Two improved k-means algorithms

[Display omitted] K-means algorithm is the most commonly used simple clustering method. For a large number of high dimensional numerical data, it provides an efficient method for classifying similar data into the same cluster. In this study, a tri-level k-means algorithm and a bi-layer k-means algor...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied soft computing Ročník 68; s. 747 - 755
Hlavní autori: Yu, Shyr-Shen, Chu, Shao-Wei, Wang, Chuin-Mu, Chan, Yung-Kuan, Chang, Ting-Cheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.07.2018
Predmet:
ISSN:1568-4946, 1872-9681
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] K-means algorithm is the most commonly used simple clustering method. For a large number of high dimensional numerical data, it provides an efficient method for classifying similar data into the same cluster. In this study, a tri-level k-means algorithm and a bi-layer k-means algorithm are proposed. The k-means algorithm is vulnerable to outliers and noisy data, and also susceptible to initial cluster centers. The tri-level k-means algorithm can overcome these drawbacks. While the data in a dataset S are often changed, after a period of time the trained cluster centers cannot precisely describe the data in each cluster. The cluster centers hence need to be updated. In this paper, an online machine learning based tri-level k-means algorithm is also provided to solve this problem. When the data in a cluster are significantly different, a cluster center cannot alone precisely describe each datum in the cluster. Noisy data, outliers, and data with quite different values in the same cluster may decrease the performance of pattern matching systems. The bi-layer k-means algorithm can deal with the above problems. Meanwhile, a genetic-based algorithm is provided to derive the fittest parameters used in the tri-level and bi-layer k-means algorithms. Experimental results demonstrate that both algorithms can provide much better accuracy of classification than the traditional k-means algorithm.
AbstractList [Display omitted] K-means algorithm is the most commonly used simple clustering method. For a large number of high dimensional numerical data, it provides an efficient method for classifying similar data into the same cluster. In this study, a tri-level k-means algorithm and a bi-layer k-means algorithm are proposed. The k-means algorithm is vulnerable to outliers and noisy data, and also susceptible to initial cluster centers. The tri-level k-means algorithm can overcome these drawbacks. While the data in a dataset S are often changed, after a period of time the trained cluster centers cannot precisely describe the data in each cluster. The cluster centers hence need to be updated. In this paper, an online machine learning based tri-level k-means algorithm is also provided to solve this problem. When the data in a cluster are significantly different, a cluster center cannot alone precisely describe each datum in the cluster. Noisy data, outliers, and data with quite different values in the same cluster may decrease the performance of pattern matching systems. The bi-layer k-means algorithm can deal with the above problems. Meanwhile, a genetic-based algorithm is provided to derive the fittest parameters used in the tri-level and bi-layer k-means algorithms. Experimental results demonstrate that both algorithms can provide much better accuracy of classification than the traditional k-means algorithm.
Author Chan, Yung-Kuan
Wang, Chuin-Mu
Chang, Ting-Cheng
Yu, Shyr-Shen
Chu, Shao-Wei
Author_xml – sequence: 1
  givenname: Shyr-Shen
  surname: Yu
  fullname: Yu, Shyr-Shen
  email: pyu@nchu.edu.tw
  organization: Department of Computer Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, ROC
– sequence: 2
  givenname: Shao-Wei
  surname: Chu
  fullname: Chu, Shao-Wei
  email: multi.summer@gmail.com
  organization: Department of Computer Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, ROC
– sequence: 3
  givenname: Chuin-Mu
  surname: Wang
  fullname: Wang, Chuin-Mu
  email: cmwang@ncut.edu.tw
  organization: Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung, 41170, Taiwan, ROC
– sequence: 4
  givenname: Yung-Kuan
  surname: Chan
  fullname: Chan, Yung-Kuan
  email: ykchan@nchu.edu.tw
  organization: Department of Management Information Systems, National Chung Hsing University, Taichung, 40227, Taiwan, ROC
– sequence: 5
  givenname: Ting-Cheng
  surname: Chang
  fullname: Chang, Ting-Cheng
  email: 18250922163@163.com
  organization: Department of Computer Science Engineering, Ningde Normal University, Ningde, 352100, Fujian, China
BookMark eNp9z79OwzAQx3ELFYlSeAEW-gIJZyexLxILqvgnVWIps-VeLuDSxJUdFfH2pCoTQ6e75fOTvpdi0oeehbiRkEuQ-m6TuxQoVyBNDphDoc7EVKJRWa1RTsa_0piVdakvxGVKGxhRrXAqblffYe67XQx7buZfWceuT3O3_QjRD59duhLnrdsmvv67M_H-9LhavGTLt-fXxcMyowJgyJTTDVdsyLQGoF2rSq-RCtaqKlHWTdtqYl2xKsigQ1C1AUQlS02aNdXFTKjjLsWQUuTW7qLvXPyxEuwh0W7sIdEeEi2gHRNHhP8Q-cENPvRDdH57mt4fKY9Re8_RJvLcEzc-Mg22Cf4U_wU4sW2a
CitedBy_id crossref_primary_10_1016_j_patcog_2019_04_014
crossref_primary_10_3390_a11100151
crossref_primary_10_1016_j_jocs_2021_101445
crossref_primary_10_1155_2021_8840156
crossref_primary_10_1007_s41066_019_00197_z
crossref_primary_10_1007_s00521_019_04673_0
crossref_primary_10_1016_j_engappai_2023_107109
crossref_primary_10_1016_j_cose_2024_103877
crossref_primary_10_1155_2020_3849053
crossref_primary_10_1007_s42994_025_00196_6
crossref_primary_10_3390_e21101013
crossref_primary_10_1007_s11128_021_03384_7
crossref_primary_10_1007_s12206_022_0234_3
crossref_primary_10_1007_s11280_019_00723_8
crossref_primary_10_3233_THC_191730
crossref_primary_10_1016_j_ecolind_2024_112705
crossref_primary_10_1016_j_eswa_2025_127383
crossref_primary_10_2478_amns_2023_1_00111
crossref_primary_10_17163_ings_n26_2021_07
crossref_primary_10_1016_j_jcsr_2024_108838
crossref_primary_10_3390_en14206494
crossref_primary_10_1155_2022_7828378
crossref_primary_10_1007_s40003_023_00658_7
crossref_primary_10_3390_info14110608
crossref_primary_10_1007_s00500_020_04988_4
crossref_primary_10_1109_TIE_2020_3038074
crossref_primary_10_3390_a14020053
crossref_primary_10_1016_j_procs_2019_09_037
crossref_primary_10_1016_j_asoc_2024_112318
crossref_primary_10_1016_j_ins_2022_07_166
crossref_primary_10_1016_j_latran_2024_100022
crossref_primary_10_1007_s10489_021_02405_3
crossref_primary_10_1016_j_ceramint_2020_02_106
crossref_primary_10_1016_j_engappai_2023_106351
crossref_primary_10_1016_j_patcog_2023_109406
crossref_primary_10_3390_info13030110
crossref_primary_10_3390_s21134534
crossref_primary_10_1109_TNNLS_2023_3293463
crossref_primary_10_3390_aerospace11080630
crossref_primary_10_1002_hyp_13405
crossref_primary_10_1016_j_envpol_2025_125790
crossref_primary_10_1080_00207543_2023_2182151
crossref_primary_10_1016_j_foodqual_2022_104714
crossref_primary_10_1155_2020_7636857
crossref_primary_10_3390_s20226476
crossref_primary_10_1088_2632_2153_acd7c3
crossref_primary_10_3390_electronics13132435
crossref_primary_10_3389_fpls_2024_1447855
crossref_primary_10_1088_1742_6596_2258_1_012030
crossref_primary_10_3390_en16010501
crossref_primary_10_4018_IJIRR_289954
crossref_primary_10_3390_e23111550
crossref_primary_10_1016_j_eswa_2019_113153
crossref_primary_10_1016_j_asoc_2022_109922
crossref_primary_10_1007_s10479_022_04677_5
crossref_primary_10_3390_e24020237
crossref_primary_10_1016_j_sigpro_2024_109874
crossref_primary_10_1109_MITP_2024_3405857
crossref_primary_10_3390_s22176358
crossref_primary_10_3390_s23052860
crossref_primary_10_1016_j_nima_2024_169632
crossref_primary_10_3390_e22080902
crossref_primary_10_1016_j_energy_2025_134461
crossref_primary_10_1007_s10479_022_04642_2
crossref_primary_10_1016_j_scs_2021_102764
crossref_primary_10_1155_2020_6974215
crossref_primary_10_3390_en14248287
crossref_primary_10_1016_j_energy_2025_134904
crossref_primary_10_1016_j_eswa_2021_115054
crossref_primary_10_1287_ijoc_2022_1166
crossref_primary_10_1016_j_ocecoaman_2024_107448
crossref_primary_10_1007_s11063_020_10298_5
crossref_primary_10_1007_s40820_024_01489_z
crossref_primary_10_1007_s00500_021_05632_5
crossref_primary_10_1109_TCSVT_2021_3057469
crossref_primary_10_1016_j_ssci_2020_104828
crossref_primary_10_32604_jai_2023_043229
crossref_primary_10_1155_2019_1530618
crossref_primary_10_3390_a18040188
crossref_primary_10_1109_TII_2025_3567403
crossref_primary_10_1016_j_jocs_2025_102680
crossref_primary_10_1016_j_asoc_2020_106919
crossref_primary_10_1007_s10100_022_00824_2
crossref_primary_10_1049_itr2_12165
crossref_primary_10_1016_j_carbon_2020_05_067
crossref_primary_10_1016_j_eswa_2021_116108
crossref_primary_10_17093_alphanumeric_588835
crossref_primary_10_32604_cmc_2022_029969
crossref_primary_10_1016_j_epsr_2022_108253
crossref_primary_10_1088_1742_6596_1757_1_012128
crossref_primary_10_1007_s00500_023_08830_5
crossref_primary_10_1007_s43621_024_00328_w
crossref_primary_10_3390_su151511619
crossref_primary_10_3390_en14227820
crossref_primary_10_1016_j_buildenv_2025_113599
crossref_primary_10_1016_j_scitotenv_2024_175398
crossref_primary_10_1177_0309524X20917319
crossref_primary_10_1016_j_asoc_2023_110663
crossref_primary_10_1007_s11554_022_01227_x
crossref_primary_10_1186_s13638_021_01910_w
crossref_primary_10_3390_en18102511
crossref_primary_10_1016_j_neunet_2025_108003
crossref_primary_10_1016_j_neunet_2025_108129
crossref_primary_10_1109_ACCESS_2021_3079119
crossref_primary_10_1109_TCOMM_2024_3356795
Cites_doi 10.1145/331499.331504
10.1016/j.patcog.2014.03.034
10.1016/S0167-8655(99)00069-0
10.1186/s40537-015-0036-x
10.1016/j.dsp.2009.11.007
10.1109/TIT.1985.1057035
10.1016/S0165-1684(02)00277-3
10.1016/j.patcog.2009.02.014
10.1016/j.patrec.2009.09.011
10.1109/64.539013
10.1016/S0031-3203(01)00048-6
10.1109/PROC.1968.6414
10.1016/0031-3203(80)90039-4
10.1016/j.patrec.2011.07.011
10.1016/S0031-3203(02)00060-2
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2017.08.032
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 755
ExternalDocumentID 10_1016_j_asoc_2017_08_032
S1568494617305148
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-2a6de5e7c7f700fb256b8c3e6254819dff6ce65e23c78a802970882146c6e6c93
ISICitedReferencesCount 133
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433155300052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 21:42:03 EST 2025
Sat Nov 29 03:05:33 EST 2025
Fri Feb 23 02:24:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Outlier
k-Means algorithm
Online machine learning
Genetic algorithm
Noise data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-2a6de5e7c7f700fb256b8c3e6254819dff6ce65e23c78a802970882146c6e6c93
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_asoc_2017_08_032
crossref_citationtrail_10_1016_j_asoc_2017_08_032
elsevier_sciencedirect_doi_10_1016_j_asoc_2017_08_032
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Day (bib0070) 1996
Rai, Singh (bib0025) 2010; 7
Jain (bib0020) 2010; 31
Liaw, Lo, Lai (bib0060) 2002; 35
Soulas, Shasha (bib0105) 2013
Erisoglu, Calis, Sakallioglu (bib0100) 2011; 32
Theodoridis, Koutroumbas (bib0030) 2003
Nagy (bib0065) 1968; 56
Zaïane, Foss, Lee, Wang (bib0015) 2002
Likas, Vlassis, Verbeek (bib0120) 2003; 36
Wang, Bu (bib0035) 2010; 20
Jain, Murty, Flynn (bib0010) 1999; 31
Malinen, Mariescu-Istodor, Fränti (bib0130) 2014; 47
Lai, Liaw, Lo (bib0055) 2002; 82
Peña, Lozano, Larrañaga (bib0095) 1999; 20
Foster, Gray, Dunham (bib0045) 1985; 31
Fayyad (bib0040) 1996; 11
Shindler, Wong, Meyerson (bib0075) 2011
Lai, Huang, Liaw (bib0115) 2009; 42
MacQueen (bib0090) 1967; 1
Rijsbergen (bib0110) 1979
Murty, Krishna (bib0005) 1980; 12
Chen, Tu (bib0080) 2007
Khalilian, Wong, Meyerson (bib0085) 2016; 3
Arthur, Vassilvitskii (bib0125) 2007
Gersho, Gray (bib0050) 1991
Nagy (10.1016/j.asoc.2017.08.032_bib0065) 1968; 56
Erisoglu (10.1016/j.asoc.2017.08.032_bib0100) 2011; 32
Jain (10.1016/j.asoc.2017.08.032_bib0010) 1999; 31
Malinen (10.1016/j.asoc.2017.08.032_bib0130) 2014; 47
Murty (10.1016/j.asoc.2017.08.032_bib0005) 1980; 12
Day (10.1016/j.asoc.2017.08.032_bib0070) 1996
Lai (10.1016/j.asoc.2017.08.032_bib0115) 2009; 42
Foster (10.1016/j.asoc.2017.08.032_bib0045) 1985; 31
Khalilian (10.1016/j.asoc.2017.08.032_bib0085) 2016; 3
Likas (10.1016/j.asoc.2017.08.032_bib0120) 2003; 36
Lai (10.1016/j.asoc.2017.08.032_bib0055) 2002; 82
Fayyad (10.1016/j.asoc.2017.08.032_bib0040) 1996; 11
Soulas (10.1016/j.asoc.2017.08.032_bib0105) 2013
Zaïane (10.1016/j.asoc.2017.08.032_bib0015) 2002
Gersho (10.1016/j.asoc.2017.08.032_bib0050) 1991
Liaw (10.1016/j.asoc.2017.08.032_bib0060) 2002; 35
Jain (10.1016/j.asoc.2017.08.032_bib0020) 2010; 31
MacQueen (10.1016/j.asoc.2017.08.032_bib0090) 1967; 1
Chen (10.1016/j.asoc.2017.08.032_bib0080) 2007
Theodoridis (10.1016/j.asoc.2017.08.032_bib0030) 2003
Rai (10.1016/j.asoc.2017.08.032_bib0025) 2010; 7
Arthur (10.1016/j.asoc.2017.08.032_bib0125) 2007
Wang (10.1016/j.asoc.2017.08.032_bib0035) 2010; 20
Peña (10.1016/j.asoc.2017.08.032_bib0095) 1999; 20
Shindler (10.1016/j.asoc.2017.08.032_bib0075) 2011
Rijsbergen (10.1016/j.asoc.2017.08.032_bib0110) 1979
References_xml – year: 1979
  ident: bib0110
  article-title: Information Retrieval
– volume: 1
  start-page: 281
  year: 1967
  end-page: 297
  ident: bib0090
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc. Fifth Berkeley Symp. Math. Statist. Prob.
– volume: 35
  start-page: 329
  year: 2002
  end-page: 340
  ident: bib0060
  article-title: Image restoration of compressed image using classified vector quantization
  publication-title: Pattern Recogn.
– start-page: 2375
  year: 2011
  end-page: 2383
  ident: bib0075
  article-title: Fast and accurate k-means for large datasets
  publication-title: Advances in Neural Information Processing Systems
– year: 2013
  ident: bib0105
  article-title: Online Machine Learning Algorithms for Currency Exchange Prediction
– volume: 32
  start-page: 1701
  year: 2011
  end-page: 1705
  ident: bib0100
  article-title: A new algorithm for initial cluster centers in
  publication-title: Pattern Recognit. Lett.
– volume: 20
  start-page: 1027
  year: 1999
  end-page: 1040
  ident: bib0095
  article-title: An empirical comparison of four initialization methods for the
  publication-title: Pattern Recognit. Lett.
– start-page: 28
  year: 2002
  end-page: 39
  ident: bib0015
  article-title: On data clustering analysis: scalability, constraints, and validation
  publication-title: Proceedings of 6th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD 2002)
– volume: 31
  start-page: 348
  year: 1985
  end-page: 359
  ident: bib0045
  article-title: Finite-state vector quantization for waveform coding
  publication-title: IEEE Trans. Inf. Theory
– start-page: 133
  year: 2007
  end-page: 142
  ident: bib0080
  article-title: Density-based clustering for real-time stream data
  publication-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ‘07)
– volume: 7
  start-page: 1
  year: 2010
  end-page: 5
  ident: bib0025
  article-title: A survey of clustering techniques
  publication-title: Int. J. Comp. Appl.
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: bib0010
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
– volume: 3
  year: 2016
  ident: bib0085
  article-title: Data stream clustering by divide and conquer approach based on vector model
  publication-title: J. Big Data
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bib0020
  article-title: Data clustering: 50 years beyond
  publication-title: Pattern Recognit. Lett.
– volume: 42
  start-page: 2551
  year: 2009
  end-page: 2556
  ident: bib0115
  article-title: A fast
  publication-title: Pattern Recogn.
– start-page: 1027
  year: 2007
  end-page: 1035
  ident: bib0125
  article-title: k-means++: the advantages of careful seeding
  publication-title: 19th SODA
– volume: 47
  start-page: 3376
  year: 2014
  end-page: 3386
  ident: bib0130
  article-title: means*: clustering by gradual data transformation
  publication-title: Pattern Recogn.
– volume: 20
  start-page: 1173
  year: 2010
  end-page: 1182
  ident: bib0035
  article-title: A fast and robust image segmentation using FCM with spatial information
  publication-title: Dig. Signal Process
– volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  ident: bib0120
  article-title: The global
  publication-title: Pattern Recogn.
– year: 1996
  ident: bib0070
  article-title: Complexity Theory: an Introduction for Practitioners of Classification
– volume: 11
  start-page: 20
  year: 1996
  end-page: 25
  ident: bib0040
  article-title: Data mining and knowledge discovery: making sense out of data
  publication-title: IEEE Exp.
– volume: 56
  start-page: 836
  year: 1968
  end-page: 863
  ident: bib0065
  article-title: State of the art in pattern recognition
  publication-title: Proc. IEEE
– year: 2003
  ident: bib0030
  article-title: Pattern Recognition
– year: 1991
  ident: bib0050
  article-title: Vector Quantization and Signal Compression
– volume: 82
  start-page: 1375
  year: 2002
  end-page: 1388
  ident: bib0055
  article-title: Artifact reduction of JPEG coded images using mean-removed classified vector quantization
  publication-title: Signal Process
– volume: 12
  start-page: 153
  year: 1980
  end-page: 158
  ident: bib0005
  article-title: A computationally efficient technique for data-clustering
  publication-title: Pattern Recogn.
– volume: 31
  start-page: 264
  year: 1999
  ident: 10.1016/j.asoc.2017.08.032_bib0010
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– volume: 47
  start-page: 3376
  year: 2014
  ident: 10.1016/j.asoc.2017.08.032_bib0130
  article-title: k-means*: clustering by gradual data transformation
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2014.03.034
– start-page: 1027
  year: 2007
  ident: 10.1016/j.asoc.2017.08.032_bib0125
  article-title: k-means++: the advantages of careful seeding
– volume: 20
  start-page: 1027
  year: 1999
  ident: 10.1016/j.asoc.2017.08.032_bib0095
  article-title: An empirical comparison of four initialization methods for the k-means algorithm
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(99)00069-0
– year: 1991
  ident: 10.1016/j.asoc.2017.08.032_bib0050
– volume: 3
  year: 2016
  ident: 10.1016/j.asoc.2017.08.032_bib0085
  article-title: Data stream clustering by divide and conquer approach based on vector model
  publication-title: J. Big Data
  doi: 10.1186/s40537-015-0036-x
– volume: 20
  start-page: 1173
  year: 2010
  ident: 10.1016/j.asoc.2017.08.032_bib0035
  article-title: A fast and robust image segmentation using FCM with spatial information
  publication-title: Dig. Signal Process
  doi: 10.1016/j.dsp.2009.11.007
– year: 2003
  ident: 10.1016/j.asoc.2017.08.032_bib0030
– start-page: 133
  year: 2007
  ident: 10.1016/j.asoc.2017.08.032_bib0080
  article-title: Density-based clustering for real-time stream data
– year: 2013
  ident: 10.1016/j.asoc.2017.08.032_bib0105
– volume: 31
  start-page: 348
  year: 1985
  ident: 10.1016/j.asoc.2017.08.032_bib0045
  article-title: Finite-state vector quantization for waveform coding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1985.1057035
– volume: 82
  start-page: 1375
  year: 2002
  ident: 10.1016/j.asoc.2017.08.032_bib0055
  article-title: Artifact reduction of JPEG coded images using mean-removed classified vector quantization
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(02)00277-3
– year: 1979
  ident: 10.1016/j.asoc.2017.08.032_bib0110
– volume: 42
  start-page: 2551
  year: 2009
  ident: 10.1016/j.asoc.2017.08.032_bib0115
  article-title: A fast k-means clustering algorithm using cluster center displacement
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2009.02.014
– start-page: 2375
  year: 2011
  ident: 10.1016/j.asoc.2017.08.032_bib0075
  article-title: Fast and accurate k-means for large datasets
– start-page: 28
  year: 2002
  ident: 10.1016/j.asoc.2017.08.032_bib0015
  article-title: On data clustering analysis: scalability, constraints, and validation
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.asoc.2017.08.032_bib0020
  article-title: Data clustering: 50 years beyond k-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 11
  start-page: 20
  year: 1996
  ident: 10.1016/j.asoc.2017.08.032_bib0040
  article-title: Data mining and knowledge discovery: making sense out of data
  publication-title: IEEE Exp.
  doi: 10.1109/64.539013
– volume: 1
  start-page: 281
  year: 1967
  ident: 10.1016/j.asoc.2017.08.032_bib0090
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc. Fifth Berkeley Symp. Math. Statist. Prob.
– volume: 7
  start-page: 1
  year: 2010
  ident: 10.1016/j.asoc.2017.08.032_bib0025
  article-title: A survey of clustering techniques
  publication-title: Int. J. Comp. Appl.
– volume: 35
  start-page: 329
  year: 2002
  ident: 10.1016/j.asoc.2017.08.032_bib0060
  article-title: Image restoration of compressed image using classified vector quantization
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(01)00048-6
– volume: 56
  start-page: 836
  year: 1968
  ident: 10.1016/j.asoc.2017.08.032_bib0065
  article-title: State of the art in pattern recognition
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1968.6414
– volume: 12
  start-page: 153
  year: 1980
  ident: 10.1016/j.asoc.2017.08.032_bib0005
  article-title: A computationally efficient technique for data-clustering
  publication-title: Pattern Recogn.
  doi: 10.1016/0031-3203(80)90039-4
– year: 1996
  ident: 10.1016/j.asoc.2017.08.032_bib0070
– volume: 32
  start-page: 1701
  year: 2011
  ident: 10.1016/j.asoc.2017.08.032_bib0100
  article-title: A new algorithm for initial cluster centers in k-means algorithm
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.07.011
– volume: 36
  start-page: 451
  year: 2003
  ident: 10.1016/j.asoc.2017.08.032_bib0120
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(02)00060-2
SSID ssj0016928
Score 2.5713165
Snippet [Display omitted] K-means algorithm is the most commonly used simple clustering method. For a large number of high dimensional numerical data, it provides an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 747
SubjectTerms Genetic algorithm
k-Means algorithm
Noise data
Online machine learning
Outlier
Title Two improved k-means algorithms
URI https://dx.doi.org/10.1016/j.asoc.2017.08.032
Volume 68
WOSCitedRecordID wos000433155300052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT4QwFG6MevDibtzl4M3UMCwtHCcTjXtM1DieSKcUZ1zAMIzLv_eVPhj36MELIR0oA9_L2_r6PkI2JZiYhDdC6sXCoV7HtalwYl3jrmPm0BEeLzcKH_GTk6DdDk-Rv7Nf0gnwNA2en8OHf4UaxgBsvXX2D3DXk8IAnAPocATY4fg74J8yvfcxzx7Bl7yl9wqM0Za4u87yXtHF3uRV21l0Qfugi8vi8kFRWbKSq6tMjXZfcnrWHe4Ya3VxXGT0UvWGGXmjNeDnXkqPB2_qBkrFdgVahR4OUBgxz9AI6prUWjWygHohJgxRdxpKHFR-3PTORDvKTfvdTyraZAtutgVIny6t42ULVUxyvuuH_cFO1dWDVWHaTaTniPQckebSdMEUjzncD0G7jTX3d9oH9XoSC0uW3fodcPuUqfT7-E--dlHeuB3n02QS4wWraXCeISMqnSVTFReHhap5jmwA7FYFu4WwW0PY58nF7s55a48i-QWVrm0X1BEsVr7ikifctpMOuKadQLoK4lUPvLg4SZhUzFeOK3kgAs1BpqMlMHySKSZDd4GMplmqFonFlPQ9CD0FV46n9Lo3xMAN1tHrAbEr7CXSqN43ktgZXhOU3EXff-klslXf82D6ovx4tV99xgg9O-OxRSAVP9y3_KenrJCJoeCuktEiH6g1Mi4fi14_X0eReAUIpWoT
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+improved+k-means+algorithms&rft.jtitle=Applied+soft+computing&rft.au=Yu%2C+Shyr-Shen&rft.au=Chu%2C+Shao-Wei&rft.au=Wang%2C+Chuin-Mu&rft.au=Chan%2C+Yung-Kuan&rft.date=2018-07-01&rft.issn=1568-4946&rft.volume=68&rft.spage=747&rft.epage=755&rft_id=info:doi/10.1016%2Fj.asoc.2017.08.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2017_08_032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon