Dynamic dispatching system using a deep denoising autoencoder for semiconductor manufacturing

Deep denoising autoencoders (DDAE), which are variants of the autoencoder, have shown outstanding performance in various machine learning tasks. In this study, we propose using a DDAE to address a dispatching rule selection problem that represents a major problem in semiconductor manufacturing. Rece...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied soft computing Ročník 86; s. 105904
Hlavní autori: Lee, Sangmin, Kim, Hae Joong, Kim, Seoung Bum
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2020
Predmet:
ISSN:1568-4946, 1872-9681
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deep denoising autoencoders (DDAE), which are variants of the autoencoder, have shown outstanding performance in various machine learning tasks. In this study, we propose using a DDAE to address a dispatching rule selection problem that represents a major problem in semiconductor manufacturing. Recently, the significance of dispatching systems for storage allocation has become more apparent because operational issues lead to transfer inefficiency, resulting in production losses. Further, recent approaches have overlooked the possibility of a class imbalance problem in predicting the best dispatching rule. The main purpose of this study is to examine DDAE-based predictive control of the storage dispatching systems to reduce idle machines and production losses. We conducted an experimental evaluation to compare the predictive performance of DDAE with those of five other novelty detection algorithms. Finally, we compared our adaptive approach with the optimization and existing heuristic approaches to demonstrate the effectiveness and efficiency of the proposed method. The experimental results demonstrated that the proposed method outperformed the existing methods in terms of machine utilizations and throughputs. •We propose a dynamic dispatching system for storage allocation.•We propose to use a deep denoising autoencoder to address class imbalance problem.•Proposed method is robust against production uncertainties.•A real-time simulation presents the utility and superiority of the proposed method.
AbstractList Deep denoising autoencoders (DDAE), which are variants of the autoencoder, have shown outstanding performance in various machine learning tasks. In this study, we propose using a DDAE to address a dispatching rule selection problem that represents a major problem in semiconductor manufacturing. Recently, the significance of dispatching systems for storage allocation has become more apparent because operational issues lead to transfer inefficiency, resulting in production losses. Further, recent approaches have overlooked the possibility of a class imbalance problem in predicting the best dispatching rule. The main purpose of this study is to examine DDAE-based predictive control of the storage dispatching systems to reduce idle machines and production losses. We conducted an experimental evaluation to compare the predictive performance of DDAE with those of five other novelty detection algorithms. Finally, we compared our adaptive approach with the optimization and existing heuristic approaches to demonstrate the effectiveness and efficiency of the proposed method. The experimental results demonstrated that the proposed method outperformed the existing methods in terms of machine utilizations and throughputs. •We propose a dynamic dispatching system for storage allocation.•We propose to use a deep denoising autoencoder to address class imbalance problem.•Proposed method is robust against production uncertainties.•A real-time simulation presents the utility and superiority of the proposed method.
ArticleNumber 105904
Author Lee, Sangmin
Kim, Hae Joong
Kim, Seoung Bum
Author_xml – sequence: 1
  givenname: Sangmin
  orcidid: 0000-0002-5215-2546
  surname: Lee
  fullname: Lee, Sangmin
  email: smlee5679@gmail.com
  organization: Department of Industrial Management Engineering, Korea University, 145 Anam-Ro, Seoungbuk-Gu, Anam-dong, Seoul 02841, South Korea
– sequence: 2
  givenname: Hae Joong
  surname: Kim
  fullname: Kim, Hae Joong
  email: haejoong.kim@gmail.com
  organization: Material Handling Automation Group, Samsung Electronics, SamsungJeonJa-ro 1, Hwaseong-si, Gyeonggi-do, 18448, South Korea
– sequence: 3
  givenname: Seoung Bum
  orcidid: 0000-0002-2205-8516
  surname: Kim
  fullname: Kim, Seoung Bum
  email: sbkim1@korea.ac.kr
  organization: Department of Industrial Management Engineering, Korea University, 145 Anam-Ro, Seoungbuk-Gu, Anam-dong, Seoul 02841, South Korea
BookMark eNp9kMtKAzEUQIMo2FZ_wNX8wNQ8mswE3Eh9QsGNLiVkkjua0iYlyQj9ezOMKxfd3Bf3XLhnjs598IDQDcFLgom43S51CmZJMZFlwCVenaEZaRtaS9GS81Jz0dYruRKXaJ7SFhdI0naGPh-OXu-dqaxLB53Nt_NfVTqmDPtqSGOjKwtwKMEHNw2GHMCbYCFWfYhVgsIHbweTS7fXfui1yUMsu1foote7BNd_eYE-nh7f1y_15u35dX2_qQ3DONdUakallZI3xHKMueg0NKLhrO0kSC76jmPDKTAKgtGGSEsNx4wB7wA3DVugdrprYkgpQq-Myzq74HPUbqcIVqMmtVWjJjVqUpOmgtJ_6CG6vY7H09DdBEF56sdBVMm44gSsi2CyssGdwn8BczCEqQ
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124354
crossref_primary_10_1007_s10696_022_09449_8
crossref_primary_10_3390_pr9030407
crossref_primary_10_1115_1_4068667
crossref_primary_10_1007_s11571_020_09642_1
crossref_primary_10_1080_00207543_2022_2148011
crossref_primary_10_1109_JSEN_2024_3506154
crossref_primary_10_1016_j_eswa_2021_116206
crossref_primary_10_1109_TSM_2020_2965293
crossref_primary_10_3390_sym12091458
crossref_primary_10_1016_j_asoc_2022_109122
crossref_primary_10_3390_app13084808
crossref_primary_10_1109_ACCESS_2021_3051763
Cites_doi 10.1109/ISSM.2006.4493023
10.1016/j.sigpro.2003.07.018
10.1109/ICCIT.2007.237
10.1016/j.cie.2014.02.002
10.1287/opre.9.3.383
10.1109/ICDMW.2010.19
10.1109/TR.2012.2220898
10.1016/j.engappai.2016.12.012
10.1016/j.engappai.2016.02.015
10.1016/j.engappai.2015.07.013
10.1007/s00170-005-0190-y
10.1016/j.asoc.2015.09.027
10.1080/00207543.2016.1178406
10.1023/A:1007660820062
10.1145/1390156.1390294
10.1007/BF00118083
10.1162/089976601750264965
10.21437/Interspeech.2011-91
10.1016/j.asoc.2007.11.005
10.1016/j.ejor.2006.06.018
10.1145/1007730.1007733
10.1109/TSM.2004.831925
10.1080/0020754032000123579
10.1023/A:1022627411411
10.1016/j.omega.2015.01.012
10.1145/130385.130401
10.1145/342009.335388
10.1214/aos/1176348376
10.1080/00207540600675819
10.1016/j.asoc.2018.01.010
10.1007/11893257_3
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.105904
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2019_105904
S1568494619306854
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-29a329d99571d50056bae767538b9e956fb50c52e32e632719d2c5033e5be0773
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000503388200035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:01:51 EST 2025
Tue Nov 18 21:24:00 EST 2025
Fri Feb 23 02:49:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dispatching rule selection
Storage allocation
Deep denoising autoencoder
Novelty detection
Class imbalance problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-29a329d99571d50056bae767538b9e956fb50c52e32e632719d2c5033e5be0773
ORCID 0000-0002-2205-8516
0000-0002-5215-2546
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2019_105904
crossref_primary_10_1016_j_asoc_2019_105904
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105904
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Tse (b37) 2018
Chawla, Japkowicz, Drive (b19) 2004; 6
Lee, Cho (b22) 2006; 4233
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, ICML, 2010, pp. 3371–3408.
Wakabayashi, Watanabe, Kobayashi, Okabe, Koike (b1) 2004; 17
M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: Identifying density-based local outliers, in: Proc. 2000 Acm Sigmod Int. Conf. Manag. Data, 2000, pp. 1–12.
Bishop (b23) 2006
Zhao, Yan, Chen, Mao, Wang, Gao (b36) 2016
Kim, Oh, Shin, Jung, Chae, Lee (b44) 2007; 45
Bartlett, Lee, Ahmed, Nemhauser, Sokol, Na (b42) 2014; 70
El-Bouri, Shah (b14) 2006; 31
Bengio, Lamblin, Popovici, Larochelle (b30) 2007; 19
Heger, Branke, Hildebrandt, Scholz-Reiter (b16) 2016; 54
Little (b3) 1961; 9
Erhan, Courville, Vincent (b38) 2010; 11
S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning 2015, June, pp. 448–456.
M.C. Chen, R.J. Wang, A.P. Chen, An empirical study for the detection of corporate financial anomaly using outlier mining techniques, in: 2007 Int. Conf. Converg. Inf. Technol., ICCIT 2007, 2007, pp. 612–617.
V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Proc. 27th Int. Conf. Mach. Learn., 2010.
P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proc. 25th Int. Conf. Mach. Learn. - ICML ’08, 2008, pp. 1096–1103.
Chiu (b24) 1991; 19
Xiong, Wang, Liu, Zhou, Hou, Liu (b34) 2016; 52
Siebert, Bartlett, Kim, Ahmed, Lee, Nazzal, Nemhauser, Sokol (b43) 2018
Choe, Kim, Ryu (b15) 2016
Heger, Bani, Scholz-Reiter (b17) 2012; 43
Cortes, Vapnik (b28) 1995; 20
B. Scholz-Reiter, J. Heger, T. Hildebrandt, Gaussian processes for dispatching rule selection scheduling: Comparison of learning techniques, in: Proc. - IEEE Int. Conf. Data Mining, ICDM, 2010.
Liu, Dong (b12) 1996; 7
Ali, Shamsuddin, Ralescu (b20) 2015; 7
Grozdić, Jovičić, Subotić (b33) 2017; 59
Kingma, Ba (b41) 2015; 2015
Chen, Ji (b5) 2007; 181
Schölkopf, Platt, Shawe-Taylor, Smola, Williamson (b29) 2001; 13
C.M. Liu, C.J. Kuo, H.Y. Chi, A dynamic method for optimal WIP allocation and control in a semiconductor manufacturing system, in: IEEE Int. Symp. Semicond. Manuf. Conf. Proc., 2006, pp. 61–65.
De Armas, Lalla-Ruiz, Expósito-Izquierdo, Landa-Silva, Melián-Batista (b7) 2015; 45
Abdelmaguid, Nassef, Kamal, Hassan (b13) 2004
D. Yu, M.L. Seltzer, Improved bottleneck features using pretrained deep neural networks, in: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, 2011.
Lee (b9) 2008
Markou, Singh (b25) 2003; 83
Lin, Chang (b8) 2013; 62
Jerin Leno, Saravanasankar, Ponnambalam (b4) 2012
García-Álvarez, González, Vela (b11) 2018
Japkowicz (b21) 2001; 42
Rowshannahad, Dauzere-Peres, Cassini (b2) 2015; 54
B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Proc. Fifth Annu. Work. Comput. Learn. Theory - COLT ’92, 1992, pp. 144–152.
10.1016/j.asoc.2019.105904_b10
García-Álvarez (10.1016/j.asoc.2019.105904_b11) 2018
10.1016/j.asoc.2019.105904_b32
Schölkopf (10.1016/j.asoc.2019.105904_b29) 2001; 13
10.1016/j.asoc.2019.105904_b31
Grozdić (10.1016/j.asoc.2019.105904_b33) 2017; 59
10.1016/j.asoc.2019.105904_b35
Ali (10.1016/j.asoc.2019.105904_b20) 2015; 7
Liu (10.1016/j.asoc.2019.105904_b12) 1996; 7
Cortes (10.1016/j.asoc.2019.105904_b28) 1995; 20
Erhan (10.1016/j.asoc.2019.105904_b38) 2010; 11
Little (10.1016/j.asoc.2019.105904_b3) 1961; 9
10.1016/j.asoc.2019.105904_b6
El-Bouri (10.1016/j.asoc.2019.105904_b14) 2006; 31
Lee (10.1016/j.asoc.2019.105904_b9) 2008
Choe (10.1016/j.asoc.2019.105904_b15) 2016
Chen (10.1016/j.asoc.2019.105904_b5) 2007; 181
De Armas (10.1016/j.asoc.2019.105904_b7) 2015; 45
Lin (10.1016/j.asoc.2019.105904_b8) 2013; 62
Jerin Leno (10.1016/j.asoc.2019.105904_b4) 2012
10.1016/j.asoc.2019.105904_b18
10.1016/j.asoc.2019.105904_b39
Chawla (10.1016/j.asoc.2019.105904_b19) 2004; 6
Bengio (10.1016/j.asoc.2019.105904_b30) 2007; 19
Chiu (10.1016/j.asoc.2019.105904_b24) 1991; 19
Kim (10.1016/j.asoc.2019.105904_b44) 2007; 45
Heger (10.1016/j.asoc.2019.105904_b16) 2016; 54
Siebert (10.1016/j.asoc.2019.105904_b43) 2018
10.1016/j.asoc.2019.105904_b27
10.1016/j.asoc.2019.105904_b26
Wakabayashi (10.1016/j.asoc.2019.105904_b1) 2004; 17
Xiong (10.1016/j.asoc.2019.105904_b34) 2016; 52
Zhao (10.1016/j.asoc.2019.105904_b36) 2016
10.1016/j.asoc.2019.105904_b40
Bartlett (10.1016/j.asoc.2019.105904_b42) 2014; 70
Heger (10.1016/j.asoc.2019.105904_b17) 2012; 43
Markou (10.1016/j.asoc.2019.105904_b25) 2003; 83
Bishop (10.1016/j.asoc.2019.105904_b23) 2006
Xu (10.1016/j.asoc.2019.105904_b37) 2018
Abdelmaguid (10.1016/j.asoc.2019.105904_b13) 2004
Lee (10.1016/j.asoc.2019.105904_b22) 2006; 4233
Kingma (10.1016/j.asoc.2019.105904_b41) 2015; 2015
Japkowicz (10.1016/j.asoc.2019.105904_b21) 2001; 42
Rowshannahad (10.1016/j.asoc.2019.105904_b2) 2015; 54
References_xml – reference: C.M. Liu, C.J. Kuo, H.Y. Chi, A dynamic method for optimal WIP allocation and control in a semiconductor manufacturing system, in: IEEE Int. Symp. Semicond. Manuf. Conf. Proc., 2006, pp. 61–65.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b28
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 52
  start-page: 194
  year: 2016
  end-page: 202
  ident: b34
  article-title: ECG signal enhancement based on improved denoising auto-encoder
  publication-title: Eng. Appl. Artif. Intell.
– year: 2006
  ident: b23
  article-title: Pattern Recognition and Machine Learning
– volume: 19
  start-page: 1883
  year: 1991
  end-page: 1905
  ident: b24
  article-title: Bandwidth selection for kernel density estimation
  publication-title: Ann. Statist.
– volume: 7
  start-page: 243
  year: 1996
  end-page: 250
  ident: b12
  article-title: Dispatching rule selection using artificial neural networks for dynamic planning and scheduling
  publication-title: J. Intell. Manuf.
– volume: 83
  start-page: 2481
  year: 2003
  end-page: 2497
  ident: b25
  article-title: Novelty detection: A review - Part 1: Statistical approaches
  publication-title: Signal Process.
– reference: M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: Identifying density-based local outliers, in: Proc. 2000 Acm Sigmod Int. Conf. Manag. Data, 2000, pp. 1–12.
– volume: 6
  start-page: 1
  year: 2004
  end-page: 6
  ident: b19
  article-title: Editorial: Special issue on learning from imbalanced data sets
  publication-title: ACM SIGKDD Explor. Newsl.
– reference: V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Proc. 27th Int. Conf. Mach. Learn., 2010.
– reference: P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, ICML, 2010, pp. 3371–3408.
– year: 2016
  ident: b15
  article-title: Online preference learning for adaptive dispatching of AGVs in an automated container terminal
  publication-title: Appl. Soft Comput. J.
– volume: 70
  start-page: 176
  year: 2014
  end-page: 182
  ident: b42
  article-title: Congestion-aware dynamic routing in automated material handling systems
  publication-title: Comput. Ind. Eng.
– reference: D. Yu, M.L. Seltzer, Improved bottleneck features using pretrained deep neural networks, in: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, 2011.
– volume: 62
  start-page: 92
  year: 2013
  end-page: 104
  ident: b8
  article-title: A novel reliability evaluation technique for stochastic-flow manufacturing networks with multiple production lines
  publication-title: IEEE Trans. Reliab.
– year: 2004
  ident: b13
  article-title: A hybrid GA/heuristic approach to the simultaneous scheduling of machines and automated guided vehicles
  publication-title: Int. J. Prod. Res.
– volume: 45
  start-page: 350
  year: 2015
  end-page: 360
  ident: b7
  article-title: A hybrid GRASP-VNS for ship routing and scheduling problem with discretized time windows
  publication-title: Eng. Appl. Artif. Intell.
– year: 2018
  ident: b11
  article-title: Metaheuristics for solving a real-world electric vehicle charging scheduling problem
  publication-title: Appl. Soft Comput. J.
– volume: 17
  start-page: 317
  year: 2004
  end-page: 323
  ident: b1
  article-title: High-speed AMHS and its operation method for 300-mm QTAT fab
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 54
  start-page: 50
  year: 2015
  end-page: 59
  ident: b2
  article-title: Capacitated qualification management in semiconductor manufacturing
  publication-title: Omega
– volume: 11
  start-page: 625
  year: 2010
  end-page: 660
  ident: b38
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J. Mach. Learn. Res.
– volume: 181
  start-page: 515
  year: 2007
  end-page: 522
  ident: b5
  article-title: A mixed integer programming model for advanced planning and scheduling (APS)
  publication-title: European J. Oper. Res.
– volume: 54
  start-page: 6812
  year: 2016
  end-page: 6824
  ident: b16
  article-title: Dynamic adjustment of dispatching rule parameters in flow shops with sequence-dependent set-up times
  publication-title: Int. J. Prod. Res.
– volume: 43
  year: 2012
  ident: b17
  article-title: Improving production scheduling with machine learning
  publication-title: Artif. Intell. Logist.
– volume: 42
  start-page: 97
  year: 2001
  end-page: 122
  ident: b21
  article-title: Supervised versus unsupervised binary-learning by feedforward neural networks
  publication-title: Mach. Learn.
– volume: 59
  start-page: 15
  year: 2017
  end-page: 22
  ident: b33
  article-title: Whispered speech recognition using deep denoising autoencoder
  publication-title: Eng. Appl. Artif. Intell.
– volume: 31
  start-page: 342
  year: 2006
  end-page: 349
  ident: b14
  article-title: A neural network for dispatching rule selection in a job shop
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 15
  ident: b41
  article-title: Adam: a method for stochastic optimization
  publication-title: Int. Conf. Learn. Represent.
– reference: B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Proc. Fifth Annu. Work. Comput. Learn. Theory - COLT ’92, 1992, pp. 144–152.
– year: 2018
  ident: b37
  article-title: Automatic roller bearings fault diagnosis using DSAE in deep learning and CFS algorithm
  publication-title: Soft Comput.
– volume: 7
  start-page: 176
  year: 2015
  end-page: 204
  ident: b20
  article-title: Classification with class imbalance problem: A review
  publication-title: Int. J. Adv. Soft Comput. Its Appl.
– volume: 45
  start-page: 789
  year: 2007
  end-page: 802
  ident: b44
  article-title: Effectiveness of vehicle reassignment in a large-scale overhead hoist transport system
  publication-title: Int. J. Prod. Res.
– volume: 19
  start-page: 153
  year: 2007
  ident: b30
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proc. 25th Int. Conf. Mach. Learn. - ICML ’08, 2008, pp. 1096–1103.
– year: 2016
  ident: b36
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
– start-page: 1
  year: 2018
  end-page: 13
  ident: b43
  article-title: Decision policies for semiconductor manufacturing: optimisation under uncertainty with simulation validation
  publication-title: Int. J. Prod. Res.
– year: 2008
  ident: b9
  article-title: Fuzzy rule generation for adaptive scheduling in a dynamic manufacturing environment
  publication-title: Appl. Soft Comput. J.
– volume: 9
  start-page: 383
  year: 1961
  end-page: 387
  ident: b3
  article-title: A proof for the queuing formula: L =
  publication-title: Oper. Res.
– year: 2012
  ident: b4
  article-title: Layout design for efficient material flow path
  publication-title: Procedia Eng.
– volume: 13
  start-page: 1443
  year: 2001
  end-page: 1471
  ident: b29
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput.
– reference: B. Scholz-Reiter, J. Heger, T. Hildebrandt, Gaussian processes for dispatching rule selection scheduling: Comparison of learning techniques, in: Proc. - IEEE Int. Conf. Data Mining, ICDM, 2010.
– reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning 2015, June, pp. 448–456.
– volume: 4233
  start-page: 21
  year: 2006
  end-page: 30
  ident: b22
  article-title: The novelty detection approach for difference degrees of class imbalance
  publication-title: Lecture Notes in Comput. Sci.
– reference: M.C. Chen, R.J. Wang, A.P. Chen, An empirical study for the detection of corporate financial anomaly using outlier mining techniques, in: 2007 Int. Conf. Converg. Inf. Technol., ICCIT 2007, 2007, pp. 612–617.
– ident: 10.1016/j.asoc.2019.105904_b6
  doi: 10.1109/ISSM.2006.4493023
– volume: 19
  start-page: 153
  year: 2007
  ident: 10.1016/j.asoc.2019.105904_b30
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105904_b43
  article-title: Decision policies for semiconductor manufacturing: optimisation under uncertainty with simulation validation
  publication-title: Int. J. Prod. Res.
– volume: 83
  start-page: 2481
  issue: 12
  year: 2003
  ident: 10.1016/j.asoc.2019.105904_b25
  article-title: Novelty detection: A review - Part 1: Statistical approaches
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2003.07.018
– ident: 10.1016/j.asoc.2019.105904_b35
  doi: 10.1109/ICCIT.2007.237
– volume: 70
  start-page: 176
  year: 2014
  ident: 10.1016/j.asoc.2019.105904_b42
  article-title: Congestion-aware dynamic routing in automated material handling systems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2014.02.002
– year: 2018
  ident: 10.1016/j.asoc.2019.105904_b37
  article-title: Automatic roller bearings fault diagnosis using DSAE in deep learning and CFS algorithm
  publication-title: Soft Comput.
– volume: 9
  start-page: 383
  year: 1961
  ident: 10.1016/j.asoc.2019.105904_b3
  article-title: A proof for the queuing formula: L = λ w
  publication-title: Oper. Res.
  doi: 10.1287/opre.9.3.383
– ident: 10.1016/j.asoc.2019.105904_b10
  doi: 10.1109/ICDMW.2010.19
– volume: 11
  start-page: 625
  year: 2010
  ident: 10.1016/j.asoc.2019.105904_b38
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J. Mach. Learn. Res.
– volume: 62
  start-page: 92
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2019.105904_b8
  article-title: A novel reliability evaluation technique for stochastic-flow manufacturing networks with multiple production lines
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2012.2220898
– volume: 59
  start-page: 15
  year: 2017
  ident: 10.1016/j.asoc.2019.105904_b33
  article-title: Whispered speech recognition using deep denoising autoencoder
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.12.012
– volume: 52
  start-page: 194
  year: 2016
  ident: 10.1016/j.asoc.2019.105904_b34
  article-title: ECG signal enhancement based on improved denoising auto-encoder
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.02.015
– ident: 10.1016/j.asoc.2019.105904_b39
– volume: 45
  start-page: 350
  year: 2015
  ident: 10.1016/j.asoc.2019.105904_b7
  article-title: A hybrid GRASP-VNS for ship routing and scheduling problem with discretized time windows
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.07.013
– volume: 31
  start-page: 342
  year: 2006
  ident: 10.1016/j.asoc.2019.105904_b14
  article-title: A neural network for dispatching rule selection in a job shop
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-005-0190-y
– ident: 10.1016/j.asoc.2019.105904_b32
– year: 2016
  ident: 10.1016/j.asoc.2019.105904_b15
  article-title: Online preference learning for adaptive dispatching of AGVs in an automated container terminal
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2015.09.027
– volume: 54
  start-page: 6812
  year: 2016
  ident: 10.1016/j.asoc.2019.105904_b16
  article-title: Dynamic adjustment of dispatching rule parameters in flow shops with sequence-dependent set-up times
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2016.1178406
– volume: 42
  start-page: 97
  year: 2001
  ident: 10.1016/j.asoc.2019.105904_b21
  article-title: Supervised versus unsupervised binary-learning by feedforward neural networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007660820062
– ident: 10.1016/j.asoc.2019.105904_b31
  doi: 10.1145/1390156.1390294
– volume: 7
  start-page: 243
  issue: 3
  year: 1996
  ident: 10.1016/j.asoc.2019.105904_b12
  article-title: Dispatching rule selection using artificial neural networks for dynamic planning and scheduling
  publication-title: J. Intell. Manuf.
  doi: 10.1007/BF00118083
– volume: 7
  start-page: 176
  year: 2015
  ident: 10.1016/j.asoc.2019.105904_b20
  article-title: Classification with class imbalance problem: A review
  publication-title: Int. J. Adv. Soft Comput. Its Appl.
– volume: 13
  start-page: 1443
  year: 2001
  ident: 10.1016/j.asoc.2019.105904_b29
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput.
  doi: 10.1162/089976601750264965
– ident: 10.1016/j.asoc.2019.105904_b40
– year: 2006
  ident: 10.1016/j.asoc.2019.105904_b23
– ident: 10.1016/j.asoc.2019.105904_b18
  doi: 10.21437/Interspeech.2011-91
– year: 2012
  ident: 10.1016/j.asoc.2019.105904_b4
  article-title: Layout design for efficient material flow path
  publication-title: Procedia Eng.
– year: 2008
  ident: 10.1016/j.asoc.2019.105904_b9
  article-title: Fuzzy rule generation for adaptive scheduling in a dynamic manufacturing environment
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2007.11.005
– volume: 181
  start-page: 515
  year: 2007
  ident: 10.1016/j.asoc.2019.105904_b5
  article-title: A mixed integer programming model for advanced planning and scheduling (APS)
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2006.06.018
– volume: 6
  start-page: 1
  year: 2004
  ident: 10.1016/j.asoc.2019.105904_b19
  article-title: Editorial: Special issue on learning from imbalanced data sets
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1007730.1007733
– volume: 17
  start-page: 317
  issue: 3
  year: 2004
  ident: 10.1016/j.asoc.2019.105904_b1
  article-title: High-speed AMHS and its operation method for 300-mm QTAT fab
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2004.831925
– year: 2004
  ident: 10.1016/j.asoc.2019.105904_b13
  article-title: A hybrid GA/heuristic approach to the simultaneous scheduling of machines and automated guided vehicles
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/0020754032000123579
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.asoc.2019.105904_b28
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 54
  start-page: 50
  year: 2015
  ident: 10.1016/j.asoc.2019.105904_b2
  article-title: Capacitated qualification management in semiconductor manufacturing
  publication-title: Omega
  doi: 10.1016/j.omega.2015.01.012
– ident: 10.1016/j.asoc.2019.105904_b27
  doi: 10.1145/130385.130401
– ident: 10.1016/j.asoc.2019.105904_b26
  doi: 10.1145/342009.335388
– year: 2016
  ident: 10.1016/j.asoc.2019.105904_b36
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
– volume: 19
  start-page: 1883
  year: 1991
  ident: 10.1016/j.asoc.2019.105904_b24
  article-title: Bandwidth selection for kernel density estimation
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176348376
– volume: 45
  start-page: 789
  year: 2007
  ident: 10.1016/j.asoc.2019.105904_b44
  article-title: Effectiveness of vehicle reassignment in a large-scale overhead hoist transport system
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207540600675819
– volume: 43
  year: 2012
  ident: 10.1016/j.asoc.2019.105904_b17
  article-title: Improving production scheduling with machine learning
  publication-title: Artif. Intell. Logist.
– year: 2018
  ident: 10.1016/j.asoc.2019.105904_b11
  article-title: Metaheuristics for solving a real-world electric vehicle charging scheduling problem
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.01.010
– volume: 4233
  start-page: 21
  year: 2006
  ident: 10.1016/j.asoc.2019.105904_b22
  article-title: The novelty detection approach for difference degrees of class imbalance
  publication-title: Lecture Notes in Comput. Sci.
  doi: 10.1007/11893257_3
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.asoc.2019.105904_b41
  article-title: Adam: a method for stochastic optimization
  publication-title: Int. Conf. Learn. Represent.
SSID ssj0016928
Score 2.3801286
Snippet Deep denoising autoencoders (DDAE), which are variants of the autoencoder, have shown outstanding performance in various machine learning tasks. In this study,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105904
SubjectTerms Class imbalance problem
Deep denoising autoencoder
Dispatching rule selection
Novelty detection
Storage allocation
Title Dynamic dispatching system using a deep denoising autoencoder for semiconductor manufacturing
URI https://dx.doi.org/10.1016/j.asoc.2019.105904
Volume 86
WOSCitedRecordID wos000503388200035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect (Freedom Collection)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELVa6KGXln6ptAX5wG0VlDjxJj7yVQFCCAla7aWKnNipFoGzYpOKn8-M7WSz0KJy4GLtWo432nn7djKeeUPIVhVLXsZaBuAq8yDRIfCglEnAOHjnaamUsnXcP0_S09NsMhFnPt12btsJpMZkt7di9qymhjkwNpbOPsHc_aYwAa_B6DCC2WH8L8Pvux7zePQyA561ESan1zxqbWBAjpTWMxhMPXUTbVOjniXKSmDW4RwT5muDSrDw7lqaFssfbD3j0JftHNg5MLlNTW-bbsUiw-dcmt_X08FRv8XfocSCtHqx2s-faySf0a7Xh_DRCBYOohGeQMdZkAgfVvQMmw0pEh0613H4AXu7QMLltgRgYtad2F4sXpbKvvcX1icWdjlrlznukeMeudvjJVllKRdAfKs7RweT4_6oaSxsA97-xn1llUsCvH8nf_deBh7JxRp54x8l6I6DwDvyQpv35G3XpoN61v5AfnlE0AEiqEMEtYigkiIiaI8IOkAEBUTQJUTQJUR8JD--H1zsHQa-q0ZQxmHYBEzImAklBE8jxVEKtpAaJX3irBAaHpergoclZzpmehyzNBKKlXjYrXkBP-U0_kRWTG30Z0JDKRIdVayKsiwpxkpgiXyVVCyTWpQqXCdR923lpZecx84nV_m_7bRORv01Mye48uhq3hkh9y6jcwVzwNQj13150qd8Ja8XWP9GVpqbVm-QV-WfZjq_2fSAugOC4I7e
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+dispatching+system+using+a+deep+denoising+autoencoder+for+semiconductor+manufacturing&rft.jtitle=Applied+soft+computing&rft.au=Lee%2C+Sangmin&rft.au=Kim%2C+Hae+Joong&rft.au=Kim%2C+Seoung+Bum&rft.date=2020-01-01&rft.issn=1568-4946&rft.volume=86&rft.spage=105904&rft_id=info:doi/10.1016%2Fj.asoc.2019.105904&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon