Multi-agent deep reinforcement learning algorithm with self-adaption division strategy for VNF-SC deployment in SDN/NFV-Enabled Networks

Network function virtualization can decouple the traditional network function from the dedicated hardware, abstracts the software-based virtual network function from the specialized network equipment, and promotes the fundamental transformation of network service deployment mode. However, the deploy...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 138; s. 110189
Hlavní autoři: Xuan, Hejun, Zhou, Yi, Zhao, Xuelin, Liu, Zhenghui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.05.2023
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Network function virtualization can decouple the traditional network function from the dedicated hardware, abstracts the software-based virtual network function from the specialized network equipment, and promotes the fundamental transformation of network service deployment mode. However, the deployment of virtual network function (VNF) service chain is an important and crucial problem and key technology faced and must be rescued. In this paper, the problem of VNF service chain deployment in SDN/NFV-Enabled Networks is investigated. The existing solution strategies based on optimization methods (dynamic programming, linear programming, etc.) and heuristic methods (genetic algorithm, particle swarm optimization, etc.) are only suitable for operation deployment in the case of predictable operations, and it is difficult to meet the real-time support operation scheduling requirements in high dynamic combat scenarios. A new real-time algorithm for VNF service chain deployment based on multi-agent deep reinforcement learning with self-adaption division strategy (MDRL-SaDS) to minimize energy consumption in a period of time is proposed. In proposed algorithm, an oriented self-adaptive strategy to determination the number of agents and the optimal division method of VNF service chain for the markov process modeling is designed. Constructing a new neural network model and design a training strategy of joint supervised and unsupervised learning. The global and long-term benefits are used to optimize the scheduling process, and the decision-making framework of offline learning and online deployment is used to solve the VNF service chain deployment problem. Finally, experimental results indicate that the MDRL-SaDS has more advantages and has higher convergence speed, average reward value and stability than compared algorithms, while decreasing the energy consumption in a period of time. •An optimization model with the goal of minimizing energy consumption is formulated to determine a VNF service chain strategy.•A new real-time algorithm for VNF service chain deployment problem based on multi-agent deep reinforcement learning with self-adaption division strategy (MDRL-SaDS) is proposed.•To determine the optimal number of agents, a clustering method with a new weighted distance calculation is investigated.
AbstractList Network function virtualization can decouple the traditional network function from the dedicated hardware, abstracts the software-based virtual network function from the specialized network equipment, and promotes the fundamental transformation of network service deployment mode. However, the deployment of virtual network function (VNF) service chain is an important and crucial problem and key technology faced and must be rescued. In this paper, the problem of VNF service chain deployment in SDN/NFV-Enabled Networks is investigated. The existing solution strategies based on optimization methods (dynamic programming, linear programming, etc.) and heuristic methods (genetic algorithm, particle swarm optimization, etc.) are only suitable for operation deployment in the case of predictable operations, and it is difficult to meet the real-time support operation scheduling requirements in high dynamic combat scenarios. A new real-time algorithm for VNF service chain deployment based on multi-agent deep reinforcement learning with self-adaption division strategy (MDRL-SaDS) to minimize energy consumption in a period of time is proposed. In proposed algorithm, an oriented self-adaptive strategy to determination the number of agents and the optimal division method of VNF service chain for the markov process modeling is designed. Constructing a new neural network model and design a training strategy of joint supervised and unsupervised learning. The global and long-term benefits are used to optimize the scheduling process, and the decision-making framework of offline learning and online deployment is used to solve the VNF service chain deployment problem. Finally, experimental results indicate that the MDRL-SaDS has more advantages and has higher convergence speed, average reward value and stability than compared algorithms, while decreasing the energy consumption in a period of time. •An optimization model with the goal of minimizing energy consumption is formulated to determine a VNF service chain strategy.•A new real-time algorithm for VNF service chain deployment problem based on multi-agent deep reinforcement learning with self-adaption division strategy (MDRL-SaDS) is proposed.•To determine the optimal number of agents, a clustering method with a new weighted distance calculation is investigated.
ArticleNumber 110189
Author Xuan, Hejun
Zhou, Yi
Zhao, Xuelin
Liu, Zhenghui
Author_xml – sequence: 1
  givenname: Hejun
  surname: Xuan
  fullname: Xuan, Hejun
  email: xuanhejun0896@xynu.edu.cn
  organization: School of Computer and Information Technology, Xinyang Normal University, Henan Xinyang, 464000, China
– sequence: 2
  givenname: Yi
  surname: Zhou
  fullname: Zhou, Yi
  organization: School of Artificial Intelligence, Henan University, Henan Zhengzhou, 450000, China
– sequence: 3
  givenname: Xuelin
  surname: Zhao
  fullname: Zhao, Xuelin
  organization: School of Computer and Information Technology, Xinyang Normal University, Henan Xinyang, 464000, China
– sequence: 4
  givenname: Zhenghui
  surname: Liu
  fullname: Liu, Zhenghui
  organization: School of Computer and Information Technology, Xinyang Normal University, Henan Xinyang, 464000, China
BookMark eNp9kMFOGzEQhi1EpQLtC_TkF3DwepONV-KCAoFKND3QcrXG9jg4bOzINqC8AY-Nt-HUA5eZ0UjfL_3fKTkOMSAhPxo-aXjTnW8mkKOZCC7aSVM_sj8iJ42cC9Z3sjmu96yTbNpPu6_kNOcNr1Av5Al5-_U8FM9gjaFQi7ijCX1wMRncjq8BIQUf1hSGdUy-PG7pa5004-AYWNgVHwO1_sXn8cglQcH1ntYE-rBasvtFTd0Ncf8vzQd6f7U6Xy0f2HUAPaClKyyvMT3lb-SLgyHj9499Rv4ur_8sbtnd75ufi8s7ZlrOCxPGug6F1qJt5WzuQPYcpNZ9Zy00BiTMgGs-nRnXVgvYCau101rO-87hlLdnRBxyTYo5J3Rql_wW0l41XI0u1UaNLtXoUh1cVkj-BxlfYKxe-_rhc_TigGIt9eIxqWw8BoPWJzRF2eg_w98BgvaVJw
CitedBy_id crossref_primary_10_1109_TWC_2024_3464639
crossref_primary_10_1109_TMC_2023_3301506
crossref_primary_10_1016_j_jocs_2024_102399
crossref_primary_10_1109_COMST_2024_3442149
Cites_doi 10.1109/MWC.2016.1600317WC
10.1109/TPDS.2018.2880992
10.1109/TNSM.2016.2569020
10.1109/TSC.2018.2849712
10.1016/j.comnet.2017.01.008
10.1016/j.media.2017.07.005
10.1287/moor.27.4.819.297
10.1016/j.future.2021.02.011
10.1109/JSAC.2020.2986592
10.1016/j.asoc.2018.01.028
10.1016/j.comnet.2015.09.015
10.1016/j.jnca.2021.103208
10.1109/TVT.2019.2952549
10.1109/TC.2017.2709742
10.1109/CC.2018.8387988
10.1109/JSAC.2017.2760158
10.1016/j.asoc.2018.12.037
10.1109/MNET.2018.1700394
10.1109/JSAC.2021.3087227
10.1109/TPDS.2018.2802518
10.1109/TNSM.2016.2598068
10.1109/TCC.2017.2780165
10.1109/COMST.2016.2586999
10.1016/j.asoc.2021.107798
10.1016/j.sysarc.2009.09.001
10.1109/TCC.2017.2721401
10.1016/j.jnca.2016.12.019
10.1109/TNET.2019.2959588
10.1109/TC.2020.2967661
10.1109/TMC.2013.39
10.1016/j.jnca.2016.09.001
10.1109/COMST.2017.2707140
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2023.110189
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2023_110189
S1568494623002077
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-2cdf6e2bb233857fa890a8bb96dda1ca8a5a0b045cf3189e62dbbfbb8796fe403
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001027291500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:03:00 EST 2025
Tue Nov 18 20:54:00 EST 2025
Fri Feb 23 02:36:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep reinforcement learning
SDN/NFV-Enabled Networks
Network virtualization
VNF-SC
Self-adaption division strategy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-2cdf6e2bb233857fa890a8bb96dda1ca8a5a0b045cf3189e62dbbfbb8796fe403
ParticipantIDs crossref_primary_10_1016_j_asoc_2023_110189
crossref_citationtrail_10_1016_j_asoc_2023_110189
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110189
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mangat, Kaur, Saluja (b35) 2020; 38
Khatiria, Mirjalilya, Luo (b34) 2022; 203
Khebbache, Hadji, Zeghlache (b1) 2017; 114
Pei, Hong, Xue, Li (b38) 2019; 30
Bari, Chowdhury, Duarte (b7) 2016; 13
Karakus, Durresi (b10) 2017; 80
Kato, Fadlullah, Mao, Tang, Akashi, Inoue, Mizutani (b30) 2017; 43
Chao, Jw, Xw (b15) 2022; 120
Fadlullah, Tang, Mao, Kato, Akashi, Inoue, Mizutani (b17) 2017; 19
Litjens, Kooi, Bejnordi, Setio, Sánchez (b19) 2017; 42
Huang, Guo, Wu, Li (b23) 2017; 7
Ramaswamy, Wolf (b39) 2009; 55
Do, Gregory, Li (b16) 2021; 189
Bhamare, Jain, Samaka, Erbad (b29) 2016; 75
Nouar, Yangui, Faci, Drira, Tazi (b5) 2021; 195
Zahedi, Jamali, Bayat (b6) 2022
Huang, Zeng, Zhao, Min, Hu (b27) 2021; 39
Wang, Xing, Zhan, Luo, Dai, Iqbal (b32) 2021; 112
Huang, Yang, Wang, Ding, Sari, Adachi (b18) 2020; 69
Mechtri, Ghribi, Zeghlache (b21) 2016; 13
Bernstein, Givan, Immerman, Zilberstein (b36) 2002; 27
Cheng, Chen, Hu, Wang, Lan (b25) 2015; 92
Mercian, Mcgarry, Reisslein, Kellerer (b9) 2016; 18
Pei, Hong, Xue, Li (b26) 2018; 14
Yang, Yeung (b13) 2020; 28
Pajarinen, Hottinen, Peltonen (b37) 2014; 13
Haque, Saha (b11) 2021; 193
Li, Zhou, Feng, Li, Xu (b28) 2018; 15
Yu, Xue, Xiang (b22) 2017; 35
Huang, Li, Guo, Liang, Wang (b24) 2017; 8
Khan, Hussain, Hussain (b12) 2021; 119
Pei, Hong, Xue, Li, Wu (b40) 2020; 38
Shokouhifar (b4) 2021; 107
Li, Ota, Dong (b2) 2018; 33
Zou, Tang, Ni, Liu, Wang (b3) 2018; 66
Li, Hong, Xue, Pei (b14) 2018; 29
Kato, Fadlullah, Mao, Tang, Akashi, Inoue, Mizutani (b20) 2016; 24
Mao, Fadlullah, Tang, Kato, Osamu (b31) 2017; 66
Bao, Yuan, Zhou, Zomaya (b8) 2020; 69
Xing, Zhou, Wang, Luo, Dai, Li, Yang (b33) 2019; 76
Bernstein (10.1016/j.asoc.2023.110189_b36) 2002; 27
Fadlullah (10.1016/j.asoc.2023.110189_b17) 2017; 19
Pajarinen (10.1016/j.asoc.2023.110189_b37) 2014; 13
Chao (10.1016/j.asoc.2023.110189_b15) 2022; 120
Li (10.1016/j.asoc.2023.110189_b28) 2018; 15
Khan (10.1016/j.asoc.2023.110189_b12) 2021; 119
Zahedi (10.1016/j.asoc.2023.110189_b6) 2022
Ramaswamy (10.1016/j.asoc.2023.110189_b39) 2009; 55
Huang (10.1016/j.asoc.2023.110189_b23) 2017; 7
Li (10.1016/j.asoc.2023.110189_b14) 2018; 29
Mangat (10.1016/j.asoc.2023.110189_b35) 2020; 38
Khatiria (10.1016/j.asoc.2023.110189_b34) 2022; 203
Wang (10.1016/j.asoc.2023.110189_b32) 2021; 112
Do (10.1016/j.asoc.2023.110189_b16) 2021; 189
Pei (10.1016/j.asoc.2023.110189_b26) 2018; 14
Xing (10.1016/j.asoc.2023.110189_b33) 2019; 76
Huang (10.1016/j.asoc.2023.110189_b18) 2020; 69
Huang (10.1016/j.asoc.2023.110189_b24) 2017; 8
Bari (10.1016/j.asoc.2023.110189_b7) 2016; 13
Shokouhifar (10.1016/j.asoc.2023.110189_b4) 2021; 107
Nouar (10.1016/j.asoc.2023.110189_b5) 2021; 195
Kato (10.1016/j.asoc.2023.110189_b30) 2017; 43
Litjens (10.1016/j.asoc.2023.110189_b19) 2017; 42
Li (10.1016/j.asoc.2023.110189_b2) 2018; 33
Yang (10.1016/j.asoc.2023.110189_b13) 2020; 28
Pei (10.1016/j.asoc.2023.110189_b38) 2019; 30
Mechtri (10.1016/j.asoc.2023.110189_b21) 2016; 13
Pei (10.1016/j.asoc.2023.110189_b40) 2020; 38
Khebbache (10.1016/j.asoc.2023.110189_b1) 2017; 114
Bhamare (10.1016/j.asoc.2023.110189_b29) 2016; 75
Mao (10.1016/j.asoc.2023.110189_b31) 2017; 66
Yu (10.1016/j.asoc.2023.110189_b22) 2017; 35
Zou (10.1016/j.asoc.2023.110189_b3) 2018; 66
Huang (10.1016/j.asoc.2023.110189_b27) 2021; 39
Haque (10.1016/j.asoc.2023.110189_b11) 2021; 193
Karakus (10.1016/j.asoc.2023.110189_b10) 2017; 80
Kato (10.1016/j.asoc.2023.110189_b20) 2016; 24
Mercian (10.1016/j.asoc.2023.110189_b9) 2016; 18
Bao (10.1016/j.asoc.2023.110189_b8) 2020; 69
Cheng (10.1016/j.asoc.2023.110189_b25) 2015; 92
References_xml – volume: 27
  start-page: 819
  year: 2002
  end-page: 840
  ident: b36
  article-title: The complexity of decentralized control of Markov decision processes
  publication-title: Math. Oper. Res.
– volume: 13
  start-page: 533
  year: 2016
  end-page: 546
  ident: b21
  article-title: A scalable algorithm for the placement of service function chains
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: 193
  year: 2021
  ident: b11
  article-title: SoftIoT: A resource-aware SDN/NFV-based IoT network
  publication-title: J. Netw. Comput. Appl.
– volume: 92
  start-page: 396
  year: 2015
  end-page: 407
  ident: b25
  article-title: Enabling network function combination via service chain instantiation
  publication-title: Comput. Netw.
– volume: 24
  start-page: 146
  year: 2016
  end-page: 153
  ident: b20
  article-title: The deep learning vision for heterogeneous network traffic control: Proposal, challenges, and future perspective
  publication-title: IEEE Wirel. Commun.
– volume: 28
  start-page: 312
  year: 2020
  end-page: 321
  ident: b13
  article-title: SDN candidate selection in hybrid IP/SDN networks for single link failure protection
  publication-title: IEEE/ACM Trans. Netw.
– volume: 35
  start-page: 2522
  year: 2017
  end-page: 2531
  ident: b22
  article-title: Qos-aware and reliable traffic steering for service function chaining in mobile networks
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 14
  start-page: 985
  year: 2018
  end-page: 997
  ident: b26
  article-title: Resource aware routing for service function chains in SDN and NFV-enabled network
  publication-title: IEEE Trans. Serv. Comput.
– volume: 30
  start-page: 2179
  year: 2019
  end-page: 2192
  ident: b38
  article-title: Efficiently embedding service function chains with dynamic virtual network function placement in geo-distributed cloud system
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 7
  start-page: 1082
  year: 2017
  end-page: 1094
  ident: b23
  article-title: Service chaining for hybrid network function
  publication-title: IEEE Trans. Cloud Comput.
– volume: 69
  start-page: 800
  year: 2020
  end-page: 811
  ident: b8
  article-title: Prune and plant: Efficient placement and parallelism of virtual network functions
  publication-title: IEEE Trans. Comput.
– volume: 15
  start-page: 77
  year: 2018
  end-page: 91
  ident: b28
  article-title: Horizontal-based orchestration for multi-domain SFC in SDN/NFV-enabled satellite/terrestrial networks
  publication-title: China Commun.
– volume: 66
  start-page: 1946
  year: 2017
  end-page: 1960
  ident: b31
  article-title: Routing or computing? The paradigm shift towards intelligent computer network packet transmission based on deep learning
  publication-title: IEEE Trans. Comput.
– volume: 38
  start-page: 1102
  year: 2020
  end-page: 1117
  ident: b40
  article-title: Two-phase virtual network function selection and chaining algorithm based on deep learning in SDN/NFV-enabled networks
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 33
  start-page: 136
  year: 2018
  end-page: 141
  ident: b2
  article-title: DeepNFV: A light-weight framework for intelligent edge network functions virtualization
  publication-title: IEEE Netw.
– volume: 114
  start-page: 95
  year: 2017
  end-page: 110
  ident: b1
  article-title: Virtualized network functions chaining and routing algorithms
  publication-title: Comput. Netw.
– volume: 203
  year: 2022
  ident: b34
  article-title: Balanced resource allocation for VNF service chain provisioning in inter-datacenter elastic optical networks
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 2738
  year: 2016
  end-page: 2786
  ident: b9
  article-title: Software defined optical networks (SDONs): A comprehensive survey
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 39
  start-page: 2558
  year: 2021
  end-page: 2571
  ident: b27
  article-title: Scalable service function chain orchestration in NFV-enabled networks: A federated reinforcement learning approach
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 13
  start-page: 725
  year: 2016
  end-page: 739
  ident: b7
  article-title: Orchestrating virtualized network functions
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: 8
  start-page: 585
  year: 2017
  end-page: 596
  ident: b24
  article-title: Near-optimal deployment of service chains by exploiting correlations between network functions
  publication-title: IEEE Trans. Cloud Comput.
– volume: 107
  year: 2021
  ident: b4
  article-title: FH-ACO: Fuzzy heuristic-based ant colony optimization for joint virtual network function placement and routing
  publication-title: Appl. Soft Comput.
– volume: 29
  start-page: 1664
  year: 2018
  end-page: 1677
  ident: b14
  article-title: Virtual network function placement considering resource optimization and SFC requests in cloud datacenter
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 69
  start-page: 1117
  year: 2020
  end-page: 1121
  ident: b18
  article-title: Deep reinforcement learning for UAV navigation through massive MIMO technique
  publication-title: IEEE Trans. Veh. Technol.
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: b19
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– volume: 75
  start-page: 138
  year: 2016
  end-page: 155
  ident: b29
  article-title: A survey on service function chaining
  publication-title: J. Netw. Comput. Appl.
– volume: 195
  year: 2021
  ident: b5
  article-title: A semantic virtualized network functions description and discovery model
  publication-title: Comput. Netw.
– volume: 120
  year: 2022
  ident: b15
  article-title: Towards delay-optimized and resource-efficient network function dynamic deployment for VNF service chaining
  publication-title: Appl. Soft Comput.
– volume: 38
  year: 2020
  ident: b35
  article-title: A comprehensive survey of service function chain provisioning approaches in SDN and NFV architecture
  publication-title: Comp. Sci. Rev.
– year: 2022
  ident: b6
  article-title: EmcFIS: Evolutionary multi-criteria fuzzy inference system for virtual network function placement and routing
  publication-title: Appl. Soft Comput.
– volume: 76
  start-page: 575
  year: 2019
  end-page: 594
  ident: b33
  article-title: An integer encoding grey wolf optimizer for virtual network function placement
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 2432
  year: 2017
  end-page: 2455
  ident: b17
  article-title: State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 43
  start-page: 146
  year: 2017
  end-page: 153
  ident: b30
  article-title: The deep learning vision for heterogeneous network traffic control: Proposal, challenges, and future perspective
  publication-title: IEEE Wirel. Commun.
– volume: 13
  start-page: 866
  year: 2014
  end-page: 879
  ident: b37
  article-title: Optimizing spatial and temporal reuse in wireless networks by decentralized partially observable Markov decision processes
  publication-title: IEEE Trans. Mob. Comput.
– volume: 55
  start-page: 421
  year: 2009
  end-page: 433
  ident: b39
  article-title: Analysis of network processing workloads
  publication-title: J. Syst. Archit.
– volume: 66
  start-page: 220
  year: 2018
  end-page: 231
  ident: b3
  article-title: Resource multi-objective mapping algorithm based on virtualized network functions: RMMA
  publication-title: Appl. Soft Comput.
– volume: 112
  year: 2021
  ident: b32
  article-title: A two-stage approach for multicast-oriented virtual network function placement
  publication-title: Appl. Soft Comput.
– volume: 189
  year: 2021
  ident: b16
  article-title: SDN-based wireless mobile backhaul architecture: Review and challenges
  publication-title: J. Netw. Comput. Appl.
– volume: 80
  start-page: 200
  year: 2017
  end-page: 218
  ident: b10
  article-title: Quality of service (QoS) in software defined networking (SDN): A survey
  publication-title: J. Netw. Comput. Appl.
– volume: 119
  start-page: 176
  year: 2021
  end-page: 187
  ident: b12
  article-title: Guaranteeing end-to-end QoS provisioning in SOA based SDN architecture: A survey and open issues
  publication-title: Future Gener. Comput. Syst.
– volume: 107
  issue: 2
  year: 2021
  ident: 10.1016/j.asoc.2023.110189_b4
  article-title: FH-ACO: Fuzzy heuristic-based ant colony optimization for joint virtual network function placement and routing
  publication-title: Appl. Soft Comput.
– volume: 43
  start-page: 146
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2023.110189_b30
  article-title: The deep learning vision for heterogeneous network traffic control: Proposal, challenges, and future perspective
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2016.1600317WC
– volume: 30
  start-page: 2179
  issue: 99
  year: 2019
  ident: 10.1016/j.asoc.2023.110189_b38
  article-title: Efficiently embedding service function chains with dynamic virtual network function placement in geo-distributed cloud system
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2018.2880992
– volume: 13
  start-page: 725
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2023.110189_b7
  article-title: Orchestrating virtualized network functions
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2016.2569020
– volume: 14
  start-page: 985
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2023.110189_b26
  article-title: Resource aware routing for service function chains in SDN and NFV-enabled network
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2018.2849712
– volume: 203
  year: 2022
  ident: 10.1016/j.asoc.2023.110189_b34
  article-title: Balanced resource allocation for VNF service chain provisioning in inter-datacenter elastic optical networks
  publication-title: Appl. Soft Comput.
– volume: 114
  start-page: 95
  year: 2017
  ident: 10.1016/j.asoc.2023.110189_b1
  article-title: Virtualized network functions chaining and routing algorithms
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2017.01.008
– volume: 42
  start-page: 60
  issue: 9
  year: 2017
  ident: 10.1016/j.asoc.2023.110189_b19
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 27
  start-page: 819
  issue: 4
  year: 2002
  ident: 10.1016/j.asoc.2023.110189_b36
  article-title: The complexity of decentralized control of Markov decision processes
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.27.4.819.297
– volume: 119
  start-page: 176
  year: 2021
  ident: 10.1016/j.asoc.2023.110189_b12
  article-title: Guaranteeing end-to-end QoS provisioning in SOA based SDN architecture: A survey and open issues
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.02.011
– volume: 195
  issue: 5
  year: 2021
  ident: 10.1016/j.asoc.2023.110189_b5
  article-title: A semantic virtualized network functions description and discovery model
  publication-title: Comput. Netw.
– volume: 38
  start-page: 1102
  issue: 6
  year: 2020
  ident: 10.1016/j.asoc.2023.110189_b40
  article-title: Two-phase virtual network function selection and chaining algorithm based on deep learning in SDN/NFV-enabled networks
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.2986592
– volume: 66
  start-page: 220
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2023.110189_b3
  article-title: Resource multi-objective mapping algorithm based on virtualized network functions: RMMA
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.01.028
– issue: 117
  year: 2022
  ident: 10.1016/j.asoc.2023.110189_b6
  article-title: EmcFIS: Evolutionary multi-criteria fuzzy inference system for virtual network function placement and routing
  publication-title: Appl. Soft Comput.
– volume: 189
  issue: 3
  year: 2021
  ident: 10.1016/j.asoc.2023.110189_b16
  article-title: SDN-based wireless mobile backhaul architecture: Review and challenges
  publication-title: J. Netw. Comput. Appl.
– volume: 92
  start-page: 396
  issue: 9
  year: 2015
  ident: 10.1016/j.asoc.2023.110189_b25
  article-title: Enabling network function combination via service chain instantiation
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2015.09.015
– volume: 120
  year: 2022
  ident: 10.1016/j.asoc.2023.110189_b15
  article-title: Towards delay-optimized and resource-efficient network function dynamic deployment for VNF service chaining
  publication-title: Appl. Soft Comput.
– volume: 38
  year: 2020
  ident: 10.1016/j.asoc.2023.110189_b35
  article-title: A comprehensive survey of service function chain provisioning approaches in SDN and NFV architecture
  publication-title: Comp. Sci. Rev.
– volume: 193
  year: 2021
  ident: 10.1016/j.asoc.2023.110189_b11
  article-title: SoftIoT: A resource-aware SDN/NFV-based IoT network
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2021.103208
– volume: 69
  start-page: 1117
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2023.110189_b18
  article-title: Deep reinforcement learning for UAV navigation through massive MIMO technique
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2952549
– volume: 24
  start-page: 146
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2023.110189_b20
  article-title: The deep learning vision for heterogeneous network traffic control: Proposal, challenges, and future perspective
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2016.1600317WC
– volume: 66
  start-page: 1946
  issue: 11
  year: 2017
  ident: 10.1016/j.asoc.2023.110189_b31
  article-title: Routing or computing? The paradigm shift towards intelligent computer network packet transmission based on deep learning
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2017.2709742
– volume: 15
  start-page: 77
  issue: 005
  year: 2018
  ident: 10.1016/j.asoc.2023.110189_b28
  article-title: Horizontal-based orchestration for multi-domain SFC in SDN/NFV-enabled satellite/terrestrial networks
  publication-title: China Commun.
  doi: 10.1109/CC.2018.8387988
– volume: 35
  start-page: 2522
  issue: 11
  year: 2017
  ident: 10.1016/j.asoc.2023.110189_b22
  article-title: Qos-aware and reliable traffic steering for service function chaining in mobile networks
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2017.2760158
– volume: 76
  start-page: 575
  year: 2019
  ident: 10.1016/j.asoc.2023.110189_b33
  article-title: An integer encoding grey wolf optimizer for virtual network function placement
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.12.037
– volume: 33
  start-page: 136
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2023.110189_b2
  article-title: DeepNFV: A light-weight framework for intelligent edge network functions virtualization
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1700394
– volume: 39
  start-page: 2558
  issue: 8
  year: 2021
  ident: 10.1016/j.asoc.2023.110189_b27
  article-title: Scalable service function chain orchestration in NFV-enabled networks: A federated reinforcement learning approach
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2021.3087227
– volume: 29
  start-page: 1664
  issue: 7
  year: 2018
  ident: 10.1016/j.asoc.2023.110189_b14
  article-title: Virtual network function placement considering resource optimization and SFC requests in cloud datacenter
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2018.2802518
– volume: 13
  start-page: 533
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2023.110189_b21
  article-title: A scalable algorithm for the placement of service function chains
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2016.2598068
– volume: 8
  start-page: 585
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2023.110189_b24
  article-title: Near-optimal deployment of service chains by exploiting correlations between network functions
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2017.2780165
– volume: 18
  start-page: 2738
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2023.110189_b9
  article-title: Software defined optical networks (SDONs): A comprehensive survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2016.2586999
– volume: 112
  year: 2021
  ident: 10.1016/j.asoc.2023.110189_b32
  article-title: A two-stage approach for multicast-oriented virtual network function placement
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107798
– volume: 55
  start-page: 421
  issue: 10
  year: 2009
  ident: 10.1016/j.asoc.2023.110189_b39
  article-title: Analysis of network processing workloads
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2009.09.001
– volume: 7
  start-page: 1082
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2023.110189_b23
  article-title: Service chaining for hybrid network function
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2017.2721401
– volume: 80
  start-page: 200
  year: 2017
  ident: 10.1016/j.asoc.2023.110189_b10
  article-title: Quality of service (QoS) in software defined networking (SDN): A survey
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2016.12.019
– volume: 28
  start-page: 312
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2023.110189_b13
  article-title: SDN candidate selection in hybrid IP/SDN networks for single link failure protection
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2019.2959588
– volume: 69
  start-page: 800
  issue: 6
  year: 2020
  ident: 10.1016/j.asoc.2023.110189_b8
  article-title: Prune and plant: Efficient placement and parallelism of virtual network functions
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2020.2967661
– volume: 13
  start-page: 866
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2023.110189_b37
  article-title: Optimizing spatial and temporal reuse in wireless networks by decentralized partially observable Markov decision processes
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2013.39
– volume: 75
  start-page: 138
  year: 2016
  ident: 10.1016/j.asoc.2023.110189_b29
  article-title: A survey on service function chaining
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2016.09.001
– volume: 19
  start-page: 2432
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2023.110189_b17
  article-title: State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2707140
SSID ssj0016928
Score 2.4164343
Snippet Network function virtualization can decouple the traditional network function from the dedicated hardware, abstracts the software-based virtual network...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110189
SubjectTerms Deep reinforcement learning
Network virtualization
SDN/NFV-Enabled Networks
Self-adaption division strategy
VNF-SC
Title Multi-agent deep reinforcement learning algorithm with self-adaption division strategy for VNF-SC deployment in SDN/NFV-Enabled Networks
URI https://dx.doi.org/10.1016/j.asoc.2023.110189
Volume 138
WOSCitedRecordID wos001027291500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdKxwMv_EcbA-QH3iqPJmkS-3EarQZCFdLGVO0lsmOnTRXSqk2m8Q32AfjAnO04yzY0ARIvUWXFdpT79e58ud8dQu9lxn0qeEbSULcwk8ojjEYeSSnzVQw2LfK4aTYRT6d0NmNfe72fjgtzUcRlSS8v2fq_ihrGQNiaOvsX4m4XhQH4DUKHK4gdrn8keEOpJVxTpgZSqfVgo0x11NQEAl2biPmAF_PVJq8W35s0dVVkhEtuVYhmaek42mBrq9fatM6z6YScHOns2WL1w6yWg3b4OIWHnU7OyNjwsKQmEet0r23X8XXe7hbUvsljrytnNEHcs9rGYY_Vsm7Rer5Y1cZC5J3otonszmrNonejX3Jz2_lClfNFnXfjGH4na9AG1-4QbKw-jigZsSZKqewYjX3CItvppVXitkbMHYNgYxPLAw5YP9Dbat6DZ7sW3Sq0faI303vBqQyc6Dh-gHb8OGS0j3YOP41nn9uvUxEzPXvbh2vIWDZv8PZOv3d4Ok7M6VP0uDl94EOLmmeop8rn6Inr7IEbRf8CXXVAhDWI8A0QYQci3IIIaxDhGyDCDkTYgQjDCtiCCF-DCOclBhB96EAIOwi9RN8m49OjY9L07CApvLWK-KnMIuUL4QcBDeOMUzbkVAgWScm9lFMe8qGAc0SagTVhKvKlEJkQNGZRpkbD4BXql6tS7SIMvmng8YCKKPZGIedUwtkYdAi49KBf5GgPee7FJmlT0F73VSkSl7m4TLQwEi2MxApjDw3aOWtbzuXeu0Mnr6RxSK2jmQC87pn3-h_n7aNH1_-MN6hfbWr1Fj1ML6p8u3nXoPAXitSzYw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-agent+deep+reinforcement+learning+algorithm+with+self-adaption+division+strategy+for+VNF-SC+deployment+in+SDN%2FNFV-Enabled+Networks&rft.jtitle=Applied+soft+computing&rft.au=Xuan%2C+Hejun&rft.au=Zhou%2C+Yi&rft.au=Zhao%2C+Xuelin&rft.au=Liu%2C+Zhenghui&rft.date=2023-05-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=138&rft_id=info:doi/10.1016%2Fj.asoc.2023.110189&rft.externalDocID=S1568494623002077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon