Bagging Supervised Autoencoder Classifier for credit scoring

Automatic credit scoring, a crucial risk management tool for banks and financial institutes, has attracted much attention in the past few decades. As such, various approaches have been developed to accurately and efficiently estimate defaults in loan applicants and seamlessly improve and facilitate...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 213; p. 118991
Main Authors: Abdoli, Mahsan, Akbari, Mohammad, Shahrabi, Jamal
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.03.2023
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Automatic credit scoring, a crucial risk management tool for banks and financial institutes, has attracted much attention in the past few decades. As such, various approaches have been developed to accurately and efficiently estimate defaults in loan applicants and seamlessly improve and facilitate decision-making in the lending process. However, the imbalanced nature of credit scoring datasets, as well as the heterogeneous nature of features in credit scoring task pose many challenges in developing and implementing effective credit scoring models, targeting the generalization power of classification models on unseen data. To mitigate these challenges, in this paper, we propose the Bagging Supervised Autoencoder Classifier (BSAC). BSAC is a learning model which simultaneously leverages the superior power of supervised autoencoders and representation learning in classification, as well as the Bagging mechanism to handle the irregularities in feature space. Supervised autoencoder has been exploited to learn an optimal latent space from heterogeneous features and perform classification on top of the learned latent space. In particular, the Bagging mechanism has been employed in the learning process to construct various samples of original data to tackle the problem that arises from imbalanced data and irregularities of features in latent space. Extensive experiments on various real-world and benchmark datasets validate the superiority and robustness of the proposed method in predicting the outcome of loan applications. •A novel credit scoring model using representation, ensemble, and multi-task learning.•In BSAC, the learned representations are guided by the label information of samples.•BSAC outperforms state-of-art baseline models in credit scoring imbalanced data.•BSAC performs significantly better than the best base classifier in the pool.•The model shows a balanced performance in classifying positive and negative samples.
AbstractList Automatic credit scoring, a crucial risk management tool for banks and financial institutes, has attracted much attention in the past few decades. As such, various approaches have been developed to accurately and efficiently estimate defaults in loan applicants and seamlessly improve and facilitate decision-making in the lending process. However, the imbalanced nature of credit scoring datasets, as well as the heterogeneous nature of features in credit scoring task pose many challenges in developing and implementing effective credit scoring models, targeting the generalization power of classification models on unseen data. To mitigate these challenges, in this paper, we propose the Bagging Supervised Autoencoder Classifier (BSAC). BSAC is a learning model which simultaneously leverages the superior power of supervised autoencoders and representation learning in classification, as well as the Bagging mechanism to handle the irregularities in feature space. Supervised autoencoder has been exploited to learn an optimal latent space from heterogeneous features and perform classification on top of the learned latent space. In particular, the Bagging mechanism has been employed in the learning process to construct various samples of original data to tackle the problem that arises from imbalanced data and irregularities of features in latent space. Extensive experiments on various real-world and benchmark datasets validate the superiority and robustness of the proposed method in predicting the outcome of loan applications. •A novel credit scoring model using representation, ensemble, and multi-task learning.•In BSAC, the learned representations are guided by the label information of samples.•BSAC outperforms state-of-art baseline models in credit scoring imbalanced data.•BSAC performs significantly better than the best base classifier in the pool.•The model shows a balanced performance in classifying positive and negative samples.
ArticleNumber 118991
Author Abdoli, Mahsan
Shahrabi, Jamal
Akbari, Mohammad
Author_xml – sequence: 1
  givenname: Mahsan
  surname: Abdoli
  fullname: Abdoli, Mahsan
  email: m.abdoli@aut.ac.ir
  organization: Department of Industrial Engineering and Management Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
– sequence: 2
  givenname: Mohammad
  orcidid: 0000-0002-3321-5775
  surname: Akbari
  fullname: Akbari, Mohammad
  email: akbari.ma@aut.ac.ir
  organization: Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
– sequence: 3
  givenname: Jamal
  surname: Shahrabi
  fullname: Shahrabi, Jamal
  email: jamalshahrabi@aut.ac.ir
  organization: Department of Industrial Engineering and Management Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
BookMark eNp9kMFKAzEURYNUsK3-gKv5gRlfJkkzgW5q0SoUXKjrkEnelJQ6Kcm04t-bUlcuunpvcy6cMyGjPvRIyD2FigKdPWwrTN-mqqGuK0obpegVGdNGsnImFRuRMSghS04lvyGTlLYAVALIMZk_ms3G95vi_bDHePQJXbE4DAF7GxzGYrkzKfnO57cLsbARnR-KZEPM0C257swu4d3fnZLP56eP5Uu5flu9Lhfr0jKAoawVCOHQNS00xiCgkrLtKCqgLZOqnbXYYS0t50xw4QTHBpFyqhiDVgrOpqQ579oYUorYaesHM_jQD9H4naagTxX0Vp8q6FMFfa6Q0fofuo_-y8Sfy9D8DGGWOmZ3nazPRbJ7RDtoF_wl_BcX3nh3
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126448
crossref_primary_10_1109_JIOT_2024_3411695
crossref_primary_10_3390_app13148409
crossref_primary_10_1109_TNSM_2023_3292269
crossref_primary_10_3390_app13064006
crossref_primary_10_1016_j_eswa_2024_124525
crossref_primary_10_2166_wst_2024_052
crossref_primary_10_3390_electronics12112485
crossref_primary_10_1007_s00521_024_10452_3
crossref_primary_10_29407_ja_v9i1_23670
crossref_primary_10_1109_TII_2024_3393491
crossref_primary_10_1016_j_engappai_2023_106911
crossref_primary_10_1142_S2424786325500124
crossref_primary_10_1007_s11831_025_10260_5
crossref_primary_10_1007_s10115_024_02129_z
crossref_primary_10_1108_BPMJ_09_2024_0886
crossref_primary_10_2139_ssrn_5059403
crossref_primary_10_1002_for_3033
crossref_primary_10_1007_s10479_024_06369_8
crossref_primary_10_3233_JIFS_230825
crossref_primary_10_3390_app13158701
crossref_primary_10_1016_j_eswa_2024_124072
crossref_primary_10_1002_for_70004
crossref_primary_10_1016_j_eswa_2023_121484
crossref_primary_10_1007_s10614_025_10893_5
Cites_doi 10.1007/s13748-020-00211-5
10.1371/journal.pone.0139427
10.1057/palgrave.jors.2601545
10.1080/00036846.2014.962222
10.1016/j.eswa.2015.02.001
10.1109/TSMCC.2011.2161285
10.1109/29.45535
10.1016/j.asoc.2018.01.021
10.1080/07350015.1983.10509329
10.1109/34.667881
10.1016/j.neucom.2018.07.070
10.1016/j.asoc.2021.107871
10.1023/A:1018054314350
10.1016/j.dss.2019.03.011
10.1016/j.asoc.2016.02.022
10.1186/s40537-014-0007-7
10.1145/3194452.3194456
10.2174/2666255813999200819164013
10.1016/j.asoc.2020.106852
10.1016/j.knosys.2019.105118
10.1016/j.dss.2019.01.002
10.1613/jair.953
10.1016/j.eswa.2016.12.035
10.1016/j.inffus.2018.07.004
10.1016/j.eswa.2019.05.042
10.1016/j.elerap.2017.06.004
10.1016/j.ejor.2015.05.030
10.1016/j.eswa.2020.113696
10.1016/j.eswa.2021.116034
10.1016/j.jfranklin.2019.01.046
10.1016/j.asoc.2018.04.049
10.1016/j.asoc.2020.106263
10.1016/j.eswa.2018.01.012
10.1016/j.eswa.2019.112918
10.1016/j.eswa.2010.06.048
10.1145/2939672.2939785
10.1109/TFUZZ.2010.2042721
10.1016/j.engappai.2019.103292
10.1016/j.eswa.2011.09.059
10.1016/j.csda.2010.06.014
10.1016/j.ins.2017.10.017
10.1023/A:1007379606734
10.1109/TSMCA.2009.2029559
10.1016/j.eswa.2015.04.042
10.1016/j.eswa.2017.10.022
10.1109/TSMCA.2010.2084081
10.1109/ACCESS.2021.3083490
10.1016/j.ejor.2017.02.037
10.1016/j.eswa.2020.114020
10.1016/j.eswa.2011.09.033
10.1109/ACCESS.2019.2922676
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.118991
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_118991
S0957417422020097
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-29055ded8b08aae0e977bf1e901b379b6befe27c443545d54e8ee1419330b7543
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000878295700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 21:07:07 EST 2025
Sat Nov 29 07:06:42 EST 2025
Fri Feb 23 02:39:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Imbalanced data
Ensemble learning
Autoencoder
Multi-task learning
Credit scoring
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-29055ded8b08aae0e977bf1e901b379b6befe27c443545d54e8ee1419330b7543
ORCID 0000-0002-3321-5775
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2022_118991
crossref_primary_10_1016_j_eswa_2022_118991
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_118991
PublicationCentury 2000
PublicationDate 2023-03-01
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chawla, Bowyer, Hall, Kegelmeyer (b11) 2002; 16
Yotsawat, Wattuya, Srivihok (b63) 2021; 9
Neagoe, Ciotec, Cucu (b42) 2018
He, Zhang, Zhang (b26) 2018; 98
Breiman (b7) 1996; 24
Brown, Mues (b8) 2012; 39
Farajian, Adibi (b19) 2020; 9
Goodfellow, Bengio, Courville (b23) 2016
Baesens, Van Gestel, Viaene, Stepanova, Suykens, Vanthienen (b1) 2003; 54
Feng, Xiao, Zhong, Qiu, Dong (b20) 2018; 65
Maleki, Motevallian, Hosseini, Sabokrou, Maleki (b36) 2021
Bengio, Courville, Vincent (b5) 2012
Bhatore, Mohan, Reddy (b6) 2020
Chen, Wang, Liu (b13) 2019
Galar, Fernandez, Barrenechea, Bustince, Herrera (b21) 2011; 42
Ruder (b46) 2017
Serrano-Cinca, Gutiérrez-Nieto, López-Palacios (b48) 2015; 10
Bahnsen, Aouada, Ottersten (b2) 2015; 42
Xiao, Zhou, Zhong, Xie, Gu, Liu (b61) 2020; 189
Morgan, Bourlard (b40) 1989; 2
Moreno-Barea, Jerez, Franco (b39) 2020; 161
Sun, Lang, Fujita, Li (b51) 2018; 425
Wang, Hao, Ma, Jiang (b55) 2011; 38
Veeramanikandan, Jeyakarthic (b53) 2021; 14
Malekipirbazari, Aksakalli (b37) 2015; 42
Yang, Qiao, Huang, Wang, Wang (b62) 2021; 113
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In
Tran, Duong, Ho (b52) 2016
Caruana (b10) 1997; 28
Khoshgoftaar, Van Hulse, Napolitano (b27) 2010; 41
Liu, Fan, Xia (b33) 2022; 189
Le, Patterson, White (b30) 2018; 31
Prechelt (b44) 1998
Guo, He, Huang (b24) 2019; 7
(pp. 62–65).
Dastile, Celik, Potsane (b14) 2020
Carta, Ferreira, Recupero, Saia, Saia (b9) 2020; 87
Reichert, Cho, Wagner (b45) 1983; 1
Bastani, Asgari, Namavari (b3) 2019; 134
Haixiang, Yijing, Shang, Mingyun, Yuanyue, Bing (b25) 2017; 73
Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (b41) 2015; 2
Xia, Liu, Da, Xie (b57) 2018; 93
Xiao, Xiao, Wang (b59) 2016; 43
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b50) 2014; 15
Mancisidor, Kampffmeyer, Aas, Jenssen (b38) 2021; 164
Wong, Seng, Wong (b56) 2020; 141
Waibel, Sawai, Shikano (b54) 1989; 37
Papouskova, Hajek (b43) 2019; 118
Maalouf, Trafalis (b34) 2011; 55
Emekter, Tu, Jirasakuldech, Lu (b17) 2015; 47
Yu, Zhou, Tang, Chen (b64) 2018; 69
Kittler, Hatef, Duin, Matas (b28) 1998; 20
Kozodoi, Lessmann, Papakonstantinou, Gatsoulis, Baesens (b29) 2019; 120
Lessmann, Baesens, Seow, Thomas (b32) 2015; 247
Batuwita, Palade (b4) 2010; 18
Maldonado, Pérez, Bravo (b35) 2017; 261
Duan (b15) 2019; 356
Duin (b16) 2002; 2
Seiffert, Khoshgoftaar, Van Hulse, Napolitano (b47) 2009; 40
Lei, Xie, Zhong, Dai, Yang, Shen (b31) 2020
(pp. 785–794).
Fan, Q., & Yang, J. (2018). A denoising autoencoder approach for credit risk analysis. In
Shen, Zhao, Kou, Alsaadi (b49) 2021
Zhang, He, Zhang (b65) 2018; 316
García, Marqués, Sánchez (b22) 2019; 47
Xia, Liu, Liu (b58) 2017; 24
Xiao, Xie, He, Jiang (b60) 2012; 39
Bahnsen (10.1016/j.eswa.2022.118991_b2) 2015; 42
Kittler (10.1016/j.eswa.2022.118991_b28) 1998; 20
Xia (10.1016/j.eswa.2022.118991_b57) 2018; 93
Yang (10.1016/j.eswa.2022.118991_b62) 2021; 113
Maldonado (10.1016/j.eswa.2022.118991_b35) 2017; 261
Xiao (10.1016/j.eswa.2022.118991_b59) 2016; 43
Tran (10.1016/j.eswa.2022.118991_b52) 2016
Feng (10.1016/j.eswa.2022.118991_b20) 2018; 65
10.1016/j.eswa.2022.118991_b18
Seiffert (10.1016/j.eswa.2022.118991_b47) 2009; 40
Srivastava (10.1016/j.eswa.2022.118991_b50) 2014; 15
Bhatore (10.1016/j.eswa.2022.118991_b6) 2020
Wang (10.1016/j.eswa.2022.118991_b55) 2011; 38
Duan (10.1016/j.eswa.2022.118991_b15) 2019; 356
Xiao (10.1016/j.eswa.2022.118991_b61) 2020; 189
Galar (10.1016/j.eswa.2022.118991_b21) 2011; 42
Xia (10.1016/j.eswa.2022.118991_b58) 2017; 24
Batuwita (10.1016/j.eswa.2022.118991_b4) 2010; 18
Brown (10.1016/j.eswa.2022.118991_b8) 2012; 39
Maalouf (10.1016/j.eswa.2022.118991_b34) 2011; 55
Moreno-Barea (10.1016/j.eswa.2022.118991_b39) 2020; 161
10.1016/j.eswa.2022.118991_b12
Morgan (10.1016/j.eswa.2022.118991_b40) 1989; 2
Xiao (10.1016/j.eswa.2022.118991_b60) 2012; 39
Shen (10.1016/j.eswa.2022.118991_b49) 2021
Farajian (10.1016/j.eswa.2022.118991_b19) 2020; 9
Haixiang (10.1016/j.eswa.2022.118991_b25) 2017; 73
Ruder (10.1016/j.eswa.2022.118991_b46) 2017
Zhang (10.1016/j.eswa.2022.118991_b65) 2018; 316
Dastile (10.1016/j.eswa.2022.118991_b14) 2020
Veeramanikandan (10.1016/j.eswa.2022.118991_b53) 2021; 14
Caruana (10.1016/j.eswa.2022.118991_b10) 1997; 28
Guo (10.1016/j.eswa.2022.118991_b24) 2019; 7
Reichert (10.1016/j.eswa.2022.118991_b45) 1983; 1
Wong (10.1016/j.eswa.2022.118991_b56) 2020; 141
García (10.1016/j.eswa.2022.118991_b22) 2019; 47
Waibel (10.1016/j.eswa.2022.118991_b54) 1989; 37
He (10.1016/j.eswa.2022.118991_b26) 2018; 98
Chen (10.1016/j.eswa.2022.118991_b13) 2019
Neagoe (10.1016/j.eswa.2022.118991_b42) 2018
Baesens (10.1016/j.eswa.2022.118991_b1) 2003; 54
Prechelt (10.1016/j.eswa.2022.118991_b44) 1998
Le (10.1016/j.eswa.2022.118991_b30) 2018; 31
Najafabadi (10.1016/j.eswa.2022.118991_b41) 2015; 2
Emekter (10.1016/j.eswa.2022.118991_b17) 2015; 47
Lessmann (10.1016/j.eswa.2022.118991_b32) 2015; 247
Goodfellow (10.1016/j.eswa.2022.118991_b23) 2016
Bastani (10.1016/j.eswa.2022.118991_b3) 2019; 134
Sun (10.1016/j.eswa.2022.118991_b51) 2018; 425
Khoshgoftaar (10.1016/j.eswa.2022.118991_b27) 2010; 41
Lei (10.1016/j.eswa.2022.118991_b31) 2020
Mancisidor (10.1016/j.eswa.2022.118991_b38) 2021; 164
Serrano-Cinca (10.1016/j.eswa.2022.118991_b48) 2015; 10
Duin (10.1016/j.eswa.2022.118991_b16) 2002; 2
Carta (10.1016/j.eswa.2022.118991_b9) 2020; 87
Maleki (10.1016/j.eswa.2022.118991_b36) 2021
Malekipirbazari (10.1016/j.eswa.2022.118991_b37) 2015; 42
Bengio (10.1016/j.eswa.2022.118991_b5) 2012
Yotsawat (10.1016/j.eswa.2022.118991_b63) 2021; 9
Breiman (10.1016/j.eswa.2022.118991_b7) 1996; 24
Papouskova (10.1016/j.eswa.2022.118991_b43) 2019; 118
Kozodoi (10.1016/j.eswa.2022.118991_b29) 2019; 120
Yu (10.1016/j.eswa.2022.118991_b64) 2018; 69
Chawla (10.1016/j.eswa.2022.118991_b11) 2002; 16
Liu (10.1016/j.eswa.2022.118991_b33) 2022; 189
References_xml – volume: 247
  start-page: 124
  year: 2015
  end-page: 136
  ident: b32
  article-title: Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research
  publication-title: European Journal of Operational Research
– volume: 47
  start-page: 88
  year: 2019
  end-page: 101
  ident: b22
  article-title: Exploring the synergetic effects of sample types on the performance of ensembles for credit risk and corporate bankruptcy prediction
  publication-title: Information Fusion
– reference: . (pp. 62–65).
– volume: 42
  start-page: 4621
  year: 2015
  end-page: 4631
  ident: b37
  article-title: Risk assessment in social lending via random forests
  publication-title: Expert Systems with Applications
– volume: 2
  start-page: 765
  year: 2002
  end-page: 770
  ident: b16
  article-title: The combining classifier: To train or not to train?
  publication-title: Object recognition supported by user interaction for service robots
– start-page: 182
  year: 2021
  end-page: 187
  ident: b36
  article-title: Improvement of credit scoring by lstm autoencoder model
  publication-title: 2021 11th International Conference on Computer Engineering and Knowledge
– volume: 7
  start-page: 78549
  year: 2019
  end-page: 78559
  ident: b24
  article-title: A multi-stage self-adaptive classifier ensemble model with application in credit scoring
  publication-title: IEEE Access
– volume: 2
  start-page: 630
  year: 1989
  end-page: 637
  ident: b40
  article-title: Generalization and parameter estimation in feedforward nets: Some experiments
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1
  year: 2020
  end-page: 28
  ident: b6
  article-title: Machine learning techniques for credit risk evaluation: A systematic literature review
  publication-title: Journal of Banking and Financial Technology
– volume: 42
  start-page: 463
  year: 2011
  end-page: 484
  ident: b21
  article-title: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– year: 2017
  ident: b46
  article-title: An overview of multi-task learning in deep neural networks
– volume: 189
  year: 2020
  ident: b61
  article-title: Cost-sensitive semi-supervised selective ensemble model for customer credit scoring
  publication-title: Knowledge-Based Systems
– volume: 161
  year: 2020
  ident: b39
  article-title: Improving classification accuracy using data augmentation on small data sets
  publication-title: Expert Systems with Applications
– volume: 356
  start-page: 4716
  year: 2019
  end-page: 4731
  ident: b15
  article-title: Financial system modeling using deep neural networks (DNNs) for effective risk assessment and prediction
  publication-title: Journal of the Franklin Institute
– year: 2021
  ident: b49
  article-title: A new deep learning ensemble credit risk evaluation model with an improved synthetic minority oversampling technique
  publication-title: Applied Soft Computing
– volume: 65
  start-page: 139
  year: 2018
  end-page: 151
  ident: b20
  article-title: Dynamic ensemble classification for credit scoring using soft probability
  publication-title: Applied Soft Computing
– volume: 9
  start-page: 263
  year: 2020
  end-page: 274
  ident: b19
  article-title: DMRAE: Discriminative manifold regularized auto-encoder for sparse and robust feature learning
  publication-title: Progress in Artificial Intelligence
– volume: 37
  start-page: 1888
  year: 1989
  end-page: 1898
  ident: b54
  article-title: Modularity and scaling in large phonemic neural networks
  publication-title: IEEE Transactions on Acoustics, Speech and Signal Processing
– volume: 47
  start-page: 54
  year: 2015
  end-page: 70
  ident: b17
  article-title: Evaluating credit risk and loan performance in online peer-to-peer (P2P) lending
  publication-title: Applied Economics
– reference: . (pp. 785–794).
– volume: 38
  start-page: 223
  year: 2011
  end-page: 230
  ident: b55
  article-title: A comparative assessment of ensemble learning for credit scoring
  publication-title: Expert Systems with Applications
– volume: 39
  start-page: 3668
  year: 2012
  end-page: 3675
  ident: b60
  article-title: Dynamic classifier ensemble model for customer classification with imbalanced class distribution
  publication-title: Expert Systems with Applications
– volume: 39
  start-page: 3446
  year: 2012
  end-page: 3453
  ident: b8
  article-title: An experimental comparison of classification algorithms for imbalanced credit scoring data sets
  publication-title: Expert Systems with Applications
– volume: 69
  start-page: 192
  year: 2018
  end-page: 202
  ident: b64
  article-title: A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data
  publication-title: Applied Soft Computing
– volume: 42
  start-page: 6609
  year: 2015
  end-page: 6619
  ident: b2
  article-title: Example-dependent cost-sensitive decision trees
  publication-title: Expert Systems with Applications
– volume: 2
  start-page: 1
  year: 2015
  end-page: 24
  ident: b41
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: Journal of Big Data
– volume: 164
  start-page: 114020
  year: 2021
  ident: b38
  article-title: Learning latent representations of bank customers with the variational autoencoder
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b7
  article-title: Bagging predictors
  publication-title: Machine Learning
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b11
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
– start-page: 1
  year: 2020
  end-page: 12
  ident: b31
  article-title: Generative adversarial fusion network for class imbalance credit scoring
  publication-title: Neural Computing and Applications
– volume: 40
  start-page: 185
  year: 2009
  end-page: 197
  ident: b47
  article-title: RUSboost: A hybrid approach to alleviating class imbalance
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
– reference: Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In
– volume: 113
  year: 2021
  ident: b62
  article-title: An automatic credit scoring strategy (ACSS) using memetic evolutionary algorithm and neural architecture search
  publication-title: Applied Soft Computing
– start-page: 55
  year: 1998
  end-page: 69
  ident: b44
  article-title: Early stopping-but when?
  publication-title: Neural networks: tricks of the trade
– volume: 20
  start-page: 226
  year: 1998
  end-page: 239
  ident: b28
  article-title: On combining classifiers
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 18
  start-page: 558
  year: 2010
  end-page: 571
  ident: b4
  article-title: FSVM-CIL: Fuzzy support vector machines for class imbalance learning
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 41
  start-page: 552
  year: 2010
  end-page: 568
  ident: b27
  article-title: Comparing boosting and bagging techniques with noisy and imbalanced data
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
– volume: 98
  start-page: 105
  year: 2018
  end-page: 117
  ident: b26
  article-title: A novel ensemble method for credit scoring: Adaption of different imbalance ratios
  publication-title: Expert Systems with Applications
– start-page: 4373
  year: 2019
  end-page: 4377
  ident: b13
  article-title: Credit risk prediction in peer-to-peer lending with ensemble learning framework
  publication-title: 2019 chinese control and decision conference
– volume: 425
  start-page: 76
  year: 2018
  end-page: 91
  ident: b51
  article-title: Imbalanced enterprise credit evaluation with DTE-SBD: Decision tree ensemble based on SMOTE and bagging with differentiated sampling rates
  publication-title: Information Sciences
– volume: 134
  start-page: 209
  year: 2019
  end-page: 224
  ident: b3
  article-title: Wide and deep learning for peer-to-peer lending
  publication-title: Expert Systems with Applications
– reference: Fan, Q., & Yang, J. (2018). A denoising autoencoder approach for credit risk analysis. In
– volume: 54
  start-page: 627
  year: 2003
  end-page: 635
  ident: b1
  article-title: Benchmarking state-of-the-art classification algorithms for credit scoring
  publication-title: Journal of the Operational Research Society
– volume: 73
  start-page: 220
  year: 2017
  end-page: 239
  ident: b25
  article-title: Learning from class-imbalanced data: Review of methods and applications
  publication-title: Expert Systems with Applications
– volume: 87
  start-page: 103292
  year: 2020
  ident: b9
  article-title: A combined entropy-based approach for a proactive credit scoring
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 10
  year: 2015
  ident: b48
  article-title: Determinants of default in P2P lending
  publication-title: PLoS One
– start-page: 145
  year: 2016
  end-page: 149
  ident: b52
  article-title: Credit scoring model: A combination of genetic programming and deep learning
  publication-title: 2016 future technologies conference
– year: 2020
  ident: b14
  article-title: Statistical and machine learning models in credit scoring: A systematic literature survey
  publication-title: Applied Soft Computing
– volume: 14
  start-page: 2958
  year: 2021
  end-page: 2968
  ident: b53
  article-title: Parameter-tuned deep learning model for credit risk assessment and scoring applications
  publication-title: Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science)
– volume: 1
  start-page: 101
  year: 1983
  end-page: 114
  ident: b45
  article-title: An examination of the conceptual issues involved in developing credit-scoring models
  publication-title: Journal of Business & Economic Statistics
– year: 2016
  ident: b23
  article-title: Deep learning
– volume: 189
  start-page: 116034
  year: 2022
  ident: b33
  article-title: Credit scoring based on tree-enhanced gradient boosting decision trees
  publication-title: Expert Systems with Applications
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b50
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 24
  start-page: 30
  year: 2017
  end-page: 49
  ident: b58
  article-title: Cost-sensitive boosted tree for loan evaluation in peer-to-peer lending
  publication-title: Electronic Commerce Research and Applications
– volume: 55
  start-page: 168
  year: 2011
  end-page: 183
  ident: b34
  article-title: Robust weighted kernel logistic regression in imbalanced and rare events data
  publication-title: Computational Statistics & Data Analysis
– volume: 316
  start-page: 210
  year: 2018
  end-page: 221
  ident: b65
  article-title: Classifier selection and clustering with fuzzy assignment in ensemble model for credit scoring
  publication-title: Neurocomputing
– volume: 31
  start-page: 107
  year: 2018
  end-page: 117
  ident: b30
  article-title: Supervised autoencoders: Improving generalization performance with unsupervised regularizers
  publication-title: Advances in Neural Information Processing Systems
– volume: 9
  start-page: 78521
  year: 2021
  end-page: 78537
  ident: b63
  article-title: A novel method for credit scoring based on cost-sensitive neural network ensemble
  publication-title: IEEE Access
– start-page: 2012
  year: 2012
  ident: b5
  article-title: Unsupervised feature learning and deep learning: A review and new perspectives
– volume: 28
  start-page: 41
  year: 1997
  end-page: 75
  ident: b10
  article-title: Multitask learning
  publication-title: Machine Learning
– volume: 93
  start-page: 182
  year: 2018
  end-page: 199
  ident: b57
  article-title: A novel heterogeneous ensemble credit scoring model based on bstacking approach
  publication-title: Expert Systems with Applications
– volume: 120
  start-page: 106
  year: 2019
  end-page: 117
  ident: b29
  article-title: A multi-objective approach for profit-driven feature selection in credit scoring
  publication-title: Decision Support Systems
– volume: 43
  start-page: 73
  year: 2016
  end-page: 86
  ident: b59
  article-title: Ensemble classification based on supervised clustering for credit scoring
  publication-title: Applied Soft Computing
– start-page: 201
  year: 2018
  end-page: 206
  ident: b42
  article-title: Deep convolutional neural networks versus multilayer perceptron for financial prediction
  publication-title: 2018 international conference on communications
– volume: 141
  year: 2020
  ident: b56
  article-title: Cost-sensitive ensemble of stacked denoising autoencoders for class imbalance problems in business domain
  publication-title: Expert Systems with Applications
– volume: 261
  start-page: 656
  year: 2017
  end-page: 665
  ident: b35
  article-title: Cost-based feature selection for support vector machines: An application in credit scoring
  publication-title: European Journal of Operational Research
– volume: 118
  start-page: 33
  year: 2019
  end-page: 45
  ident: b43
  article-title: Two-stage consumer credit risk modelling using heterogeneous ensemble learning
  publication-title: Decision Support Systems
– volume: 9
  start-page: 263
  year: 2020
  ident: 10.1016/j.eswa.2022.118991_b19
  article-title: DMRAE: Discriminative manifold regularized auto-encoder for sparse and robust feature learning
  publication-title: Progress in Artificial Intelligence
  doi: 10.1007/s13748-020-00211-5
– volume: 10
  year: 2015
  ident: 10.1016/j.eswa.2022.118991_b48
  article-title: Determinants of default in P2P lending
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0139427
– volume: 54
  start-page: 627
  year: 2003
  ident: 10.1016/j.eswa.2022.118991_b1
  article-title: Benchmarking state-of-the-art classification algorithms for credit scoring
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/palgrave.jors.2601545
– volume: 47
  start-page: 54
  year: 2015
  ident: 10.1016/j.eswa.2022.118991_b17
  article-title: Evaluating credit risk and loan performance in online peer-to-peer (P2P) lending
  publication-title: Applied Economics
  doi: 10.1080/00036846.2014.962222
– volume: 42
  start-page: 4621
  year: 2015
  ident: 10.1016/j.eswa.2022.118991_b37
  article-title: Risk assessment in social lending via random forests
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.02.001
– volume: 42
  start-page: 463
  year: 2011
  ident: 10.1016/j.eswa.2022.118991_b21
  article-title: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
  doi: 10.1109/TSMCC.2011.2161285
– volume: 37
  start-page: 1888
  year: 1989
  ident: 10.1016/j.eswa.2022.118991_b54
  article-title: Modularity and scaling in large phonemic neural networks
  publication-title: IEEE Transactions on Acoustics, Speech and Signal Processing
  doi: 10.1109/29.45535
– volume: 65
  start-page: 139
  year: 2018
  ident: 10.1016/j.eswa.2022.118991_b20
  article-title: Dynamic ensemble classification for credit scoring using soft probability
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.01.021
– volume: 1
  start-page: 101
  year: 1983
  ident: 10.1016/j.eswa.2022.118991_b45
  article-title: An examination of the conceptual issues involved in developing credit-scoring models
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1080/07350015.1983.10509329
– volume: 20
  start-page: 226
  year: 1998
  ident: 10.1016/j.eswa.2022.118991_b28
  article-title: On combining classifiers
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.667881
– volume: 2
  start-page: 765
  year: 2002
  ident: 10.1016/j.eswa.2022.118991_b16
  article-title: The combining classifier: To train or not to train?
– volume: 316
  start-page: 210
  year: 2018
  ident: 10.1016/j.eswa.2022.118991_b65
  article-title: Classifier selection and clustering with fuzzy assignment in ensemble model for credit scoring
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.070
– volume: 113
  year: 2021
  ident: 10.1016/j.eswa.2022.118991_b62
  article-title: An automatic credit scoring strategy (ACSS) using memetic evolutionary algorithm and neural architecture search
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107871
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.eswa.2022.118991_b7
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1023/A:1018054314350
– volume: 120
  start-page: 106
  year: 2019
  ident: 10.1016/j.eswa.2022.118991_b29
  article-title: A multi-objective approach for profit-driven feature selection in credit scoring
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2019.03.011
– volume: 43
  start-page: 73
  year: 2016
  ident: 10.1016/j.eswa.2022.118991_b59
  article-title: Ensemble classification based on supervised clustering for credit scoring
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.02.022
– start-page: 145
  year: 2016
  ident: 10.1016/j.eswa.2022.118991_b52
  article-title: Credit scoring model: A combination of genetic programming and deep learning
– year: 2016
  ident: 10.1016/j.eswa.2022.118991_b23
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2022.118991_b41
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-014-0007-7
– ident: 10.1016/j.eswa.2022.118991_b18
  doi: 10.1145/3194452.3194456
– volume: 14
  start-page: 2958
  year: 2021
  ident: 10.1016/j.eswa.2022.118991_b53
  article-title: Parameter-tuned deep learning model for credit risk assessment and scoring applications
  publication-title: Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science)
  doi: 10.2174/2666255813999200819164013
– year: 2021
  ident: 10.1016/j.eswa.2022.118991_b49
  article-title: A new deep learning ensemble credit risk evaluation model with an improved synthetic minority oversampling technique
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106852
– volume: 189
  year: 2020
  ident: 10.1016/j.eswa.2022.118991_b61
  article-title: Cost-sensitive semi-supervised selective ensemble model for customer credit scoring
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105118
– volume: 2
  start-page: 630
  year: 1989
  ident: 10.1016/j.eswa.2022.118991_b40
  article-title: Generalization and parameter estimation in feedforward nets: Some experiments
  publication-title: Advances in Neural Information Processing Systems
– volume: 118
  start-page: 33
  year: 2019
  ident: 10.1016/j.eswa.2022.118991_b43
  article-title: Two-stage consumer credit risk modelling using heterogeneous ensemble learning
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2019.01.002
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.eswa.2022.118991_b11
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– start-page: 4373
  year: 2019
  ident: 10.1016/j.eswa.2022.118991_b13
  article-title: Credit risk prediction in peer-to-peer lending with ensemble learning framework
– volume: 73
  start-page: 220
  year: 2017
  ident: 10.1016/j.eswa.2022.118991_b25
  article-title: Learning from class-imbalanced data: Review of methods and applications
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.12.035
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.118991_b6
  article-title: Machine learning techniques for credit risk evaluation: A systematic literature review
  publication-title: Journal of Banking and Financial Technology
– year: 2017
  ident: 10.1016/j.eswa.2022.118991_b46
– volume: 47
  start-page: 88
  year: 2019
  ident: 10.1016/j.eswa.2022.118991_b22
  article-title: Exploring the synergetic effects of sample types on the performance of ensembles for credit risk and corporate bankruptcy prediction
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.07.004
– volume: 134
  start-page: 209
  year: 2019
  ident: 10.1016/j.eswa.2022.118991_b3
  article-title: Wide and deep learning for peer-to-peer lending
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.05.042
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.eswa.2022.118991_b50
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 24
  start-page: 30
  year: 2017
  ident: 10.1016/j.eswa.2022.118991_b58
  article-title: Cost-sensitive boosted tree for loan evaluation in peer-to-peer lending
  publication-title: Electronic Commerce Research and Applications
  doi: 10.1016/j.elerap.2017.06.004
– volume: 247
  start-page: 124
  year: 2015
  ident: 10.1016/j.eswa.2022.118991_b32
  article-title: Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.05.030
– volume: 161
  year: 2020
  ident: 10.1016/j.eswa.2022.118991_b39
  article-title: Improving classification accuracy using data augmentation on small data sets
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113696
– volume: 189
  start-page: 116034
  year: 2022
  ident: 10.1016/j.eswa.2022.118991_b33
  article-title: Credit scoring based on tree-enhanced gradient boosting decision trees
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.116034
– start-page: 182
  year: 2021
  ident: 10.1016/j.eswa.2022.118991_b36
  article-title: Improvement of credit scoring by lstm autoencoder model
– volume: 356
  start-page: 4716
  year: 2019
  ident: 10.1016/j.eswa.2022.118991_b15
  article-title: Financial system modeling using deep neural networks (DNNs) for effective risk assessment and prediction
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2019.01.046
– volume: 31
  start-page: 107
  year: 2018
  ident: 10.1016/j.eswa.2022.118991_b30
  article-title: Supervised autoencoders: Improving generalization performance with unsupervised regularizers
  publication-title: Advances in Neural Information Processing Systems
– volume: 69
  start-page: 192
  year: 2018
  ident: 10.1016/j.eswa.2022.118991_b64
  article-title: A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.04.049
– start-page: 55
  year: 1998
  ident: 10.1016/j.eswa.2022.118991_b44
  article-title: Early stopping-but when?
– year: 2020
  ident: 10.1016/j.eswa.2022.118991_b14
  article-title: Statistical and machine learning models in credit scoring: A systematic literature survey
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106263
– volume: 98
  start-page: 105
  year: 2018
  ident: 10.1016/j.eswa.2022.118991_b26
  article-title: A novel ensemble method for credit scoring: Adaption of different imbalance ratios
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.01.012
– volume: 141
  year: 2020
  ident: 10.1016/j.eswa.2022.118991_b56
  article-title: Cost-sensitive ensemble of stacked denoising autoencoders for class imbalance problems in business domain
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112918
– volume: 38
  start-page: 223
  year: 2011
  ident: 10.1016/j.eswa.2022.118991_b55
  article-title: A comparative assessment of ensemble learning for credit scoring
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.06.048
– ident: 10.1016/j.eswa.2022.118991_b12
  doi: 10.1145/2939672.2939785
– volume: 18
  start-page: 558
  year: 2010
  ident: 10.1016/j.eswa.2022.118991_b4
  article-title: FSVM-CIL: Fuzzy support vector machines for class imbalance learning
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2010.2042721
– volume: 87
  start-page: 103292
  year: 2020
  ident: 10.1016/j.eswa.2022.118991_b9
  article-title: A combined entropy-based approach for a proactive credit scoring
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.103292
– volume: 39
  start-page: 3668
  year: 2012
  ident: 10.1016/j.eswa.2022.118991_b60
  article-title: Dynamic classifier ensemble model for customer classification with imbalanced class distribution
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.09.059
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.118991_b31
  article-title: Generative adversarial fusion network for class imbalance credit scoring
  publication-title: Neural Computing and Applications
– volume: 55
  start-page: 168
  year: 2011
  ident: 10.1016/j.eswa.2022.118991_b34
  article-title: Robust weighted kernel logistic regression in imbalanced and rare events data
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2010.06.014
– volume: 425
  start-page: 76
  year: 2018
  ident: 10.1016/j.eswa.2022.118991_b51
  article-title: Imbalanced enterprise credit evaluation with DTE-SBD: Decision tree ensemble based on SMOTE and bagging with differentiated sampling rates
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.10.017
– volume: 28
  start-page: 41
  year: 1997
  ident: 10.1016/j.eswa.2022.118991_b10
  article-title: Multitask learning
  publication-title: Machine Learning
  doi: 10.1023/A:1007379606734
– volume: 40
  start-page: 185
  year: 2009
  ident: 10.1016/j.eswa.2022.118991_b47
  article-title: RUSboost: A hybrid approach to alleviating class imbalance
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
  doi: 10.1109/TSMCA.2009.2029559
– volume: 42
  start-page: 6609
  year: 2015
  ident: 10.1016/j.eswa.2022.118991_b2
  article-title: Example-dependent cost-sensitive decision trees
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.04.042
– volume: 93
  start-page: 182
  year: 2018
  ident: 10.1016/j.eswa.2022.118991_b57
  article-title: A novel heterogeneous ensemble credit scoring model based on bstacking approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.10.022
– volume: 41
  start-page: 552
  year: 2010
  ident: 10.1016/j.eswa.2022.118991_b27
  article-title: Comparing boosting and bagging techniques with noisy and imbalanced data
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
  doi: 10.1109/TSMCA.2010.2084081
– volume: 9
  start-page: 78521
  year: 2021
  ident: 10.1016/j.eswa.2022.118991_b63
  article-title: A novel method for credit scoring based on cost-sensitive neural network ensemble
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3083490
– start-page: 2012
  year: 2012
  ident: 10.1016/j.eswa.2022.118991_b5
– volume: 261
  start-page: 656
  year: 2017
  ident: 10.1016/j.eswa.2022.118991_b35
  article-title: Cost-based feature selection for support vector machines: An application in credit scoring
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.02.037
– volume: 164
  start-page: 114020
  year: 2021
  ident: 10.1016/j.eswa.2022.118991_b38
  article-title: Learning latent representations of bank customers with the variational autoencoder
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114020
– volume: 39
  start-page: 3446
  year: 2012
  ident: 10.1016/j.eswa.2022.118991_b8
  article-title: An experimental comparison of classification algorithms for imbalanced credit scoring data sets
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.09.033
– volume: 7
  start-page: 78549
  year: 2019
  ident: 10.1016/j.eswa.2022.118991_b24
  article-title: A multi-stage self-adaptive classifier ensemble model with application in credit scoring
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922676
– start-page: 201
  year: 2018
  ident: 10.1016/j.eswa.2022.118991_b42
  article-title: Deep convolutional neural networks versus multilayer perceptron for financial prediction
SSID ssj0017007
Score 2.5858831
Snippet Automatic credit scoring, a crucial risk management tool for banks and financial institutes, has attracted much attention in the past few decades. As such,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 118991
SubjectTerms Autoencoder
Credit scoring
Ensemble learning
Imbalanced data
Multi-task learning
Title Bagging Supervised Autoencoder Classifier for credit scoring
URI https://dx.doi.org/10.1016/j.eswa.2022.118991
Volume 213
WOSCitedRecordID wos000878295700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELXo0kMv0EIr6Jd86A0FOY6NY6mXpaJqkUCVAGlvke043aUlu9pkW35-x7HzAS2oHLhEUZQ4Tp4zeR7PzEPoAycmtoTqyE2-IiYUi1JdwOdunFq3hj-kzBuxCXF6mk4m8ltQRa0aOQFRlun1tVw8KtRwDMB2qbMPgLtrFA7APoAOW4Adtv8F_KH63ggPna0Wzg5UwCjHq3ruCla6uhGNCuascEkmLsLQFQyd1XuVaQLxbvjpXRHkOpR6bpPgBsvd_cJRPvc51idqOgjxGf_Qyqexn8yn6upK5Z03Z6qmS6VnIUo3PFBwPdCkj73qfIgiYrGX2WnNKY2TgUGE-Yv0clx_2WrvNrjct9VvVwCK0v3-5JuFsW_9sLowwjZC7TJzbWSujcy38QStU8FlOkLr469Hk-NuYUkQn0Hf9jzkUfmQv9s9-TdXGfCP8-doI0wc8NgD_gKt2XILbbaiHDjY6G30MeCPe_zxAH_c448Bf-zxxwH_l-ji89H5py9RkMiITEJIHVFJOM9tnmqSKmWJBTqvi9gCy9OJkPpA28JSYRiwYsZzzmxqbcxi58bSgrPkFRqV89LuIHzArWRxbhR3yclUSe7YPCM6YXmhhdlFcfsyMhPqxzsZk5_Z3TDsor3umoWvnnLv2bx9x1ngf57XZTBk7rnu9YPu8gY968fyWzSqlyv7Dj01v-pZtXwfxssfu5Z6ww
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bagging+Supervised+Autoencoder+Classifier+for+credit+scoring&rft.jtitle=Expert+systems+with+applications&rft.au=Abdoli%2C+Mahsan&rft.au=Akbari%2C+Mohammad&rft.au=Shahrabi%2C+Jamal&rft.date=2023-03-01&rft.issn=0957-4174&rft.volume=213&rft.spage=118991&rft_id=info:doi/10.1016%2Fj.eswa.2022.118991&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_118991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon