Multimodal medical image fusion using PCNN optimized by the QPSO algorithm

[Display omitted] This paper proposed a method to fuse multimodal medical images using the adaptive pulse-coupled neural networks (PCNN), which was optimized by the quantum-behaved particle swarm optimization (QPSO) algorithm. In this fusion model, two source images, A and B, were first processed by...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 46; pp. 588 - 595
Main Authors: Xu, Xinzheng, Shan, Dong, Wang, Guanying, Jiang, Xiangying
Format: Journal Article
Language:English
Published: Elsevier B.V 01.09.2016
Subjects:
ISSN:1568-4946, 1872-9681
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] This paper proposed a method to fuse multimodal medical images using the adaptive pulse-coupled neural networks (PCNN), which was optimized by the quantum-behaved particle swarm optimization (QPSO) algorithm. In this fusion model, two source images, A and B, were first processed by the QPSO-PCNN model, respectively. Through the QPSO algorithm, the PCNN model could find the optimal parameters for the source images, A and B. To improve the efficiency and quality of QPSO, three evaluation criteria, image entropy (EN), average gradient (AG) and spatial frequency (SF) were selected as the hybrid fitness function. Then, the output of the fusion model was obtained by the judgment factor according to the firing maps of two source images, which maybe was the pixel value of the image A, or that of the image B, or the tradeoff value of them. Based on the output of the fusion model, the fused image was gained. Finally, we used five pairs of multimodal medical images as experimental data to test and verify the proposed method. Furthermore, the mutual information (MI), structural similarity (SSIM), image entropy (EN), etc. were used to judge the performances of different methods. The experimental results illustrated that the proposed method exhibited better performances.
AbstractList [Display omitted] This paper proposed a method to fuse multimodal medical images using the adaptive pulse-coupled neural networks (PCNN), which was optimized by the quantum-behaved particle swarm optimization (QPSO) algorithm. In this fusion model, two source images, A and B, were first processed by the QPSO-PCNN model, respectively. Through the QPSO algorithm, the PCNN model could find the optimal parameters for the source images, A and B. To improve the efficiency and quality of QPSO, three evaluation criteria, image entropy (EN), average gradient (AG) and spatial frequency (SF) were selected as the hybrid fitness function. Then, the output of the fusion model was obtained by the judgment factor according to the firing maps of two source images, which maybe was the pixel value of the image A, or that of the image B, or the tradeoff value of them. Based on the output of the fusion model, the fused image was gained. Finally, we used five pairs of multimodal medical images as experimental data to test and verify the proposed method. Furthermore, the mutual information (MI), structural similarity (SSIM), image entropy (EN), etc. were used to judge the performances of different methods. The experimental results illustrated that the proposed method exhibited better performances.
Author Xu, Xinzheng
Shan, Dong
Wang, Guanying
Jiang, Xiangying
Author_xml – sequence: 1
  givenname: Xinzheng
  orcidid: 0000-0001-6973-799X
  surname: Xu
  fullname: Xu, Xinzheng
  email: xxzheng@cumt.edu.cn, xuxinzh@163.com
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 2
  givenname: Dong
  surname: Shan
  fullname: Shan, Dong
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 3
  givenname: Guanying
  surname: Wang
  fullname: Wang, Guanying
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 4
  givenname: Xiangying
  surname: Jiang
  fullname: Jiang, Xiangying
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
BookMark eNp9kM9OwzAMhyM0JMbgBTjlBVrctGtTiQua-KuxDQHnKE3cLVPXTEmGNJ6eTOPEYRfbh99n2d8lGfS2R0JuMkgzyMrbdSq9VSmLcwp5CoyfkWHGK5bUJc8GcR6XPCnqorwgl96vIQZrxofk9W3XBbOxWnZ0g9qo2M1GLpG2O29sT2Ptl3Qxmc2o3cak-UFNmz0NK6Tvi485ld3SOhNWmyty3srO4_VfH5Gvx4fPyXMynT-9TO6nicoBQsKakrOqlagV8lxLqAFBj6GSqlSc51C0bc6qpmoKWYBigJJhWXCmai110-Qjwo57lbPeO2zF1sWT3V5kIA42xFocbIiDDQG5iDYixP9BygQZ4ofBSdOdRu-OKManvg064ZXBXkVbDlUQ2ppT-C-G134F
CitedBy_id crossref_primary_10_1016_j_sigpro_2021_108108
crossref_primary_10_1016_j_sigpro_2018_08_002
crossref_primary_10_1049_iet_ipr_2017_0573
crossref_primary_10_1007_s00138_022_01322_w
crossref_primary_10_1007_s11220_022_00391_5
crossref_primary_10_1007_s11517_020_02209_6
crossref_primary_10_1109_JSEN_2018_2822712
crossref_primary_10_1109_TNNLS_2023_3293274
crossref_primary_10_1016_j_asoc_2016_11_033
crossref_primary_10_26634_jele_15_3_21732
crossref_primary_10_3390_app8101977
crossref_primary_10_1016_j_infrared_2017_01_012
crossref_primary_10_1016_j_eswa_2021_114576
crossref_primary_10_1109_ACCESS_2020_2990607
crossref_primary_10_1007_s12559_021_09958_y
crossref_primary_10_3390_electronics12122659
crossref_primary_10_1016_j_inffus_2021_06_007
crossref_primary_10_1109_ACCESS_2020_3047960
crossref_primary_10_1109_TCSVT_2020_2998696
crossref_primary_10_1109_ACCESS_2019_2924033
crossref_primary_10_3390_app11125524
crossref_primary_10_1109_TMECH_2024_3442782
crossref_primary_10_1007_s00500_017_2694_4
crossref_primary_10_1007_s10278_021_00554_y
crossref_primary_10_1109_TIM_2024_3522423
crossref_primary_10_1016_j_neucom_2018_05_028
crossref_primary_10_1016_j_bspc_2020_101885
crossref_primary_10_3390_rs16050889
crossref_primary_10_1016_j_cor_2022_105937
crossref_primary_10_1016_j_sigpro_2020_107921
crossref_primary_10_32604_cmc_2021_016131
crossref_primary_10_3390_fi9040061
crossref_primary_10_1109_ACCESS_2019_2908076
crossref_primary_10_1016_j_ins_2020_05_100
crossref_primary_10_1109_LSP_2020_2989054
crossref_primary_10_1155_2017_8407019
crossref_primary_10_1007_s10589_022_00362_2
crossref_primary_10_1016_j_apm_2021_03_059
crossref_primary_10_1016_j_bbe_2017_12_005
crossref_primary_10_3389_feart_2024_1493749
crossref_primary_10_1016_j_epsr_2021_107398
crossref_primary_10_1080_10106049_2022_2134464
crossref_primary_10_1016_j_infrared_2018_04_004
crossref_primary_10_1109_TIM_2018_2865046
crossref_primary_10_1109_TRPMS_2018_2890359
crossref_primary_10_1002_ima_22393
crossref_primary_10_1109_ACCESS_2018_2822688
crossref_primary_10_3390_en12122270
crossref_primary_10_1007_s10489_021_02282_w
crossref_primary_10_1007_s13369_020_05201_2
crossref_primary_10_1142_S0219467825500391
crossref_primary_10_1016_j_bspc_2019_101724
crossref_primary_10_1371_journal_pone_0286024
crossref_primary_10_1016_j_bspc_2022_103762
crossref_primary_10_1016_j_ijleo_2019_05_007
crossref_primary_10_1002_ima_22436
crossref_primary_10_1016_j_bspc_2017_01_003
crossref_primary_10_1088_1361_6501_aaa33a
crossref_primary_10_4018_IJCVIP_2018070102
crossref_primary_10_1007_s11042_020_08834_5
crossref_primary_10_1016_j_neucom_2018_09_018
crossref_primary_10_1007_s11042_018_6099_x
crossref_primary_10_1016_j_asoc_2022_109631
crossref_primary_10_1007_s11831_018_9253_8
crossref_primary_10_1063_5_0056983
crossref_primary_10_1080_10106049_2021_2009920
crossref_primary_10_3389_fnbot_2022_1050981
crossref_primary_10_1016_j_infrared_2018_06_002
crossref_primary_10_1080_08982112_2017_1322210
crossref_primary_10_1109_ACCESS_2018_2845855
crossref_primary_10_1515_revneuro_2025_0062
crossref_primary_10_1155_2022_3398810
crossref_primary_10_1016_j_asr_2018_08_006
crossref_primary_10_1016_j_eswa_2020_113592
crossref_primary_10_1016_j_ecoinf_2021_101426
crossref_primary_10_3390_app7040415
crossref_primary_10_1109_TIM_2022_3216403
crossref_primary_10_1080_09500340_2020_1718789
crossref_primary_10_1007_s11517_022_02697_8
crossref_primary_10_1016_j_bspc_2021_102536
crossref_primary_10_3233_JIFS_210430
crossref_primary_10_1016_j_bspc_2018_05_042
crossref_primary_10_1038_s41598_025_13862_y
crossref_primary_10_1016_j_imavis_2025_105581
crossref_primary_10_1049_iet_ipr_2017_0214
crossref_primary_10_1016_j_infrared_2018_04_017
Cites_doi 10.1109/CCDC.2008.4597791
10.4156/jdcta.vol6.issue20.54
10.1007/s11517-012-0943-3
10.4304/jcp.6.8.1546-1553
10.1109/TCOM.1983.1095851
10.1162/neco.1990.2.3.293
10.1002/tee.20684
10.1109/TIP.2003.819861
10.1016/S1361-8415(03)00015-X
10.3233/BME-130802
10.4103/0256-4602.64601
10.1016/j.inffus.2007.04.003
10.1016/0167-8655(89)90004-4
10.1016/j.patcog.2010.01.011
10.1016/j.compmedimag.2013.08.003
10.1179/1743131X12Y.0000000016
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2016.03.028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 595
ExternalDocumentID 10_1016_j_asoc_2016_03_028
S1568494616301570
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-2b6827faedce83da090e0d507ac6c88304ff327b7b4a40c20ea2e6482c9dadbb3
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377999900044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:05:29 EST 2025
Tue Nov 18 21:45:30 EST 2025
Fri Feb 23 02:24:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pulse-coupled neural networks
Multimodal medical image fusion
Mutual information
Quantum-behaved particle swarm optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-2b6827faedce83da090e0d507ac6c88304ff327b7b4a40c20ea2e6482c9dadbb3
ORCID 0000-0001-6973-799X
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_asoc_2016_03_028
crossref_citationtrail_10_1016_j_asoc_2016_03_028
elsevier_sciencedirect_doi_10_1016_j_asoc_2016_03_028
PublicationCentury 2000
PublicationDate September 2016
2016-09-00
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Zhao, Hao (bib0135) 2014; 24
Ma, Li, Wang (bib0095) 2006
Wang, Bovik, Sheikh (bib0140) 2004; 13
Wang, Cong (bib0060) 2008
Sun, Feng, Xu (bib0110) 2004
Zhao, Ding (bib0080) 2014; 10
Toet (bib0025) 1989; 9
Hage, Hamade (bib0065) 2013; 37
Xu, Ding, Shi, Zhu, Zhao (bib0070) 2012; 25
Burt, Adelson (bib0150) 1983; COM-31
He, Meng, Wang (bib0020) 2011
Behrenbruch, Marias, Armitage (bib0005) 2003; 7
Zhao (bib0045) 2013
Eckhorn, Reitboeck, Arndt (bib0100) 1990; 2
Seetha, MuraliKrishna, Deekshatulu (bib0130) 2005
Wang, Li, Tian (bib0015) 2013; 61
Wang, Ma (bib0010) 2007
Li, Wu (bib0120) 2014; 42
Wang, Xu, Jiang, Nie (bib0155) 2015; 6
Kennedy, Eberhart (bib0105) 1995
Das, Kundu (bib0040) 2012; 50
Eckhorn, Reitboeck, Arndt (bib0030) 1989
Zhang, Mabu, Hirasawa (bib0050) 2011; 6
Xu, Ding, Zhao, Zhu (bib0055) 2011; 6
Ma, Dai, Li (bib0115) 2002; 23
Sun, Lai, Xu (bib0085) 2007
Wang, Ma (bib0035) 2008; 9
Wang, Ma, Gu (bib0145) 2010; 43
Fang, Sun, Ding (bib0090) 2010; 27
Jiang (bib0075) 2012; 6
Ma, Zhan, Wang (bib0125) 2010
Zhao (10.1016/j.asoc.2016.03.028_bib0135) 2014; 24
Wang (10.1016/j.asoc.2016.03.028_bib0140) 2004; 13
Ma (10.1016/j.asoc.2016.03.028_bib0095) 2006
Wang (10.1016/j.asoc.2016.03.028_bib0145) 2010; 43
Kennedy (10.1016/j.asoc.2016.03.028_bib0105) 1995
Wang (10.1016/j.asoc.2016.03.028_bib0035) 2008; 9
Wang (10.1016/j.asoc.2016.03.028_bib0010) 2007
Xu (10.1016/j.asoc.2016.03.028_bib0055) 2011; 6
Xu (10.1016/j.asoc.2016.03.028_bib0070) 2012; 25
Zhao (10.1016/j.asoc.2016.03.028_bib0080) 2014; 10
Wang (10.1016/j.asoc.2016.03.028_bib0155) 2015; 6
Hage (10.1016/j.asoc.2016.03.028_bib0065) 2013; 37
He (10.1016/j.asoc.2016.03.028_bib0020) 2011
Behrenbruch (10.1016/j.asoc.2016.03.028_bib0005) 2003; 7
Fang (10.1016/j.asoc.2016.03.028_bib0090) 2010; 27
Wang (10.1016/j.asoc.2016.03.028_bib0015) 2013; 61
Eckhorn (10.1016/j.asoc.2016.03.028_bib0030) 1989
Wang (10.1016/j.asoc.2016.03.028_bib0060) 2008
Ma (10.1016/j.asoc.2016.03.028_bib0125) 2010
Seetha (10.1016/j.asoc.2016.03.028_bib0130) 2005
Sun (10.1016/j.asoc.2016.03.028_bib0085) 2007
Li (10.1016/j.asoc.2016.03.028_bib0120) 2014; 42
Das (10.1016/j.asoc.2016.03.028_bib0040) 2012; 50
Sun (10.1016/j.asoc.2016.03.028_bib0110) 2004
Burt (10.1016/j.asoc.2016.03.028_bib0150) 1983; COM-31
Jiang (10.1016/j.asoc.2016.03.028_bib0075) 2012; 6
Zhang (10.1016/j.asoc.2016.03.028_bib0050) 2011; 6
Ma (10.1016/j.asoc.2016.03.028_bib0115) 2002; 23
Toet (10.1016/j.asoc.2016.03.028_bib0025) 1989; 9
Eckhorn (10.1016/j.asoc.2016.03.028_bib0100) 1990; 2
Zhao (10.1016/j.asoc.2016.03.028_bib0045) 2013
References_xml – volume: 6
  start-page: 1546
  year: 2011
  end-page: 1553
  ident: bib0055
  article-title: Particle swarm optimization for automatic parameters determination of pulse coupled neural network
  publication-title: J. Comput.
– volume: 6
  start-page: 501
  year: 2012
  end-page: 509
  ident: bib0075
  article-title: A self-adapting pulse-coupled neural network based on modified differential evolution algorithm and its application on image segmentation
  publication-title: Int. J. Digit. Content Technol. Appl.
– volume: 2
  start-page: 293
  year: 1990
  end-page: 307
  ident: bib0100
  article-title: Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex
  publication-title: Neural Comput.
– volume: 25
  start-page: 909
  year: 2012
  end-page: 915
  ident: bib0070
  article-title: A self-adaptive method for optimization the parameters of pulse coupled neural network based QPSO algorithm
  publication-title: Pattern Recognit. Artif. Intell.
– start-page: 326
  year: 2004
  end-page: 331
  ident: bib0110
  article-title: Particle swarm optimization with particles having quantum behavior
  publication-title: Congress on Evolutionary Computation, Portland, USA
– volume: 37
  start-page: 466
  year: 2013
  end-page: 474
  ident: bib0065
  article-title: Segmentation of histology slides of cortical bone using pulse coupled neural networks optimized by particle-swarm optimization
  publication-title: Comput. Med. Imaging Graphics
– volume: 6
  start-page: 474
  year: 2011
  end-page: 482
  ident: bib0050
  article-title: Image denoising using pulse coupled neural network with an adaptive Pareto genetic algorithm
  publication-title: IEEJ Trans. Electr. Electron. Eng.
– year: 1989
  ident: bib0030
  article-title: A neural network for feature linking via synchronous activity: Results from cat visual cortex and from simulations
  publication-title: Models of Brain Function
– volume: 27
  start-page: 336
  year: 2010
  end-page: 347
  ident: bib0090
  article-title: A review of quantum-behaved particle swarm optimization
  publication-title: IETE Tech. Rev.
– volume: 43
  start-page: 2003
  year: 2010
  end-page: 2016
  ident: bib0145
  article-title: Multi-focus image fusion using PCNN
  publication-title: Pattern Recognit.
– volume: COM-31
  start-page: 532
  year: 1983
  end-page: 540
  ident: bib0150
  article-title: The Laplacian pyramid as a compact image code
  publication-title: IEEE Trans. Commun.
– volume: 23
  start-page: 46
  year: 2002
  end-page: 51
  ident: bib0115
  article-title: Automated image segmentation using pulse coupled neural networks and images entropy
  publication-title: J. China Inst. Commun.
– start-page: 1
  year: 2006
  end-page: 20
  ident: bib0095
  article-title: Principle of Pulse-coupled Neural Network and its Applications
– start-page: 83
  year: 2010
  end-page: 109
  ident: bib0125
  article-title: Image Fusion Applications of Pulse-Coupled Neural Network
– start-page: 755
  year: 2007
  end-page: 759
  ident: bib0010
  article-title: Dual-channel PCNN and its application in the field of image fusion
  publication-title: International Conference on Natural Computation, Haikou, China
– volume: 7
  start-page: 311
  year: 2003
  end-page: 340
  ident: bib0005
  article-title: Fusion of contrast-enhanced breast MR and mammographic imaging data
  publication-title: Med. Image Anal.
– start-page: 2842
  year: 2005
  end-page: 2845
  ident: bib0130
  article-title: Data fusion performance analysis based on conventional and wavelet transform techniques
  publication-title: IEEE Proceedings on Geoscience and Remote Sensing Symposium, vol. 4
– volume: 9
  start-page: 255
  year: 1989
  end-page: 261
  ident: bib0025
  article-title: A morphological pyramidal image decomposition
  publication-title: Pattern Recognit. Lett.
– year: 2013
  ident: bib0045
  article-title: The PCNN adaptive segmentation algorithm based on visual perception
  publication-title: Third International Conference on Photonics and Image in Agriculture Engineering, Sanya, China
– start-page: 597
  year: 2011
  end-page: 600
  ident: bib0020
  article-title: Contrast pyramid based image fusion scheme for infrared image and visible image
  publication-title: 2011 IEEE International conference on Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, Canada
– volume: 61
  start-page: 529
  year: 2013
  end-page: 540
  ident: bib0015
  article-title: A novel multi-modal medical image fusion method based on shift-invariant shearlet transform
  publication-title: Imaging Sci. J.
– volume: 10
  start-page: 6635
  year: 2014
  end-page: 6642
  ident: bib0080
  article-title: Study of automated PCNN system based on fruit fly optimization algorithm
  publication-title: J. Comput. Inf. Syst.
– volume: 6
  start-page: 2523
  year: 2015
  end-page: 2530
  ident: bib0155
  article-title: A modified model of pulse coupled neural networks with adaptive parameters and its application on image fusion
  publication-title: ICIC Express Lett.
– volume: 9
  start-page: 176
  year: 2008
  end-page: 185
  ident: bib0035
  article-title: Medical image fusion using m-PCNN
  publication-title: Inf. Fusion
– start-page: 294
  year: 2007
  end-page: 301
  ident: bib0085
  article-title: A modified quantum-behaved particle swarm optimization
  publication-title: 7th International Conference on Computational Science, Beijing, China
– volume: 42
  start-page: 217
  year: 2014
  end-page: 222
  ident: bib0120
  article-title: A novel image fusion method using self-adaptive dual-channel pulse coupled neural networks based on PSO evolutionary learning
  publication-title: Acta Electron. Sinica
– volume: 24
  start-page: 221
  year: 2014
  end-page: 228
  ident: bib0135
  article-title: Multimodal medical image fusion using improved multi-channel PCNN
  publication-title: Bio-medical Mater. Eng.
– volume: 50
  start-page: 1105
  year: 2012
  end-page: 1114
  ident: bib0040
  article-title: NSCT-based multimodal medical image fusion using pulse-coupled neural network and modified spatial frequency
  publication-title: Med. Biol. Eng. Comput.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0105
  article-title: Particle swarm optimization
  publication-title: IEEE International Conference on Neural Networks, Perth, WA
– start-page: 2576
  year: 2008
  end-page: 2579
  ident: bib0060
  article-title: Grayscale image edge detection based on pulse-coupled neural network and particle swarm optimization
  publication-title: 2008 Chinese Control and Decision Conference (CCDC)
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0140
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– start-page: 2576
  year: 2008
  ident: 10.1016/j.asoc.2016.03.028_bib0060
  article-title: Grayscale image edge detection based on pulse-coupled neural network and particle swarm optimization
  publication-title: 2008 Chinese Control and Decision Conference (CCDC)
  doi: 10.1109/CCDC.2008.4597791
– start-page: 326
  year: 2004
  ident: 10.1016/j.asoc.2016.03.028_bib0110
  article-title: Particle swarm optimization with particles having quantum behavior
– volume: 6
  start-page: 501
  issue: 20
  year: 2012
  ident: 10.1016/j.asoc.2016.03.028_bib0075
  article-title: A self-adapting pulse-coupled neural network based on modified differential evolution algorithm and its application on image segmentation
  publication-title: Int. J. Digit. Content Technol. Appl.
  doi: 10.4156/jdcta.vol6.issue20.54
– volume: 50
  start-page: 1105
  issue: 10
  year: 2012
  ident: 10.1016/j.asoc.2016.03.028_bib0040
  article-title: NSCT-based multimodal medical image fusion using pulse-coupled neural network and modified spatial frequency
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-012-0943-3
– start-page: 2842
  year: 2005
  ident: 10.1016/j.asoc.2016.03.028_bib0130
  article-title: Data fusion performance analysis based on conventional and wavelet transform techniques
– volume: 6
  start-page: 1546
  issue: 8
  year: 2011
  ident: 10.1016/j.asoc.2016.03.028_bib0055
  article-title: Particle swarm optimization for automatic parameters determination of pulse coupled neural network
  publication-title: J. Comput.
  doi: 10.4304/jcp.6.8.1546-1553
– start-page: 597
  year: 2011
  ident: 10.1016/j.asoc.2016.03.028_bib0020
  article-title: Contrast pyramid based image fusion scheme for infrared image and visible image
– year: 1989
  ident: 10.1016/j.asoc.2016.03.028_bib0030
  article-title: A neural network for feature linking via synchronous activity: Results from cat visual cortex and from simulations
– start-page: 755
  year: 2007
  ident: 10.1016/j.asoc.2016.03.028_bib0010
  article-title: Dual-channel PCNN and its application in the field of image fusion
– volume: COM-31
  start-page: 532
  issue: 4
  year: 1983
  ident: 10.1016/j.asoc.2016.03.028_bib0150
  article-title: The Laplacian pyramid as a compact image code
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1983.1095851
– volume: 2
  start-page: 293
  issue: 3
  year: 1990
  ident: 10.1016/j.asoc.2016.03.028_bib0100
  article-title: Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex
  publication-title: Neural Comput.
  doi: 10.1162/neco.1990.2.3.293
– volume: 6
  start-page: 474
  issue: 5
  year: 2011
  ident: 10.1016/j.asoc.2016.03.028_bib0050
  article-title: Image denoising using pulse coupled neural network with an adaptive Pareto genetic algorithm
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.20684
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.asoc.2016.03.028_bib0140
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 25
  start-page: 909
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2016.03.028_bib0070
  article-title: A self-adaptive method for optimization the parameters of pulse coupled neural network based QPSO algorithm
  publication-title: Pattern Recognit. Artif. Intell.
– start-page: 1
  year: 2006
  ident: 10.1016/j.asoc.2016.03.028_bib0095
– year: 2013
  ident: 10.1016/j.asoc.2016.03.028_bib0045
  article-title: The PCNN adaptive segmentation algorithm based on visual perception
– volume: 42
  start-page: 217
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2016.03.028_bib0120
  article-title: A novel image fusion method using self-adaptive dual-channel pulse coupled neural networks based on PSO evolutionary learning
  publication-title: Acta Electron. Sinica
– start-page: 83
  year: 2010
  ident: 10.1016/j.asoc.2016.03.028_bib0125
– volume: 23
  start-page: 46
  issue: 1
  year: 2002
  ident: 10.1016/j.asoc.2016.03.028_bib0115
  article-title: Automated image segmentation using pulse coupled neural networks and images entropy
  publication-title: J. China Inst. Commun.
– volume: 7
  start-page: 311
  issue: 3
  year: 2003
  ident: 10.1016/j.asoc.2016.03.028_bib0005
  article-title: Fusion of contrast-enhanced breast MR and mammographic imaging data
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(03)00015-X
– volume: 24
  start-page: 221
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2016.03.028_bib0135
  article-title: Multimodal medical image fusion using improved multi-channel PCNN
  publication-title: Bio-medical Mater. Eng.
  doi: 10.3233/BME-130802
– volume: 27
  start-page: 336
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2016.03.028_bib0090
  article-title: A review of quantum-behaved particle swarm optimization
  publication-title: IETE Tech. Rev.
  doi: 10.4103/0256-4602.64601
– start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2016.03.028_bib0105
  article-title: Particle swarm optimization
– volume: 9
  start-page: 176
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2016.03.028_bib0035
  article-title: Medical image fusion using m-PCNN
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2007.04.003
– volume: 10
  start-page: 6635
  issue: 15
  year: 2014
  ident: 10.1016/j.asoc.2016.03.028_bib0080
  article-title: Study of automated PCNN system based on fruit fly optimization algorithm
  publication-title: J. Comput. Inf. Syst.
– volume: 6
  start-page: 2523
  issue: 9
  year: 2015
  ident: 10.1016/j.asoc.2016.03.028_bib0155
  article-title: A modified model of pulse coupled neural networks with adaptive parameters and its application on image fusion
  publication-title: ICIC Express Lett.
– volume: 9
  start-page: 255
  issue: 4
  year: 1989
  ident: 10.1016/j.asoc.2016.03.028_bib0025
  article-title: A morphological pyramidal image decomposition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(89)90004-4
– volume: 43
  start-page: 2003
  issue: 6
  year: 2010
  ident: 10.1016/j.asoc.2016.03.028_bib0145
  article-title: Multi-focus image fusion using PCNN
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.01.011
– start-page: 294
  year: 2007
  ident: 10.1016/j.asoc.2016.03.028_bib0085
  article-title: A modified quantum-behaved particle swarm optimization
– volume: 37
  start-page: 466
  issue: 7–8
  year: 2013
  ident: 10.1016/j.asoc.2016.03.028_bib0065
  article-title: Segmentation of histology slides of cortical bone using pulse coupled neural networks optimized by particle-swarm optimization
  publication-title: Comput. Med. Imaging Graphics
  doi: 10.1016/j.compmedimag.2013.08.003
– volume: 61
  start-page: 529
  issue: 7
  year: 2013
  ident: 10.1016/j.asoc.2016.03.028_bib0015
  article-title: A novel multi-modal medical image fusion method based on shift-invariant shearlet transform
  publication-title: Imaging Sci. J.
  doi: 10.1179/1743131X12Y.0000000016
SSID ssj0016928
Score 2.480269
Snippet [Display omitted] This paper proposed a method to fuse multimodal medical images using the adaptive pulse-coupled neural networks (PCNN), which was optimized...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 588
SubjectTerms Multimodal medical image fusion
Mutual information
Pulse-coupled neural networks
Quantum-behaved particle swarm optimization algorithm
Title Multimodal medical image fusion using PCNN optimized by the QPSO algorithm
URI https://dx.doi.org/10.1016/j.asoc.2016.03.028
Volume 46
WOSCitedRecordID wos000377999900044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5ByoEL5am-QHvgFhnZ69fusWqLIIcQ1CJ8s3btNXHV2FVio7a_vrMPb0KBih64WNY6niT-vp2ZHc_sIPQ-CSQHN5l44IwSLwKLC3NORJ4IpLKGRNU_6mYT6XRKs4zN7BvTlW4nkDYNvbpil_8VahgDsFXp7APgdkJhAM4BdDgC7HD8J-B1Se2iLW1ZiMKgXqjMnKpXkbFxr6MDs6PpdNyCvljUN9YJBcJ8nZ1-GfOLH-2y7uaLTcd18FZXoLZ1HnrfDUYP4Mp6BVVWNzdzuR49nZvo6nG7Hvtu49NAzeZ6Q8KkthcydeKu2HhEkLiEK6dCE-pFzAYWrY6NNpVkbBr5WXsbmyabv6lyE1U4_8CBpSoFL9Gb0dpK8l_2zb5jz1yW4ZDAdp4rGbmSkfthDjIeoy2SxoyO0Nbh55Ns4t47JUx343X_wZZZmYzAu7_kz67Mhnty9hw9s-sKfGj48AI9ks1LtD307MBWhb9CkzU9sKUH1vTAhh5Y0wMremBHDyyuMdADK3pgR4_X6NvHk7OjT57tp-EVoe93HhEJJWnFVeIvDUvuM1_6JSwIeJEUlIZ-VFUhSQXMVR75BfFhGsskoqRgJS-FCN-gUdM2cgdhSWMZVCmsDUQZiZRyJhgjcSjSSPKYi10UDI8mL-xm86rnyUX-d1B20djdc2m2Wrn30_HwxHPrLBonMAcC3XPf3oO-ZR89XXP8AI26ZS_foifFz65eLd9Z9twCf1GKhA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+medical+image+fusion+using+PCNN+optimized+by+the+QPSO+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Xu%2C+Xinzheng&rft.au=Shan%2C+Dong&rft.au=Wang%2C+Guanying&rft.au=Jiang%2C+Xiangying&rft.date=2016-09-01&rft.issn=1568-4946&rft.volume=46&rft.spage=588&rft.epage=595&rft_id=info:doi/10.1016%2Fj.asoc.2016.03.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2016_03_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon