Engineering, ThangalKunju Musaliar College of Engineering, APJ Abdul Kalam Technological University, Kerala, India
– sequence: 2
  givenname: Ushadevi Amma
  surname: C.
  fullname: C., Ushadevi Amma
  organization: Department of Electronics and Communications Engineering, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kerala, India
– sequence: 3
  givenname: Ansamma
  surname: John
  fullname: John, Ansamma
  organization: Department of Computer Science and Engineering, ThangalKunju Musaliar College of Engineering, APJ Abdul Kalam Technological University, Kerala, India
– sequence: 4
  givenname: Kesavadas
  surname: C.
  fullname: C., Kesavadas
  organization: Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Trivandrum, Kerala, India
– sequence: 5
  givenname: Bejoy
  orcidid: 0000-0003-0355-3375
  surname: Thomas
  fullname: Thomas, Bejoy
  organization: Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Trivandrum, Kerala, India
BookMark eNp9kc1uGyEQx1GVSknTvEBO8wLr8uE1WOrFSj8SyVWlJHfEsmMv1hq2gF3l1nfok_SV8iQFuWqlHsJlhhl-_4E_b8iZDx4JuWZ0xihbvNvNdsGmGaec1UI7X7wiF0xJ2ciWsbO_ORXn5CqlHS1LKLVk4oL8-oA4NauHNaAfjLe4R58hox28-3ZAcB5MzBidGSFNZTeaDkfnt_Dl_g6ef_yEFfhwxBHMNMVg7ACbECEPCBhjySL2B5td8BA2MBWtqnQM42GPYEOMeGr-m_jd5QHKBDQV3kZMqR4w4zbE0tq_Ja83Zkx49SdeksdPHx9vbpv11893N6t1YwWlueHI7VJI23HJW4N0wYQwYq567ObKCIWqFa0Uc4m8V7IXLW9RMLbsOmmoWopLok6yNoaUIm60ddnUu-Zo3KgZ1dV8vdPVfF3N1yfzC8r_Q6fo9iY-vQy9P0FY3nR0GHWyDsuH9K56pPvgXsJ_A2rYpCs
CitedBy_id crossref_primary_10_1002_ima_23040
crossref_primary_10_1002_jmri_28433
Cites_doi 10.1148/radiology.168.2.3393671
10.1177/096228029900800204
10.1002/mrm.1910230106
10.1093/ndt/gfy180
10.1016/j.neunet.2020.07.025
10.1109/CVPR.2016.308
10.1016/j.neuroimage.2010.04.033
10.1016/j.neuroimage.2017.08.072
10.1177/0271678X16636393
10.1109/TPAMI.2015.2439281
10.1109/42.906424
10.1002/mrm.24601
10.1002/mrm.22641
10.1016/S1361-8415(01)00036-6
10.1186/s41747-018-0073-2
10.1002/nbm.3164
10.1109/CVPR.2017.243
10.1109/ICCV.2017.514
10.1016/j.zemedi.2018.08.004
10.1002/jmri.24751
10.1109/MSP.2017.2760358
10.1002/mrm.24279
10.1016/j.jneumeth.2017.11.017
10.1002/mrm.22319
10.1002/mrm.1910400308
10.1002/jmri.23581
10.1073/pnas.89.1.212
10.1155/2012/480659
10.1016/j.ejrad.2020.109200
10.2307/2529310
10.1016/j.neuroimage.2007.04.042
10.1002/jmri.25436
10.1109/CVPR.2018.00257
10.1016/j.neuroimage.2017.05.054
10.1016/j.neuroimage.2019.01.004
10.1109/CVPRW.2017.151
10.1016/j.jneumeth.2018.08.018
10.3348/kjr.2014.15.5.554
10.1002/jmri.21721
10.1097/WCO.0b013e328354ff0a
10.1109/CVPR.2018.00262
10.1002/mrm.21670
10.1002/jmri.20460
10.1016/j.mri.2020.01.005
10.1109/TMI.2004.824234
10.1148/radiol.2503081497
10.1016/j.jneumeth.2018.06.007
10.1080/02699050903014899
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jocs.2021.101546
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
EISSN 1877-7511
ExternalDocumentID 10_1016_j_jocs_2021_101546
S1877750321002027
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-2e2c937cb2725ae06133a348deb48a38e85357347e2d87d3525e3119bb7a0893
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000820278700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-7503
IngestDate Sat Nov 29 07:01:53 EST 2025
Tue Nov 18 22:12:32 EST 2025
Fri Feb 23 02:40:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Residual dense block
Linear regression algorithm
Deeplearning
Partial volume effect
Cerebral blood flow
Arterial spin labeling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-2e2c937cb2725ae06133a348deb48a38e85357347e2d87d3525e3119bb7a0893
ORCID 0000-0003-0355-3375
ParticipantIDs crossref_citationtrail_10_1016_j_jocs_2021_101546
crossref_primary_10_1016_j_jocs_2021_101546
elsevier_sciencedirect_doi_10_1016_j_jocs_2021_101546
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Journal of computational science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Behzadi, Liau (bib0025) 2007; 37
Bottou (bib0045) 2010
Simonyan, Zisserman (bib0165) 2014
Li, Dolui, Xie, Wang (bib0195) 2018; 307
Ahn, Yu, Kwak, Park (bib0010) 2020; 130
Alsop, Detre, Golay, Günther, Hendrikse, Zaharchuk (bib0015) 2014; 116
Zhao, Mezue, Segerdahl, Okell, Tracey, Xiao, Chappell (bib0385) 2017; 162
Williams, Detre, Leigh, Koretsky (bib0345) 1992; 89
Gong, Guo, Liu, Fan, Pauly, Zaharchuk (bib0110) 2020
Dolui, Wang, Shinohara, Wolk, Detre (bib0285) 2017; 45
Meurée, Maurel, Ferré, Barillot (bib0230) 2019; 189
Kim, Choi, Park (bib0175) 2017; 287
Wells, Thomas, King, Connelly, Lythgoe, Calamante (bib0340) 2010; 64
Bouhrara, Lee, Rejimon, Bergeron, Spencer (bib0050) 2018; 309
Ge, Patel, Chen, Grossman, Zhang, Miles, Babb, Reaume, Grossman (bib0105) 2009; 23
Petr, Ferre, Gauvrit, Barillot (bib0255) 2010; 7623
Fang, Huang, Luh (bib0100) 2015
Li, Liu, Li, Ge, Shang, SongZe, Wang, Shi (bib0390) 2019; vol. 11766
Ahlgren, Wirestam, Petersen, Ståhlberg, Knutsson (bib0005) 2014; 27
Gonzalez, Woods (bib0115) 2018
Wolk, Detre (bib0355) 2012; 25
Thorman (bib0310) 2020
Lin, Tseng, Hsu, Chen, Chen, Yan, Chiu (bib0210) 2016; 11
Chikui, Obara, Simonetti, Ohga, Koga, Kawano, Matsuo, Kamintani, Shiraishi, Kitamoto, Nakamura, Yoshiura (bib0065) 2012; 2012
Jenkinson, Smith (bib0160) 2001; 5
Zhengyang, Chen (bib0215) 2019
Owen, Melbourne, Eaton-Rosen, Thomas, Marlow, Rohrer, Ourselin (bib0250) 2018
Buxton, Frank, Wong, Siewert, Warach, Edelman (bib0055) 1998; 40
Tan, Maldjian, Pollock, Burdette, Deibler, Kraft (bib0300) 2009; 29
Shiroishi, Castellazzi, Boxerman, D’Amore, Essig, Nguyen, Provenzale, Enterline, Anzalone, Dörfler, Rovira, Wintermark, Law (bib0275) 2014; 41
Tian, Fei, Zheng, xu, Zuo, Lin (bib0315) 2020; 131
Zhang, Brady, Smith (bib0380) 2001; 20
Martirosian, Pohmann, Schraml, Schwartz, Küstner, Schwenzer, Scheffler, Nikolaou, Schick (bib0225) 2018; 29
Bibic, Knutsson, Ståhlberg, Wirestam (bib0030) 2010; 23
Kingma, Ba (bib0180) 2015
Yamashita, Markov (bib0365) 2020
Petr, Schramm, Hofheinz, Maus, Hoff (bib0260) 2013; 70
Liang, Connelly, Calamante (bib0200) 2013; 69
Ioffe, Szegedy (bib0150) 2015
Kim, Lee, Lee (bib0170) 2016
Zhong, Yan, Wu, Shao, Liu (bib0395) 2018
Hu, LV, Li, Liu (bib0140) 2020; 99
Detre, Rao, Wang, Chen, Wang (bib0075) 2012; 35
Lim, Son, Kim, Nah, Lee (bib0205) 2017
Fan, Shi, Liu, Han, Yu, Wang, Wang (bib0095) 2017
Odudu, Nery, Harteveld, Evans, Pendse, Buchanan, Francis, Fernandez-Seara (bib0240) 2018; 33
Fallatah, Pizzini, Gómez-Ansón, Magerkurth, De Vita, Bisdas, Jäger, Mutsaerts, Golay (bib0085) 2018; 2
Xie, Li, Yang, Bai, Wang, Zhou, Zhang, Wang (bib0360) 2020; 68
Leif (bib0190) 2005; 22
Vitti (bib0335) 2009; 250
Pham (bib0265) 2018
Fan, Jahanian, Holdsworth, Zaharchuk (bib0090) 2016; 36
Huang, Liu, Van Der Maaten, Weinberger (bib0145) 2017
He, Zhang, Ren, Sun (bib0130) 2016
Detre, Leigh, Williams, Koretsky (bib0070) 1992; 23
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0295) 2016
He, Zhang, Ren, Sun (bib0125) 2016
Jahng, Li, Ostergaard, Calamante (bib0155) 2014; 15
Ulas, Tetteh, Kaczmarz, Preibisch, Menze (bib0330) 2018
Landis, Koch (bib0185) 1977; 33
Le, Breton, Lallemand, Aubin, Vignaud, Laval-Jeantet (bib0035) 1988; 168
Jiahui, Fan, Yang, Ning, Wang, Wang, Huang (bib0370) 2018
Gulli, Pal (bib0120) 2017
Oliver, Thomas, Thomas, Golay (bib0245) 2012
Zhu, Zhang, Wang (bib0400) 2017; 295
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0290) 2015
Hinton (bib0135) 2018
Spann, Kazimierski, Aigner, Kraiger, Bredies, Stollberger (bib0280) 2017; 157
Tosun, Mojabi, Weiner, Schuff (bib0325) 2010; 52
Asllani, Borogovac, Brown (bib0020) 2008; 60
Chappell, Groves, MacIntosh, Donahue, Jezzard, Woolrich (bib0060) 2011; 65
Telischak, Detre, Zaharchuk (bib0305) 2014; 41
Wink, Roerdink (bib0350) 2004; 23
Dong, Loy, He, Tang (bib0080) 2014; 38
Bland, Altman (bib0040) 1999; 8
Thomas (bib0235) 2020
Zhang, Tian, Kong, Zhong, Fu (bib0375) 2018
Putten, Zanjani (bib0270) 2021
Lucas, Iliadis, Molina, Katsaggelos (bib0220) 2018; 35
Tong, Li, Liu, Gao (bib0320) 2017
Petr (10.1016/j.jocs.2021.101546_bib0260) 2013; 70
Zhang (10.1016/j.jocs.2021.101546_bib0380) 2001; 20
Dong (10.1016/j.jocs.2021.101546_bib0080) 2014; 38
Telischak (10.1016/j.jocs.2021.101546_bib0305) 2014; 41
Kim (10.1016/j.jocs.2021.101546_bib0175) 2017; 287
Ge (10.1016/j.jocs.2021.101546_bib0105) 2009; 23
Jenkinson (10.1016/j.jocs.2021.101546_bib0160) 2001; 5
Thomas (10.1016/j.jocs.2021.101546_bib0235) 2020
Petr (10.1016/j.jocs.2021.101546_bib0255) 2010; 7623
Gong (10.1016/j.jocs.2021.101546_bib0110) 2020
Asllani (10.1016/j.jocs.2021.101546_bib0020) 2008; 60
Dolui (10.1016/j.jocs.2021.101546_bib0285) 2017; 45
Wells (10.1016/j.jocs.2021.101546_bib0340) 2010; 64
Lim (10.1016/j.jocs.2021.101546_bib0205) 2017
Zhong (10.1016/j.jocs.2021.101546_bib0395) 2018
Bland (10.1016/j.jocs.2021.101546_bib0040) 1999; 8
Bibic (10.1016/j.jocs.2021.101546_bib0030) 2010; 23
Vitti (10.1016/j.jocs.2021.101546_bib0335) 2009; 250
Fang (10.1016/j.jocs.2021.101546_bib0100) 2015
Simonyan (10.1016/j.jocs.2021.101546_bib0165) 2014
Ahn (10.1016/j.jocs.2021.101546_bib0010) 2020; 130
Jahng (10.1016/j.jocs.2021.101546_bib0155) 2014; 15
Ahlgren (10.1016/j.jocs.2021.101546_bib0005) 2014; 27
Chappell (10.1016/j.jocs.2021.101546_bib0060) 2011; 65
Oliver (10.1016/j.jocs.2021.101546_bib0245) 2012
Tong (10.1016/j.jocs.2021.101546_bib0320) 2017
Szegedy (10.1016/j.jocs.2021.101546_bib0295) 2016
Tian (10.1016/j.jocs.2021.101546_bib0315) 2020; 131
Chikui (10.1016/j.jocs.2021.101546_bib0065) 2012; 2012
Huang (10.1016/j.jocs.2021.101546_bib0145) 2017
Liang (10.1016/j.jocs.2021.101546_bib0200) 2013; 69
Zhu (10.1016/j.jocs.2021.101546_bib0400) 2017; 295
Alsop (10.1016/j.jocs.2021.101546_bib0015) 2014; 116
Wolk (10.1016/j.jocs.2021.101546_bib0355) 2012; 25
Landis (10.1016/j.jocs.2021.101546_bib0185) 1977; 33
Williams (10.1016/j.jocs.2021.101546_bib0345) 1992; 89
Putten (10.1016/j.jocs.2021.101546_bib0270) 2021
Meurée (10.1016/j.jocs.2021.101546_bib0230) 2019; 189
He (10.1016/j.jocs.2021.101546_bib0130) 2016
Owen (10.1016/j.jocs.2021.101546_bib0250) 2018
Pham (10.1016/j.jocs.2021.101546_bib0265) 2018
Thorman (10.1016/j.jocs.2021.101546_bib0310) 2020
Hu (10.1016/j.jocs.2021.101546_bib0140) 2020; 99
Fallatah (10.1016/j.jocs.2021.101546_bib0085) 2018; 2
Martirosian (10.1016/j.jocs.2021.101546_bib0225) 2018; 29
He (10.1016/j.jocs.2021.101546_bib0125) 2016
Xie (10.1016/j.jocs.2021.101546_bib0360) 2020; 68
Odudu (10.1016/j.jocs.2021.101546_bib0240) 2018; 33
Ioffe (10.1016/j.jocs.2021.101546_bib0150) 2015
Hinton (10.1016/j.jocs.2021.101546_bib0135) 2018
Fan (10.1016/j.jocs.2021.101546_bib0090) 2016; 36
Shiroishi (10.1016/j.jocs.2021.101546_bib0275) 2014; 41
Yamashita (10.1016/j.jocs.2021.101546_bib0365) 2020
Gonzalez (10.1016/j.jocs.2021.101546_bib0115) 2018
Fan (10.1016/j.jocs.2021.101546_bib0095) 2017
Le (10.1016/j.jocs.2021.101546_bib0035) 1988; 168
Detre (10.1016/j.jocs.2021.101546_bib0070) 1992; 23
Bouhrara (10.1016/j.jocs.2021.101546_bib0050) 2018; 309
Jiahui (10.1016/j.jocs.2021.101546_bib0370) 2018
Li (10.1016/j.jocs.2021.101546_bib0390) 2019; vol. 11766
Spann (10.1016/j.jocs.2021.101546_bib0280) 2017; 157
Kim (10.1016/j.jocs.2021.101546_bib0170) 2016
Lucas (10.1016/j.jocs.2021.101546_bib0220) 2018; 35
Buxton (10.1016/j.jocs.2021.101546_bib0055) 1998; 40
Leif (10.1016/j.jocs.2021.101546_bib0190) 2005; 22
Szegedy (10.1016/j.jocs.2021.101546_bib0290) 2015
Tosun (10.1016/j.jocs.2021.101546_bib0325) 2010; 52
Zhengyang (10.1016/j.jocs.2021.101546_bib0215) 2019
Gulli (10.1016/j.jocs.2021.101546_bib0120) 2017
Tan (10.1016/j.jocs.2021.101546_bib0300) 2009; 29
Kingma (10.1016/j.jocs.2021.101546_bib0180) 2015
Wink (10.1016/j.jocs.2021.101546_bib0350) 2004; 23
Li (10.1016/j.jocs.2021.101546_bib0195) 2018; 307
Lin (10.1016/j.jocs.2021.101546_bib0210) 2016; 11
Bottou (10.1016/j.jocs.2021.101546_bib0045) 2010
Behzadi (10.1016/j.jocs.2021.101546_bib0025) 2007; 37
Detre (10.1016/j.jocs.2021.101546_bib0075) 2012; 35
Ulas (10.1016/j.jocs.2021.101546_bib0330) 2018
Zhang (10.1016/j.jocs.2021.101546_bib0375) 2018
Zhao (10.1016/j.jocs.2021.101546_bib0385) 2017; 162
References_xml – volume: 2
  year: 2018
  ident: bib0085
  article-title: A visual quality control scale for clinical arterial spin labeling images
  publication-title: Eur. Radiol. Exp.
– volume: 189
  start-page: 85
  year: 2019
  end-page: 94
  ident: bib0230
  article-title: Patch-based super-resolution of arterial spin labeling magnetic resonance images
  publication-title: NeuroImage
– volume: 2012
  year: 2012
  ident: bib0065
  article-title: The principal of dynamic contrast enhanced MRI, the method of pharmacokinetic analysis, and its application in the head and neck region
  publication-title: Int. J. Dent.
– volume: 41
  year: 2014
  ident: bib0275
  article-title: Principles of T2*-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging
  publication-title: J. Magnet. Reson. Imag.
– volume: 250
  start-page: 959
  year: 2009
  end-page: 960
  ident: bib0335
  article-title: Gadolinium-based contrast agents and nephrogenic systemic fibrosis
  publication-title: Radiology
– start-page: 2423
  year: 2018
  end-page: 2432
  ident: bib0395
  article-title: Practical block-wise neural network architecture generation
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 23
  start-page: 374
  year: 2004
  end-page: 387
  ident: bib0350
  article-title: Denoising functional MR images: a comparison of wavelet denoising and gaussian smoothing
  publication-title: IEEE Trans. Med. Imag.
– start-page: 115
  year: 2021
  end-page: 119
  ident: bib0270
  article-title: Multi-scale Ensemble of ResNet Variants
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0125
  article-title: Deep Residual Learning for Image Recognition
– start-page: 630
  year: 2016
  end-page: 645
  ident: bib0130
  article-title: Identity Mappings in Deep Residual Networks
– start-page: 29
  year: 2020
  end-page: 52
  ident: bib0310
  article-title: Uncertainty and Statistics
– volume: 309
  start-page: 121
  year: 2018
  end-page: 131
  ident: bib0050
  article-title: Spatially adaptive unsupervised multispectral nonlocal filtering for improved cerebral blood flow mapping using arterial spin labeling magnetic resonance imaging
  publication-title: J. Neurosci. Methods
– year: 2019
  ident: bib0215
  article-title: Single Image Super Resolution Based on a Modified U-net With Mixed Gradient Loss
– volume: 64
  start-page: 715
  year: 2010
  end-page: 724
  ident: bib0340
  article-title: Reduction of errors in ASL cerebral perfusion and arterial transit time maps using image de-noising
  publication-title: Magn. Reson. Med.
– year: 2020
  ident: bib0365
  article-title: Medical Image Enhancement Using Super Resolution Methods
  publication-title: Computational Science – ICCS 2020 20th International Conference
– volume: 27
  start-page: 1112
  year: 2014
  end-page: 1122
  ident: bib0005
  article-title: Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling
  publication-title: NMR Biomed.
– volume: 68
  start-page: 95
  year: 2020
  end-page: 105
  ident: bib0360
  article-title: Denoising arterial spin labeling perfusion MRI with deep machine learning
  publication-title: Magnetic Resonance Imaging
– volume: 29
  start-page: 1134
  year: 2009
  end-page: 1139
  ident: bib0300
  article-title: A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI
  publication-title: J. Magnet. Reson. Imag.
– volume: 37
  start-page: 90
  year: 2007
  end-page: 101
  ident: bib0025
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: NeuroImage
– year: 2018
  ident: bib0135
  article-title: Coursera Neural Networks for Machine Learning Lecture 6
– volume: 52
  start-page: 186
  year: 2010
  end-page: 197
  ident: bib0325
  article-title: Joint analysis of structural and perfusion MRI for cognitive assessment and classification of Alzheimer’s disease and normal aging
  publication-title: NeuroImage
– volume: 130
  year: 2020
  ident: bib0010
  article-title: Assessment of renal perfusion in transplanted kidney patients using pseudo-continuous arterial spin labeling with multiple post-labeling delays
  publication-title: Eur. J. Radiol.
– year: 2010
  ident: bib0045
  article-title: Large-scale machine learning with stochastic gradient descent
  publication-title: Proc. of COMPSTAT
– year: 2017
  ident: bib0120
  article-title: Deep Learning With Keras
– volume: 116
  start-page: 102
  year: 2014
  end-page: 116
  ident: bib0015
  article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn. Reson. Med.
– year: 2020
  ident: bib0235
  article-title: Deep Learning Image Enhancement Insights on Loss Function Engineering
– volume: 33
  start-page: ii15
  year: 2018
  end-page: ii21
  ident: bib0240
  article-title: Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper
  publication-title: Nephrol. Dialysis Transplant.
– volume: 11
  year: 2016
  ident: bib0210
  article-title: Arterial spin labeling perfusion study in the patients with subacute mild traumatic brain injury
  publication-title: PloS one
– volume: 35
  start-page: 1026
  year: 2012
  end-page: 1037
  ident: bib0075
  article-title: Applications of arterial spin labeled MRI in the brain
  publication-title: J. Magn. Reson. Imaging
– start-page: 498
  year: 2015
  end-page: 502
  ident: bib0100
  article-title: A Spatio-temporal Low-rank Total Variation Approach for Denoising Arterial Spin Labeling MRI Data.
– volume: 7623
  year: 2010
  ident: bib0255
  article-title: Improving arterial spin labeling data by temporal filtering
  publication-title: Progress in Biomedical Optics and Imaging - Proceedings of SPIE
– start-page: 2472
  year: 2018
  end-page: 2481
  ident: bib0375
  article-title: Residual dense network for image super-Resolution
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 35
  start-page: 20
  year: 2018
  end-page: 36
  ident: bib0220
  article-title: Using deep neural networks for inverse problems in imaging: beyond analytical methods
  publication-title: IEEE Signal Processing Magazine
– start-page: 4809
  year: 2017
  end-page: 4817
  ident: bib0320
  article-title: Image super-resolution using dense skip connections
  publication-title: 2017 IEEE International Conference on Computer Vision (ICCV)
– year: 2020
  ident: bib0110
  article-title: Deep Learning and Multi-contrast Based Denoising for low-SNR Arterial Spin Labeling (ASL) MRI
– start-page: 1646
  year: 2016
  end-page: 1654
  ident: bib0170
  article-title: Accurate Image Super-Resolution Using Very Deep Convolutional Networks
– volume: 45
  start-page: 1786
  year: 2017
  end-page: 1797
  ident: bib0285
  article-title: Structural Correlation-based Outlier Rejection (SCORE) algorithm for arterial spin labeling time series
  publication-title: J. Magnet. Reson. Imag.
– volume: 25
  start-page: 421
  year: 2012
  end-page: 428
  ident: bib0355
  article-title: Arterial spin labeling MRI: an emerging biomarker for alzheimer’s disease and other neurodegenerative conditions
  publication-title: Current opinion in neurology
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: bib0145
  article-title: Densely connected convolutional networks
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0290
  article-title: Going deeper with convolutions
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 36
  start-page: 842
  year: 2016
  end-page: 861
  ident: bib0090
  article-title: Comparison of cerebral blood flow measurement with [150]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review
  publication-title: J. Cerebral Blood Flow Metab.
– volume: 23
  start-page: 37
  year: 1992
  end-page: 45
  ident: bib0070
  article-title: Perfusion imaging
  publication-title: Magn. Reson. Med.
– year: 2012
  ident: bib0245
  article-title: Improved Partial Volume Correction of ASL Images Using 3D Kernels
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib0295
  article-title: Rethinking the inception architecture for computer vision
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 168
  start-page: 497
  year: 1988
  end-page: 505
  ident: bib0035
  article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging
  publication-title: Radiology
– volume: vol. 11766
  start-page: 12
  year: 2019
  end-page: 20
  ident: bib0390
  publication-title: A Two-Stage Multi-Loss Super-Resolution Network for Arterial Spin Labeling Magnetic Resonance Imaging
– volume: 38
  start-page: 295
  year: 2014
  end-page: 307
  ident: bib0080
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2018
  ident: bib0265
  article-title: Deep Learning for Medical Image Super Resolution and Sementation
– volume: 15
  start-page: 554
  year: 2014
  end-page: 577
  ident: bib0155
  article-title: Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques
  publication-title: Kor. J. Radiol.
– volume: 157
  start-page: 81
  year: 2017
  end-page: 96
  ident: bib0280
  article-title: Spatio-temporal TGV denoising for ASL perfusion imaging
  publication-title: NeuroImage
– volume: 69
  start-page: 531
  year: 2013
  end-page: 537
  ident: bib0200
  article-title: Improved partial volume correction for single inversion time arterial spin labeling data
  publication-title: Magnet. Reson. Med.
– start-page: 30
  year: 2018
  end-page: 38
  ident: bib0330
  article-title: DeepASL: Kinetic Model Incorporated Loss for Denoising Arterial Spin Labeled MRI Via Deep Residual Learning
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  ident: bib0185
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– year: 2018
  ident: bib0115
  article-title: Digital Image Processing
– volume: 131
  start-page: 251
  year: 2020
  end-page: 275
  ident: bib0315
  article-title: Deep learning on image denoising: an overview
  publication-title: Neural Networks
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bib0380
  article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation maximization algorithm
  publication-title: IEEE Trans. Med. Imag.
– volume: 40
  start-page: 383
  year: 1998
  end-page: 396
  ident: bib0055
  article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling
  publication-title: Magn. Reson. Med.
– start-page: 1157
  year: 2017
  end-page: 1164
  ident: bib0095
  article-title: Balanced Two-Stage Residual Networks for Image Super-Resolution
– volume: 23
  start-page: 125
  year: 2010
  end-page: 137
  ident: bib0030
  article-title: Denoising of arterial spin labeling data: wavelet-domain filtering compared with Gaussian smoothing
  publication-title: Magma (New York, N.Y.)
– start-page: 21
  year: 2018
  end-page: 29
  ident: bib0250
  article-title: Deep Convolutional Filtering for Spatio-Temporal Denoising and Artifact Removal in Arterial Spin Labelling MRI
– volume: 65
  start-page: 1173
  year: 2011
  end-page: 1183
  ident: bib0060
  article-title: Partial volume correction of multiple inversion time arterial spin labeling MRI data
  publication-title: Magn. Reson. Med.
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  ident: bib0160
  article-title: Global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Analysis
– volume: 99
  year: 2020
  ident: bib0140
  article-title: Effect of post-labeling delay on regional cerebral blood flow in arterial spin-labeling MR imaging
  publication-title: Medicine
– volume: 8
  start-page: 135
  year: 1999
  end-page: 160
  ident: bib0040
  article-title: Measuring agreement in method comparison studies
  publication-title: Stat. Methods Med. Res.
– volume: 287
  year: 2017
  ident: bib0175
  article-title: Improving arterial spin labeling by using deep learning
  publication-title: Radiology
– start-page: 1132
  year: 2017
  end-page: 1140
  ident: bib0205
  article-title: Enhanced deep residual networks for single image super-Resolution
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
– volume: 23
  start-page: 666
  year: 2009
  end-page: 674
  ident: bib0105
  article-title: Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labeling MR imaging at 3T
  publication-title: Brain injury
– volume: 41
  start-page: 1165
  year: 2014
  end-page: 1180
  ident: bib0305
  article-title: Arterial spin labeling MRI: clinical applications in the brain
  publication-title: J. Magnet. Reson. Imag.
– year: 2018
  ident: bib0370
  article-title: Wide Activation for Efficient and Accurate Image Super-Resolution
– year: 2015
  ident: bib0180
  article-title: Adam: a method for stochastic optimization
  publication-title: CoRR, abs/1412.6980
– volume: 307
  start-page: 248
  year: 2018
  end-page: 253
  ident: bib0195
  article-title: Priors-guided slice-wise adaptive outlier cleaning for arterial spin labeling perfusion MRI
  publication-title: J. Neurosci. Methods
– volume: 29
  start-page: 173
  year: 2018
  end-page: 183
  ident: bib0225
  article-title: Spatial-temporal perfusion patterns of the human liver assessed by pseudo-continuous arterial spin labeling MRI
  publication-title: Zeitschrift für Medizinische Physik
– volume: 22
  start-page: 710
  year: 2005
  end-page: 717
  ident: bib0190
  article-title: Principles of cerebral perfusion imaging by bolus tracking
  publication-title: J. Magnet. Reson. Imag.
– volume: 70
  start-page: 1535
  year: 2013
  end-page: 1543
  ident: bib0260
  article-title: Partial volume correction in arterial spin labeling using a look-locker sequence
  publication-title: Magnet. Reson. Med.
– volume: 162
  start-page: 384
  year: 2017
  end-page: 397
  ident: bib0385
  article-title: A systematic study of the sensitivity of partial volume correction methods for the quantification of perfusion from pseudo-continuous arterial spin labeling MRI
  publication-title: NeuroImage
– volume: 295
  start-page: 10
  year: 2017
  end-page: 19
  ident: bib0400
  article-title: Arterial spin labeling perfusion MRI signal denoising using robust principal component analysis
  publication-title: J. Neurosci. Methods
– start-page: 448
  year: 2015
  end-page: 456
  ident: bib0150
  article-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
– volume: 89
  start-page: 212
  year: 1992
  end-page: 216
  ident: bib0345
  article-title: Magnetic resonance imaging of perfusion using spin inversion of arterial water
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 60
  start-page: 1362
  year: 2008
  end-page: 1371
  ident: bib0020
  article-title: Regression algorithm correcting for partial volume effects in arterial spin labeling MRI
  publication-title: Magn. Reson. Med.
– start-page: 1409
  year: 2014
  end-page: 1556
  ident: bib0165
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv
– volume: 168
  start-page: 497
  issue: 2
  year: 1988
  ident: 10.1016/j.jocs.2021.101546_bib0035
  article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging
  publication-title: Radiology
  doi: 10.1148/radiology.168.2.3393671
– volume: 8
  start-page: 135
  year: 1999
  ident: 10.1016/j.jocs.2021.101546_bib0040
  article-title: Measuring agreement in method comparison studies
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/096228029900800204
– year: 2020
  ident: 10.1016/j.jocs.2021.101546_bib0235
– volume: 23
  start-page: 37
  issue: 1
  year: 1992
  ident: 10.1016/j.jocs.2021.101546_bib0070
  article-title: Perfusion imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910230106
– start-page: 1157
  year: 2017
  ident: 10.1016/j.jocs.2021.101546_bib0095
– volume: 11
  year: 2016
  ident: 10.1016/j.jocs.2021.101546_bib0210
  article-title: Arterial spin labeling perfusion study in the patients with subacute mild traumatic brain injury
  publication-title: PloS one
– volume: 33
  start-page: ii15
  year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0240
  article-title: Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper
  publication-title: Nephrol. Dialysis Transplant.
  doi: 10.1093/ndt/gfy180
– volume: 99
  year: 2020
  ident: 10.1016/j.jocs.2021.101546_bib0140
  article-title: Effect of post-labeling delay on regional cerebral blood flow in arterial spin-labeling MR imaging
  publication-title: Medicine
– year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0265
– volume: 131
  start-page: 251
  year: 2020
  ident: 10.1016/j.jocs.2021.101546_bib0315
  article-title: Deep learning on image denoising: an overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.07.025
– start-page: 2818
  year: 2016
  ident: 10.1016/j.jocs.2021.101546_bib0295
  article-title: Rethinking the inception architecture for computer vision
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2016.308
– volume: 116
  start-page: 102
  year: 2014
  ident: 10.1016/j.jocs.2021.101546_bib0015
  article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn. Reson. Med.
– year: 2012
  ident: 10.1016/j.jocs.2021.101546_bib0245
– year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0135
– volume: 52
  start-page: 186
  year: 2010
  ident: 10.1016/j.jocs.2021.101546_bib0325
  article-title: Joint analysis of structural and perfusion MRI for cognitive assessment and classification of Alzheimer’s disease and normal aging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.033
– start-page: 1409
  year: 2014
  ident: 10.1016/j.jocs.2021.101546_bib0165
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv
– volume: 162
  start-page: 384
  year: 2017
  ident: 10.1016/j.jocs.2021.101546_bib0385
  article-title: A systematic study of the sensitivity of partial volume correction methods for the quantification of perfusion from pseudo-continuous arterial spin labeling MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.08.072
– volume: 36
  start-page: 842
  year: 2016
  ident: 10.1016/j.jocs.2021.101546_bib0090
  article-title: Comparison of cerebral blood flow measurement with [150]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review
  publication-title: J. Cerebral Blood Flow Metab.
  doi: 10.1177/0271678X16636393
– volume: 38
  start-page: 295
  year: 2014
  ident: 10.1016/j.jocs.2021.101546_bib0080
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– start-page: 448
  year: 2015
  ident: 10.1016/j.jocs.2021.101546_bib0150
– volume: 20
  start-page: 45
  year: 2001
  ident: 10.1016/j.jocs.2021.101546_bib0380
  article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation maximization algorithm
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.906424
– start-page: 30
  year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0330
– volume: 70
  start-page: 1535
  year: 2013
  ident: 10.1016/j.jocs.2021.101546_bib0260
  article-title: Partial volume correction in arterial spin labeling using a look-locker sequence
  publication-title: Magnet. Reson. Med.
  doi: 10.1002/mrm.24601
– volume: 65
  start-page: 1173
  year: 2011
  ident: 10.1016/j.jocs.2021.101546_bib0060
  article-title: Partial volume correction of multiple inversion time arterial spin labeling MRI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22641
– volume: 5
  start-page: 143
  year: 2001
  ident: 10.1016/j.jocs.2021.101546_bib0160
  article-title: Global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Analysis
  doi: 10.1016/S1361-8415(01)00036-6
– volume: 2
  year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0085
  article-title: A visual quality control scale for clinical arterial spin labeling images
  publication-title: Eur. Radiol. Exp.
  doi: 10.1186/s41747-018-0073-2
– volume: 27
  start-page: 1112
  year: 2014
  ident: 10.1016/j.jocs.2021.101546_bib0005
  article-title: Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3164
– start-page: 2261
  year: 2017
  ident: 10.1016/j.jocs.2021.101546_bib0145
  article-title: Densely connected convolutional networks
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2017.243
– start-page: 4809
  year: 2017
  ident: 10.1016/j.jocs.2021.101546_bib0320
  article-title: Image super-resolution using dense skip connections
  publication-title: 2017 IEEE International Conference on Computer Vision (ICCV)
  doi: 10.1109/ICCV.2017.514
– volume: 29
  start-page: 173
  year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0225
  article-title: Spatial-temporal perfusion patterns of the human liver assessed by pseudo-continuous arterial spin labeling MRI
  publication-title: Zeitschrift für Medizinische Physik
  doi: 10.1016/j.zemedi.2018.08.004
– volume: 41
  start-page: 1165
  year: 2014
  ident: 10.1016/j.jocs.2021.101546_bib0305
  article-title: Arterial spin labeling MRI: clinical applications in the brain
  publication-title: J. Magnet. Reson. Imag.
  doi: 10.1002/jmri.24751
– volume: 35
  start-page: 20
  year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0220
  article-title: Using deep neural networks for inverse problems in imaging: beyond analytical methods
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2017.2760358
– volume: 69
  start-page: 531
  year: 2013
  ident: 10.1016/j.jocs.2021.101546_bib0200
  article-title: Improved partial volume correction for single inversion time arterial spin labeling data
  publication-title: Magnet. Reson. Med.
  doi: 10.1002/mrm.24279
– volume: 295
  start-page: 10
  year: 2017
  ident: 10.1016/j.jocs.2021.101546_bib0400
  article-title: Arterial spin labeling perfusion MRI signal denoising using robust principal component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.11.017
– volume: 64
  start-page: 715
  year: 2010
  ident: 10.1016/j.jocs.2021.101546_bib0340
  article-title: Reduction of errors in ASL cerebral perfusion and arterial transit time maps using image de-noising
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22319
– volume: 40
  start-page: 383
  year: 1998
  ident: 10.1016/j.jocs.2021.101546_bib0055
  article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910400308
– volume: 35
  start-page: 1026
  year: 2012
  ident: 10.1016/j.jocs.2021.101546_bib0075
  article-title: Applications of arterial spin labeled MRI in the brain
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23581
– volume: 89
  start-page: 212
  year: 1992
  ident: 10.1016/j.jocs.2021.101546_bib0345
  article-title: Magnetic resonance imaging of perfusion using spin inversion of arterial water
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.1.212
– volume: 2012
  year: 2012
  ident: 10.1016/j.jocs.2021.101546_bib0065
  article-title: The principal of dynamic contrast enhanced MRI, the method of pharmacokinetic analysis, and its application in the head and neck region
  publication-title: Int. J. Dent.
  doi: 10.1155/2012/480659
– volume: 130
  year: 2020
  ident: 10.1016/j.jocs.2021.101546_bib0010
  article-title: Assessment of renal perfusion in transplanted kidney patients using pseudo-continuous arterial spin labeling with multiple post-labeling delays
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2020.109200
– start-page: 21
  year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0250
– start-page: 1
  year: 2015
  ident: 10.1016/j.jocs.2021.101546_bib0290
  article-title: Going deeper with convolutions
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 29
  year: 2020
  ident: 10.1016/j.jocs.2021.101546_bib0310
– year: 2020
  ident: 10.1016/j.jocs.2021.101546_bib0110
– year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0115
– start-page: 770
  year: 2016
  ident: 10.1016/j.jocs.2021.101546_bib0125
– year: 2019
  ident: 10.1016/j.jocs.2021.101546_bib0215
– year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0370
– start-page: 1646
  year: 2016
  ident: 10.1016/j.jocs.2021.101546_bib0170
– volume: 33
  start-page: 159
  year: 1977
  ident: 10.1016/j.jocs.2021.101546_bib0185
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 37
  start-page: 90
  year: 2007
  ident: 10.1016/j.jocs.2021.101546_bib0025
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.04.042
– volume: vol. 11766
  start-page: 12
  year: 2019
  ident: 10.1016/j.jocs.2021.101546_bib0390
– volume: 45
  start-page: 1786
  year: 2017
  ident: 10.1016/j.jocs.2021.101546_bib0285
  article-title: Structural Correlation-based Outlier Rejection (SCORE) algorithm for arterial spin labeling time series
  publication-title: J. Magnet. Reson. Imag.
  doi: 10.1002/jmri.25436
– start-page: 2423
  year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0395
  article-title: Practical block-wise neural network architecture generation
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
  doi: 10.1109/CVPR.2018.00257
– volume: 157
  start-page: 81
  year: 2017
  ident: 10.1016/j.jocs.2021.101546_bib0280
  article-title: Spatio-temporal TGV denoising for ASL perfusion imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.05.054
– volume: 189
  start-page: 85
  year: 2019
  ident: 10.1016/j.jocs.2021.101546_bib0230
  article-title: Patch-based super-resolution of arterial spin labeling magnetic resonance images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.01.004
– year: 2017
  ident: 10.1016/j.jocs.2021.101546_bib0120
– year: 2020
  ident: 10.1016/j.jocs.2021.101546_bib0365
  article-title: Medical Image Enhancement Using Super Resolution Methods
– volume: 287
  year: 2017
  ident: 10.1016/j.jocs.2021.101546_bib0175
  article-title: Improving arterial spin labeling by using deep learning
  publication-title: Radiology
– volume: 23
  start-page: 125
  year: 2010
  ident: 10.1016/j.jocs.2021.101546_bib0030
  article-title: Denoising of arterial spin labeling data: wavelet-domain filtering compared with Gaussian smoothing
  publication-title: Magma (New York, N.Y.)
– start-page: 1132
  year: 2017
  ident: 10.1016/j.jocs.2021.101546_bib0205
  article-title: Enhanced deep residual networks for single image super-Resolution
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
  doi: 10.1109/CVPRW.2017.151
– volume: 309
  start-page: 121
  year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0050
  article-title: Spatially adaptive unsupervised multispectral nonlocal filtering for improved cerebral blood flow mapping using arterial spin labeling magnetic resonance imaging
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2018.08.018
– volume: 15
  start-page: 554
  year: 2014
  ident: 10.1016/j.jocs.2021.101546_bib0155
  article-title: Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques
  publication-title: Kor. J. Radiol.
  doi: 10.3348/kjr.2014.15.5.554
– volume: 29
  start-page: 1134
  year: 2009
  ident: 10.1016/j.jocs.2021.101546_bib0300
  article-title: A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI
  publication-title: J. Magnet. Reson. Imag.
  doi: 10.1002/jmri.21721
– year: 2010
  ident: 10.1016/j.jocs.2021.101546_bib0045
  article-title: Large-scale machine learning with stochastic gradient descent
  publication-title: Proc. of COMPSTAT
– volume: 25
  start-page: 421
  year: 2012
  ident: 10.1016/j.jocs.2021.101546_bib0355
  article-title: Arterial spin labeling MRI: an emerging biomarker for alzheimer’s disease and other neurodegenerative conditions
  publication-title: Current opinion in neurology
  doi: 10.1097/WCO.0b013e328354ff0a
– start-page: 2472
  year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0375
  article-title: Residual dense network for image super-Resolution
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
  doi: 10.1109/CVPR.2018.00262
– volume: 60
  start-page: 1362
  year: 2008
  ident: 10.1016/j.jocs.2021.101546_bib0020
  article-title: Regression algorithm correcting for partial volume effects in arterial spin labeling MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21670
– start-page: 630
  year: 2016
  ident: 10.1016/j.jocs.2021.101546_bib0130
– year: 2015
  ident: 10.1016/j.jocs.2021.101546_bib0180
  article-title: Adam: a method for stochastic optimization
  publication-title: CoRR, abs/1412.6980
– start-page: 498
  year: 2015
  ident: 10.1016/j.jocs.2021.101546_bib0100
– volume: 7623
  year: 2010
  ident: 10.1016/j.jocs.2021.101546_bib0255
  article-title: Improving arterial spin labeling data by temporal filtering
  publication-title: Progress in Biomedical Optics and Imaging - Proceedings of SPIE
– volume: 22
  start-page: 710
  year: 2005
  ident: 10.1016/j.jocs.2021.101546_bib0190
  article-title: Principles of cerebral perfusion imaging by bolus tracking
  publication-title: J. Magnet. Reson. Imag.
  doi: 10.1002/jmri.20460
– volume: 68
  start-page: 95
  year: 2020
  ident: 10.1016/j.jocs.2021.101546_bib0360
  article-title: Denoising arterial spin labeling perfusion MRI with deep machine learning
  publication-title: Magnetic Resonance Imaging
  doi: 10.1016/j.mri.2020.01.005
– volume: 23
  start-page: 374
  year: 2004
  ident: 10.1016/j.jocs.2021.101546_bib0350
  article-title: Denoising functional MR images: a comparison of wavelet denoising and gaussian smoothing
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2004.824234
– volume: 250
  start-page: 959
  year: 2009
  ident: 10.1016/j.jocs.2021.101546_bib0335
  article-title: Gadolinium-based contrast agents and nephrogenic systemic fibrosis
  publication-title: Radiology
  doi: 10.1148/radiol.2503081497
– volume: 307
  start-page: 248
  year: 2018
  ident: 10.1016/j.jocs.2021.101546_bib0195
  article-title: Priors-guided slice-wise adaptive outlier cleaning for arterial spin labeling perfusion MRI
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2018.06.007
– start-page: 115
  year: 2021
  ident: 10.1016/j.jocs.2021.101546_bib0270
– volume: 41
  year: 2014
  ident: 10.1016/j.jocs.2021.101546_bib0275
  article-title: Principles of T2*-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging
  publication-title: J. Magnet. Reson. Imag.
– volume: 23
  start-page: 666
  year: 2009
  ident: 10.1016/j.jocs.2021.101546_bib0105
  article-title: Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labeling MR imaging at 3T
  publication-title: Brain injury
  doi: 10.1080/02699050903014899
SSID ssj0000388913
Score 2.2504077
Snippet •Reduce CBF quantification error by enhancing ASL image quality with a novel model.•For clinical use, sufficiency of simulated ASL data to train the model is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101546
SubjectTerms Arterial spin labeling
Cerebral blood flow
Deeplearning
Linear regression algorithm
Partial volume effect
Residual dense block
Title Deep-ASL enhancement technique in arterial spin labeling MRI – A novel approach for the error reduction of partial volume correction technique with linear regression algorithm
URI https://dx.doi.org/10.1016/j.jocs.2021.101546
Volume 58
WOSCitedRecordID wos000820278700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1877-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388913
  issn: 1877-7503
  databaseCode: AIEXJ
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2FFCFeEC0gyk3zwAPIMnJ8ya4fIyiiXCpEg9Q3a21vmkSpEzkhKm_8A1_Cp_ALfAkze7HTFipA4sVy1tmLfI5nxuOZWcYekw4MUpH4oj9SfhyVpS_jIvCTVJSqSPNURrnebIIfHIijo_R9p_Pd5cKsZ7yqxOlpuvivUGMbgk2ps38BdzMoNuA5go5HhB2PfwT8C6UW_uDwraeqMUGqv_a3pVonlafDOHWiyAJ_IQ1MTvq7D_uei32IUGBU87WaNUXHm3hEVdd4VlPJV2dtLmgZOJ4RdV5BO36Yi-282uFLNq2kzscm_BbXMjue13jp5DdWcqF3nXAeS6uvG5Zq3-34c9WGG2lh93E5liVqfG9w0qodihEyIZxLudFserxRS7mWpTzjBcEX6OBMRMnF9BwtzQXnPn2oNcpus81KeKsCTPX4C9rEODamz6bzgiq7hz1qSuJzpbu1MXBI49JUIdW0xXf9K2wr5Mj4Ltsa7O8dvW4cf1R-J9XbdjfLs8lcJu7w_GS_Npg2jKDhTXbD4gIDw7pt1lHVDrvmkid22LZVFUt4YuuZP73FvjlGwgYjoWEGTCpwjARiJDhGAjISfnz5CgPQXATHRUAuAnIRNBeh4SLMR2C5COaeQ8vFjRmJi2C4CC0XoeHibTZ8uTd8_sq3O4X4RRQEKz9UYYF2dpGHPEykIhs1klGM4iaPhYyEQqM04VHMVVgKXlIJYBX1emmecxmgtLrDutW8UncZ4CXFc0WiKo1lP5F9kXPeKwJV9sWIh7us59DICltFnzZzmWUuXHKaEYIZIZgZBHeZ1_RZmBoyl_47cSBn9qky1m2GtLyk371_7HefXW8fqAesu6o_qYfsarFeTZb1I8ven0lI3EQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-ASL+enhancement+technique+in+arterial+spin+labeling+MRI+%E2%80%93+A+novel+approach+for+the+error+reduction+of+partial+volume+correction+technique+with+linear+regression+algorithm&rft.jtitle=Journal+of+computational+science&rft.au=A%2C+Shyna&rft.au=C.%2C+Ushadevi+Amma&rft.au=John%2C+Ansamma&rft.au=C.%2C+Kesavadas&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=1877-7503&rft.eissn=1877-7511&rft.volume=58&rft_id=info:doi/10.1016%2Fj.jocs.2021.101546&rft.externalDocID=S1877750321002027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon