Dynamic thermal line rating model of conductor based on prediction of meteorological parameters

The main contributions of this article are as follows:•Proposing a new DTLR prediction model based on knowledge-driven and data-driven.•Preprocessing of the data is done by using VMD combined with PACF.•Optimizing the hyperparameters of the BiLSTM model by the NGO algorithm.•Proposing an objective f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electric power systems research Ročník 224; s. 109726
Hlavní autori: Song, Tianhua, Teh, Jiashen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2023
Predmet:
ISSN:0378-7796
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The main contributions of this article are as follows:•Proposing a new DTLR prediction model based on knowledge-driven and data-driven.•Preprocessing of the data is done by using VMD combined with PACF.•Optimizing the hyperparameters of the BiLSTM model by the NGO algorithm.•Proposing an objective function to validate the effectiveness of the model. This paper developed a new algorithm to predict dynamic thermal line rating to increase the capacity of transmission lines, which can enhance the capacity of wind power integrated to the grid and reduce the curtailment. The proposed dynamic thermal line rating prediction model was trained by analyzing historical meteorological data and conductor physical parameters, and used deep learning with parameters optimized by an optimized algorithm. The prediction accuracy of the model is verified by Mean Absolute Error, R2 and comparison with other models. The simulation results show that the proposed prediction model has a good performance. The suggested dynamic thermal line rating algorithm, which bears resemblance to the actual value, boosts the static thermal line rating by varying degrees of 23% to 75% at different instances throughout the sample. At the same time, this paper designs an optimal power flow economic dispatch objective function. By comparing the economic dispatch of the power grid calculated by adding static thermal line rating and the prediction models, the method proposed in this paper can effectively increase the amount of wind power integration and reduce power generation costs.
AbstractList The main contributions of this article are as follows:•Proposing a new DTLR prediction model based on knowledge-driven and data-driven.•Preprocessing of the data is done by using VMD combined with PACF.•Optimizing the hyperparameters of the BiLSTM model by the NGO algorithm.•Proposing an objective function to validate the effectiveness of the model. This paper developed a new algorithm to predict dynamic thermal line rating to increase the capacity of transmission lines, which can enhance the capacity of wind power integrated to the grid and reduce the curtailment. The proposed dynamic thermal line rating prediction model was trained by analyzing historical meteorological data and conductor physical parameters, and used deep learning with parameters optimized by an optimized algorithm. The prediction accuracy of the model is verified by Mean Absolute Error, R2 and comparison with other models. The simulation results show that the proposed prediction model has a good performance. The suggested dynamic thermal line rating algorithm, which bears resemblance to the actual value, boosts the static thermal line rating by varying degrees of 23% to 75% at different instances throughout the sample. At the same time, this paper designs an optimal power flow economic dispatch objective function. By comparing the economic dispatch of the power grid calculated by adding static thermal line rating and the prediction models, the method proposed in this paper can effectively increase the amount of wind power integration and reduce power generation costs.
ArticleNumber 109726
Author Song, Tianhua
Teh, Jiashen
Author_xml – sequence: 1
  givenname: Tianhua
  surname: Song
  fullname: Song, Tianhua
– sequence: 2
  givenname: Jiashen
  orcidid: 0000-0001-9741-6245
  surname: Teh
  fullname: Teh, Jiashen
  email: jiashenteh@usm.my
BookMark eNp9kMtqwzAQRbVIoUnbH-hKP5BUlhJbhm5K-oRAN-1ayKNxqmBLZqQW8ve1SVddZDXDZc6FOQs2CzEgY7eFWBWiKO8OKxwSraSQagzqSpYzNheq0suqqstLtkjpIIQo62ozZ-bxGGzvgecvpN52vPMBOdnsw5730WHHY8shBvcNORJvbELHY-ADofOQ_biOBz1mjBS7uPcwlgyW7BRRumYXre0S3vzNK_b5_PSxfV3u3l_etg-7JSgh8lJWqGVpBdRq3TaqllZKQC1Ay7XGunF246qybSWixjWA2ijpQDYFFHUDulBXTJ56gWJKhK0ZyPeWjqYQZtJiDmbSYiYt5qRlhPQ_CHy200-ZrO_Oo_cnFMenfjySSeAxwCiFELJx0Z_DfwHTyITS
CitedBy_id crossref_primary_10_1016_j_compeleceng_2024_109401
crossref_primary_10_1016_j_epsr_2024_110931
crossref_primary_10_1016_j_ref_2024_100538
crossref_primary_10_1016_j_segan_2024_101299
crossref_primary_10_1109_TIA_2025_3529824
crossref_primary_10_1016_j_engappai_2024_108822
crossref_primary_10_1016_j_epsr_2024_110492
crossref_primary_10_1016_j_renene_2025_124030
crossref_primary_10_3390_en18164452
crossref_primary_10_1016_j_energy_2024_133945
crossref_primary_10_1016_j_eng_2024_10_004
crossref_primary_10_1016_j_esr_2023_101260
Cites_doi 10.1109/TII.2016.2530402
10.1109/TSG.2016.2553964
10.1109/59.780891
10.35833/MPCE.2022.000424
10.1109/TPWRD.2019.2929694
10.1109/ACCESS.2021.3133286
10.1016/j.ijepes.2021.107347
10.1016/j.apenergy.2021.117837
10.1109/ACCESS.2019.2907980
10.1016/j.egyr.2021.07.060
10.1109/61.194016
10.1016/j.epsr.2023.109444
10.1109/TNNLS.2019.2921952
10.1016/j.ijepes.2018.04.026
10.1016/j.epsr.2019.02.028
10.1109/TPWRS.2018.2889973
10.1016/j.epsr.2017.10.018
10.1016/j.ijepes.2014.12.088
10.1016/j.epsr.2004.01.018
10.1016/j.epsr.2015.11.004
10.1109/TPWRD.2016.2577140
10.1016/j.egyr.2022.02.085
10.1016/j.ijepes.2021.107305
10.1016/j.ijepes.2016.07.002
10.1109/TII.2017.2730846
10.1109/61.53127
10.1016/j.ijepes.2019.03.043
10.1162/neco.1997.9.8.1735
10.1109/TPWRS.2018.2857698
10.1109/TPWRD.2016.2543818
10.1016/j.epsr.2021.107433
10.1016/j.epsr.2018.11.003
10.1109/TR.2015.2495173
10.1109/TPWRS.2018.2829079
10.1016/j.ijepes.2018.03.023
10.1016/j.segan.2019.100268
10.35833/MPCE.2020.000641
10.1109/ACCESS.2019.2904877
10.1016/j.egyr.2022.10.399
10.1109/TPWRS.2014.2361012
10.3390/en11020466
10.1016/j.epsr.2019.01.035
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.epsr.2023.109726
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_epsr_2023_109726
S0378779623006156
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXKI
AAXUO
ABFNM
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-27e826a0c934fb392a22ce80c8248e9bda5d76ff2ee8e4cc3532dc2b1c19bc813
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001049486600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Sat Nov 29 06:43:51 EST 2025
Tue Nov 18 22:53:36 EST 2025
Sat Sep 28 16:09:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Optimization algorithm
Optimal economic dispatch
Dynamic thermal line rating
Forecasting algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-27e826a0c934fb392a22ce80c8248e9bda5d76ff2ee8e4cc3532dc2b1c19bc813
ORCID 0000-0001-9741-6245
ParticipantIDs crossref_primary_10_1016_j_epsr_2023_109726
crossref_citationtrail_10_1016_j_epsr_2023_109726
elsevier_sciencedirect_doi_10_1016_j_epsr_2023_109726
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Electric power systems research
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pavlinić, Komen, Uzelac (bib0043) 2018; 155
(bib0046) 1956
Hall, Deb (bib0020) 1988; 3
Dehghani, Hubalovsky, Trojovsky (bib0039) 2021; 9
Teh, Lai (bib0010) 2019; 20
Ngoko, Sugihara, Funaki (bib0050) 2018; 101
Su, Teh (bib0042) 2023; 11
Park, Jin, Park (bib0005) 2018; 102
Safari, Mazhari, Chung, Ko (bib0001) March 2022; 10
(bib0049) 2006
IEEE Power and Energy Society
Dupin, Kariniotakis, Michiorri (bib0032) 2019; 110
Lai, Teh, Alharbi, AlKassem, Aljabr, Alshammari (bib0012) 2023; 221
Aznarte, Siebert (bib0019) 2017; 32
Sun, Jin (bib0026) 2022; 134
(bib0038) 1997; 9
Teh, Cotton (bib0004) 2016; 65
Abboud (bib0029) 2019; 170
Lai, Teh (bib0011) 2022; 305
Schiffer (bib0044) 2008
EL-Azab, Omran, Mekhamer, Talaat (bib0009) 2021; 199
Khodayar, Kaynak, Khodayar (bib0037) 2017; 13
Barton, Musilek (bib0025) 2021; 134
Qiu, Wang (bib0031) 2015; 30
Li (bib0008) 2019; 7
Mahmoudian Esfahani, Yousefi (bib0014) 2016; 12
S. D. Foss, “DYNAMIC LINE RATING IN THE OPERATING ENVIRONMENT,” 1990.
Theodosoglou, Chatziathanasiou, Papagiannakis, Więcek, De Mey (bib0018) 2017; 87
Piccolo, Vaccaro, Villacci (bib0022) 2004; 71
Khodayar, Wang, Wang (bib0036) 2020; 31
Xiao, Xiang, Wang, Xie (bib0007) 2018; 33
Jiang, Liang, Chen, Zheng, Chuang, Wang (bib0027) 2018; 9
Carlini, Pisani, Vaccaro, Villacci (bib0023) 2016; 132
Fan, Bell, Infield (bib0030) 2019; 167
CIGRE (bib0048) 2014
Lai, Teh (bib0003) 2022; 8
Zhan, Liu, Chung (bib0006) 2019; 34
Bosisio, Berizzi, Le, Bassi, Giannuzzi (bib0028) 2019; 172
Banerjee, Jayaweera, Islam (bib0013) 2015; 69
Teh, Lai (bib0015) 2019; 7
Sobhy, Megahed, Abo-Zahhad (bib0033) 2021; 7
Teh, Ooi, Cheng, Zainuri, Lai (bib0016) 2018; 11
H. D. Wan James McCalley Vijay Vitta, “Increasing Thermal Rating by Risk Analysis,” 1999.
Fan, Bell, Infield (bib0024) 2017; 32
Alberdi, Fernandez, Albizu, Bedialauneta, Fernandez (bib0035) 2021; 133
Dupin, Michiorri, Kariniotakis (bib0034) 2019; 34
Long, He, Cui, Li, Tan, Tang (bib0041) 2022; 8
Davidson, Donoho, Landrieu, McElhaney, Saeger (bib0047) 1969
2012.
Madadi, Mohammadi-Ivatloo, Tohidi (bib0017) 2020; 35
10.1016/j.epsr.2023.109726_bib0021
Dupin (10.1016/j.epsr.2023.109726_bib0034) 2019; 34
Teh (10.1016/j.epsr.2023.109726_bib0004) 2016; 65
Davidson (10.1016/j.epsr.2023.109726_bib0047) 1969
Safari (10.1016/j.epsr.2023.109726_bib0001) 2022; 10
Aznarte (10.1016/j.epsr.2023.109726_bib0019) 2017; 32
Sobhy (10.1016/j.epsr.2023.109726_bib0033) 2021; 7
Pavlinić (10.1016/j.epsr.2023.109726_bib0043) 2018; 155
Su (10.1016/j.epsr.2023.109726_bib0042) 2023; 11
Khodayar (10.1016/j.epsr.2023.109726_bib0037) 2017; 13
(10.1016/j.epsr.2023.109726_bib0038) 1997; 9
Park (10.1016/j.epsr.2023.109726_bib0005) 2018; 102
Banerjee (10.1016/j.epsr.2023.109726_bib0013) 2015; 69
Lai (10.1016/j.epsr.2023.109726_bib0011) 2022; 305
Fan (10.1016/j.epsr.2023.109726_bib0030) 2019; 167
Zhan (10.1016/j.epsr.2023.109726_bib0006) 2019; 34
Schiffer (10.1016/j.epsr.2023.109726_bib0044) 2008
Teh (10.1016/j.epsr.2023.109726_bib0015) 2019; 7
(10.1016/j.epsr.2023.109726_bib0049) 2006
Hall (10.1016/j.epsr.2023.109726_bib0020) 1988; 3
Madadi (10.1016/j.epsr.2023.109726_bib0017) 2020; 35
Bosisio (10.1016/j.epsr.2023.109726_bib0028) 2019; 172
Dehghani (10.1016/j.epsr.2023.109726_bib0039) 2021; 9
Barton (10.1016/j.epsr.2023.109726_bib0025) 2021; 134
Teh (10.1016/j.epsr.2023.109726_bib0010) 2019; 20
Theodosoglou (10.1016/j.epsr.2023.109726_bib0018) 2017; 87
Jiang (10.1016/j.epsr.2023.109726_bib0027) 2018; 9
Fan (10.1016/j.epsr.2023.109726_bib0024) 2017; 32
Mahmoudian Esfahani (10.1016/j.epsr.2023.109726_bib0014) 2016; 12
10.1016/j.epsr.2023.109726_bib0040
10.1016/j.epsr.2023.109726_bib0002
Lai (10.1016/j.epsr.2023.109726_bib0012) 2023; 221
Abboud (10.1016/j.epsr.2023.109726_bib0029) 2019; 170
Khodayar (10.1016/j.epsr.2023.109726_bib0036) 2020; 31
Teh (10.1016/j.epsr.2023.109726_bib0016) 2018; 11
Sun (10.1016/j.epsr.2023.109726_bib0026) 2022; 134
Alberdi (10.1016/j.epsr.2023.109726_bib0035) 2021; 133
(10.1016/j.epsr.2023.109726_bib0046) 1956
CIGRE (10.1016/j.epsr.2023.109726_bib0048) 2014
Carlini (10.1016/j.epsr.2023.109726_bib0023) 2016; 132
Lai (10.1016/j.epsr.2023.109726_bib0003) 2022; 8
EL-Azab (10.1016/j.epsr.2023.109726_bib0009) 2021; 199
Qiu (10.1016/j.epsr.2023.109726_bib0031) 2015; 30
Li (10.1016/j.epsr.2023.109726_bib0008) 2019; 7
Dupin (10.1016/j.epsr.2023.109726_bib0032) 2019; 110
Piccolo (10.1016/j.epsr.2023.109726_bib0022) 2004; 71
Xiao (10.1016/j.epsr.2023.109726_bib0007) 2018; 33
Long (10.1016/j.epsr.2023.109726_bib0041) 2022; 8
Ngoko (10.1016/j.epsr.2023.109726_bib0050) 2018; 101
References_xml – volume: 12
  start-page: 745
  year: 2016
  end-page: 754
  ident: bib0014
  article-title: Real Time Congestion Management in Power Systems Considering Quasi-Dynamic Thermal Rating and Congestion Clearing Time
  publication-title: IEEE Trans. Ind. Informatics
– volume: 33
  start-page: 6000
  year: 2018
  end-page: 6012
  ident: bib0007
  article-title: Power system reliability evaluation incorporating dynamic thermal rating and network topology optimization
  publication-title: IEEE Trans. Power Syst.
– volume: 3
  start-page: 2048
  year: 1988
  end-page: 2055
  ident: bib0020
  article-title: Economic evaluation of dynamic thermal rating by adaptive forecasting
  publication-title: IEEE Trans. Power Deliv.
– volume: 110
  start-page: 565
  year: 2019
  end-page: 578
  ident: bib0032
  article-title: Overhead lines Dynamic Line rating based on probabilistic day-ahead forecasting and risk assessment
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 32
  start-page: 1881
  year: 2017
  end-page: 1890
  ident: bib0024
  article-title: Probabilistic real-Time thermal rating forecasting for overhead lines by conditionally heteroscedastic auto-regressive models
  publication-title: IEEE Trans. Power Deliv.
– volume: 34
  start-page: 432
  year: 2019
  end-page: 443
  ident: bib0006
  article-title: Stochastic Transmission Expansion Planning Considering Uncertain Dynamic Thermal Rating of Overhead Lines
  publication-title: IEEE Trans. Power Syst.
– volume: 199
  year: 2021
  ident: bib0009
  article-title: Congestion management of power systems by optimizing grid topology and using dynamic thermal rating
  publication-title: Electr. Power Syst. Res.
– volume: 30
  start-page: 2198
  year: 2015
  end-page: 2199
  ident: bib0031
  article-title: Distributionally Robust Congestion Management with Dynamic Line Ratings
  publication-title: IEEE Trans. Power Syst.
– volume: 34
  start-page: 2836
  year: 2019
  end-page: 2848
  ident: bib0034
  article-title: Optimal Dynamic Line Rating Forecasts Selection Based on Ampacity Probabilistic Forecasting and Network Operators’ Risk Aversion
  publication-title: IEEE Trans. Power Syst.
– start-page: 194
  year: 1969
  end-page: 199
  ident: bib0047
  article-title: Short-Time Thermal Ratings for Bare Overhead Conductors
– volume: 31
  start-page: 1696
  year: 2020
  end-page: 1709
  ident: bib0036
  article-title: Energy Disaggregation via Deep Temporal Dictionary Learning
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 11
  year: 2018
  ident: bib0016
  article-title: Composite reliability evaluation of load demand side management and dynamic thermal rating systems
  publication-title: Energies
– volume: 134
  year: 2021
  ident: bib0025
  article-title: Probabilistic forecasting of dynamic thermal line rating with temporal correlations
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 65
  start-page: 1081
  year: 2016
  end-page: 1089
  ident: bib0004
  article-title: Reliability Impact of Dynamic Thermal Rating System in Wind Power Integrated Network
  publication-title: IEEE Trans. Reliab.
– volume: 134
  year: 2022
  ident: bib0026
  article-title: Spatio-temporal weather model-based probabilistic forecasting of dynamic thermal rating for overhead transmission lines
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 8
  start-page: 14183
  year: 2022
  end-page: 14199
  ident: bib0041
  article-title: Research on short-term wind speed prediction based on deep learning model in multi-fan scenario of distributed generation
  publication-title: Energy Reports
– volume: 32
  start-page: 335
  year: 2017
  end-page: 343
  ident: bib0019
  article-title: Dynamic Line Rating Using Numerical Weather Predictions and Machine Learning: A Case Study
  publication-title: IEEE Trans. Power Deliv.
– volume: 10
  start-page: 378
  year: March 2022
  end-page: 387
  ident: bib0001
  article-title: Secure Probabilistic Prediction of Dynamic Thermal Line Rating
  publication-title: Journal of Modern Power Systems and Clean Energy
– reference: IEEE Power and Energy Society,
– start-page: 601
  year: 2014
  ident: bib0048
  article-title: Group B2. 43,‘Guide for thermal rating calculations of overhead lines
– reference: S. D. Foss, “DYNAMIC LINE RATING IN THE OPERATING ENVIRONMENT,” 1990.
– volume: 9
  start-page: 162059
  year: 2021
  end-page: 162080
  ident: bib0039
  article-title: Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems
  publication-title: IEEE Access
– volume: 69
  start-page: 295
  year: 2015
  end-page: 303
  ident: bib0013
  article-title: Assessment of post-contingency congestion risk of wind power with asset dynamic ratings
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 102
  start-page: 211
  year: 2018
  end-page: 222
  ident: bib0005
  article-title: Stochastic security-constrained unit commitment with wind power generation based on dynamic line rating
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2008
  ident: bib0044
  article-title: Power Struggles: Scientific Authority and the Creation of Practical Electricity Before Edison
– volume: 11
  start-page: 52
  year: 2023
  end-page: 65
  ident: bib0042
  article-title: Two-stage Optimal Dispatching of AC/DC Hybrid Active Distribution Systems Considering Network Flexibility
  publication-title: J. Mod. Power Syst. Clean Energy
– volume: 8
  start-page: 3263
  year: 2022
  end-page: 3288
  ident: bib0003
  article-title: Comprehensive review of the dynamic thermal rating system for sustainable electrical power systems
  publication-title: Energy Reports
– reference: H. D. Wan James McCalley Vijay Vitta, “Increasing Thermal Rating by Risk Analysis,” 1999.
– volume: 7
  start-page: 35287
  year: 2019
  end-page: 35301
  ident: bib0008
  article-title: Day-Ahead Scheduling of Power System Incorporating Network Topology Optimization and Dynamic Thermal Rating
  publication-title: IEEE Access
– volume: 155
  start-page: 216
  year: 2018
  end-page: 224
  ident: bib0043
  article-title: Application of direct collocation method in short-term line ampacity calculation
  publication-title: Electr. Power Syst. Res.
– volume: 132
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib0023
  article-title: A reliable computing framework for dynamic line rating of overhead lines
  publication-title: Electr. Power Syst. Res.
– volume: 305
  year: 2022
  ident: bib0011
  article-title: Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability
  publication-title: Appl. Energy
– volume: 87
  start-page: 198
  year: 2017
  end-page: 210
  ident: bib0018
  article-title: Electrothermal analysis and temperature fluctuations’ prediction of overhead power lines
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 7
  start-page: 804
  year: 2021
  end-page: 813
  ident: bib0033
  article-title: Overhead transmission lines dynamic rating estimation for renewable energy integration using machine learning
  publication-title: Energy Reports
– volume: 13
  start-page: 2770
  year: 2017
  end-page: 2779
  ident: bib0037
  article-title: Rough Deep Neural Architecture for Short-Term Wind Speed Forecasting
  publication-title: IEEE Trans. Ind. Informatics
– volume: 101
  start-page: 255
  year: 2018
  end-page: 267
  ident: bib0050
  article-title: Optimal power flow considering line-conductor temperature limits under high penetration of intermittent renewable energy sources
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 20
  year: 2019
  ident: bib0010
  article-title: Reliability impacts of the dynamic thermal rating and battery energy storage systems on wind-integrated power networks
  publication-title: Sustain. Energy, Grids Networks
– reference: . 2012.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0038
  article-title: Long Short-Term Memory
  publication-title: Neural Computation
– volume: 9
  start-page: 406
  year: 2018
  end-page: 415
  ident: bib0027
  article-title: On dispatching line ampacities of power grids using weather-based conductor temperature forecasts
  publication-title: IEEE Trans. Smart Grid
– year: 2006
  ident: bib0049
  article-title: Guide for selection of weather parameters for bare overhead conductor ratings
– year: 1956
  ident: bib0046
  article-title: Thermal image of an overhead line
– volume: 35
  start-page: 851
  year: 2020
  end-page: 860
  ident: bib0017
  article-title: Dynamic Line Rating Forecasting Based on Integrated Factorized Ornstein-Uhlenbeck Processes
  publication-title: IEEE Trans. Power Deliv.
– volume: 167
  start-page: 213
  year: 2019
  end-page: 221
  ident: bib0030
  article-title: Transient-state real-time thermal rating forecasting for overhead lines by an enhanced analytical method
  publication-title: Electr. Power Syst. Res.
– volume: 71
  start-page: 275
  year: 2004
  end-page: 283
  ident: bib0022
  article-title: Thermal rating assessment of overhead lines by Affine Arithmetic
  publication-title: Electr. Power Syst. Res.
– volume: 172
  start-page: 193
  year: 2019
  end-page: 200
  ident: bib0028
  article-title: Improving DTR assessment by means of PCA applied to wind data
  publication-title: Electr. Power Syst. Res.
– volume: 221
  year: 2023
  ident: bib0012
  article-title: Optimisation of generation unit commitment and network topology with the dynamic thermal rating system considering N-1 reliability
  publication-title: Electr. Power Syst. Res.
– volume: 133
  year: 2021
  ident: bib0035
  article-title: Overhead line ampacity forecasting and a methodology for assessing risk and line capacity utilization
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 7
  start-page: 41625
  year: 2019
  end-page: 41635
  ident: bib0015
  article-title: Reliability Impacts of the Dynamic Thermal Rating System on Smart Grids Considering Wireless Communications
  publication-title: IEEE Access
– volume: 170
  start-page: 326
  year: 2019
  end-page: 337
  ident: bib0029
  article-title: Coupling computational fluid dynamics with the high resolution rapid refresh model for forecasting dynamic line ratings
  publication-title: Electr. Power Syst. Res.
– volume: 12
  start-page: 745
  issue: 2
  year: 2016
  ident: 10.1016/j.epsr.2023.109726_bib0014
  article-title: Real Time Congestion Management in Power Systems Considering Quasi-Dynamic Thermal Rating and Congestion Clearing Time
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2016.2530402
– volume: 9
  start-page: 406
  issue: 1
  year: 2018
  ident: 10.1016/j.epsr.2023.109726_bib0027
  article-title: On dispatching line ampacities of power grids using weather-based conductor temperature forecasts
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2553964
– ident: 10.1016/j.epsr.2023.109726_bib0021
  doi: 10.1109/59.780891
– volume: 11
  start-page: 52
  issue: 1
  year: 2023
  ident: 10.1016/j.epsr.2023.109726_bib0042
  article-title: Two-stage Optimal Dispatching of AC/DC Hybrid Active Distribution Systems Considering Network Flexibility
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.35833/MPCE.2022.000424
– volume: 35
  start-page: 851
  issue: 2
  year: 2020
  ident: 10.1016/j.epsr.2023.109726_bib0017
  article-title: Dynamic Line Rating Forecasting Based on Integrated Factorized Ornstein-Uhlenbeck Processes
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2019.2929694
– volume: 9
  start-page: 162059
  year: 2021
  ident: 10.1016/j.epsr.2023.109726_bib0039
  article-title: Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3133286
– volume: 134
  year: 2022
  ident: 10.1016/j.epsr.2023.109726_bib0026
  article-title: Spatio-temporal weather model-based probabilistic forecasting of dynamic thermal rating for overhead transmission lines
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107347
– volume: 305
  year: 2022
  ident: 10.1016/j.epsr.2023.109726_bib0011
  article-title: Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117837
– volume: 7
  start-page: 41625
  year: 2019
  ident: 10.1016/j.epsr.2023.109726_bib0015
  article-title: Reliability Impacts of the Dynamic Thermal Rating System on Smart Grids Considering Wireless Communications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907980
– volume: 7
  start-page: 804
  year: 2021
  ident: 10.1016/j.epsr.2023.109726_bib0033
  article-title: Overhead transmission lines dynamic rating estimation for renewable energy integration using machine learning
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2021.07.060
– volume: 3
  start-page: 2048
  issue: 4
  year: 1988
  ident: 10.1016/j.epsr.2023.109726_bib0020
  article-title: Economic evaluation of dynamic thermal rating by adaptive forecasting
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.194016
– start-page: 601
  year: 2014
  ident: 10.1016/j.epsr.2023.109726_bib0048
– volume: 221
  year: 2023
  ident: 10.1016/j.epsr.2023.109726_bib0012
  article-title: Optimisation of generation unit commitment and network topology with the dynamic thermal rating system considering N-1 reliability
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2023.109444
– year: 2006
  ident: 10.1016/j.epsr.2023.109726_bib0049
– volume: 31
  start-page: 1696
  issue: 5
  year: 2020
  ident: 10.1016/j.epsr.2023.109726_bib0036
  article-title: Energy Disaggregation via Deep Temporal Dictionary Learning
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2019.2921952
– volume: 102
  start-page: 211
  year: 2018
  ident: 10.1016/j.epsr.2023.109726_bib0005
  article-title: Stochastic security-constrained unit commitment with wind power generation based on dynamic line rating
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.04.026
– volume: 172
  start-page: 193
  year: 2019
  ident: 10.1016/j.epsr.2023.109726_bib0028
  article-title: Improving DTR assessment by means of PCA applied to wind data
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2019.02.028
– year: 2008
  ident: 10.1016/j.epsr.2023.109726_bib0044
– volume: 34
  start-page: 2836
  issue: 4
  year: 2019
  ident: 10.1016/j.epsr.2023.109726_bib0034
  article-title: Optimal Dynamic Line Rating Forecasts Selection Based on Ampacity Probabilistic Forecasting and Network Operators’ Risk Aversion
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2889973
– volume: 155
  start-page: 216
  year: 2018
  ident: 10.1016/j.epsr.2023.109726_bib0043
  article-title: Application of direct collocation method in short-term line ampacity calculation
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2017.10.018
– volume: 69
  start-page: 295
  year: 2015
  ident: 10.1016/j.epsr.2023.109726_bib0013
  article-title: Assessment of post-contingency congestion risk of wind power with asset dynamic ratings
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.12.088
– volume: 71
  start-page: 275
  issue: 3
  year: 2004
  ident: 10.1016/j.epsr.2023.109726_bib0022
  article-title: Thermal rating assessment of overhead lines by Affine Arithmetic
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2004.01.018
– ident: 10.1016/j.epsr.2023.109726_bib0040
– volume: 132
  start-page: 1
  year: 2016
  ident: 10.1016/j.epsr.2023.109726_bib0023
  article-title: A reliable computing framework for dynamic line rating of overhead lines
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2015.11.004
– volume: 32
  start-page: 1881
  issue: 4
  year: 2017
  ident: 10.1016/j.epsr.2023.109726_bib0024
  article-title: Probabilistic real-Time thermal rating forecasting for overhead lines by conditionally heteroscedastic auto-regressive models
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2016.2577140
– volume: 8
  start-page: 3263
  year: 2022
  ident: 10.1016/j.epsr.2023.109726_bib0003
  article-title: Comprehensive review of the dynamic thermal rating system for sustainable electrical power systems
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2022.02.085
– volume: 133
  year: 2021
  ident: 10.1016/j.epsr.2023.109726_bib0035
  article-title: Overhead line ampacity forecasting and a methodology for assessing risk and line capacity utilization
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107305
– volume: 87
  start-page: 198
  year: 2017
  ident: 10.1016/j.epsr.2023.109726_bib0018
  article-title: Electrothermal analysis and temperature fluctuations’ prediction of overhead power lines
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2016.07.002
– volume: 13
  start-page: 2770
  issue: 6
  year: 2017
  ident: 10.1016/j.epsr.2023.109726_bib0037
  article-title: Rough Deep Neural Architecture for Short-Term Wind Speed Forecasting
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2017.2730846
– ident: 10.1016/j.epsr.2023.109726_bib0002
  doi: 10.1109/61.53127
– volume: 110
  start-page: 565
  year: 2019
  ident: 10.1016/j.epsr.2023.109726_bib0032
  article-title: Overhead lines Dynamic Line rating based on probabilistic day-ahead forecasting and risk assessment
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.03.043
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.epsr.2023.109726_bib0038
  article-title: Long Short-Term Memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 34
  start-page: 432
  issue: 1
  year: 2019
  ident: 10.1016/j.epsr.2023.109726_bib0006
  article-title: Stochastic Transmission Expansion Planning Considering Uncertain Dynamic Thermal Rating of Overhead Lines
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2857698
– volume: 32
  start-page: 335
  issue: 1
  year: 2017
  ident: 10.1016/j.epsr.2023.109726_bib0019
  article-title: Dynamic Line Rating Using Numerical Weather Predictions and Machine Learning: A Case Study
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2016.2543818
– volume: 199
  year: 2021
  ident: 10.1016/j.epsr.2023.109726_bib0009
  article-title: Congestion management of power systems by optimizing grid topology and using dynamic thermal rating
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2021.107433
– volume: 167
  start-page: 213
  year: 2019
  ident: 10.1016/j.epsr.2023.109726_bib0030
  article-title: Transient-state real-time thermal rating forecasting for overhead lines by an enhanced analytical method
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2018.11.003
– volume: 65
  start-page: 1081
  issue: 2
  year: 2016
  ident: 10.1016/j.epsr.2023.109726_bib0004
  article-title: Reliability Impact of Dynamic Thermal Rating System in Wind Power Integrated Network
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2015.2495173
– volume: 33
  start-page: 6000
  issue: 6
  year: 2018
  ident: 10.1016/j.epsr.2023.109726_bib0007
  article-title: Power system reliability evaluation incorporating dynamic thermal rating and network topology optimization
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2829079
– start-page: 194
  year: 1969
  ident: 10.1016/j.epsr.2023.109726_bib0047
– year: 1956
  ident: 10.1016/j.epsr.2023.109726_bib0046
– volume: 101
  start-page: 255
  year: 2018
  ident: 10.1016/j.epsr.2023.109726_bib0050
  article-title: Optimal power flow considering line-conductor temperature limits under high penetration of intermittent renewable energy sources
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.03.023
– volume: 20
  year: 2019
  ident: 10.1016/j.epsr.2023.109726_bib0010
  article-title: Reliability impacts of the dynamic thermal rating and battery energy storage systems on wind-integrated power networks
  publication-title: Sustain. Energy, Grids Networks
  doi: 10.1016/j.segan.2019.100268
– volume: 10
  start-page: 378
  issue: 2
  year: 2022
  ident: 10.1016/j.epsr.2023.109726_bib0001
  article-title: Secure Probabilistic Prediction of Dynamic Thermal Line Rating
  publication-title: Journal of Modern Power Systems and Clean Energy
  doi: 10.35833/MPCE.2020.000641
– volume: 7
  start-page: 35287
  year: 2019
  ident: 10.1016/j.epsr.2023.109726_bib0008
  article-title: Day-Ahead Scheduling of Power System Incorporating Network Topology Optimization and Dynamic Thermal Rating
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904877
– volume: 134
  year: 2021
  ident: 10.1016/j.epsr.2023.109726_bib0025
  article-title: Probabilistic forecasting of dynamic thermal line rating with temporal correlations
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 8
  start-page: 14183
  year: 2022
  ident: 10.1016/j.epsr.2023.109726_bib0041
  article-title: Research on short-term wind speed prediction based on deep learning model in multi-fan scenario of distributed generation
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2022.10.399
– volume: 30
  start-page: 2198
  issue: 4
  year: 2015
  ident: 10.1016/j.epsr.2023.109726_bib0031
  article-title: Distributionally Robust Congestion Management with Dynamic Line Ratings
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2014.2361012
– volume: 11
  issue: 2
  year: 2018
  ident: 10.1016/j.epsr.2023.109726_bib0016
  article-title: Composite reliability evaluation of load demand side management and dynamic thermal rating systems
  publication-title: Energies
  doi: 10.3390/en11020466
– volume: 170
  start-page: 326
  year: 2019
  ident: 10.1016/j.epsr.2023.109726_bib0029
  article-title: Coupling computational fluid dynamics with the high resolution rapid refresh model for forecasting dynamic line ratings
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2019.01.035
SSID ssj0006975
Score 2.4738443
Snippet The main contributions of this article are as follows:•Proposing a new DTLR prediction model based on knowledge-driven and data-driven.•Preprocessing of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109726
SubjectTerms Deep learning
Dynamic thermal line rating
Forecasting algorithm
Optimal economic dispatch
Optimization algorithm
Title Dynamic thermal line rating model of conductor based on prediction of meteorological parameters
URI https://dx.doi.org/10.1016/j.epsr.2023.109726
Volume 224
WOSCitedRecordID wos001049486600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006975
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swEBZb2oftoWxtR39sQw97KwZbsiLpsbQZWx_KYBnkzciSvLa0TkjS0T-_d5LsZG0p22AvJghLDveJu9Pp7jtCPrnGKGeFyyQ3eVay0ma11zITtW1yZUzOTWw2Ic_P1WSiv6Ue7ovQTkC2rbq707P_CjWMAdhYOvsXcPeLwgD8BtDhCbDD84-AP4095tGjBKV7fRT8SMS5_Rn73sRM8haJXjFVE8yYwyuD2RzvbDoH8gac6em814zIEI5D6e6nC-WHHjrwrRn2Wkus0HgPsRYiw-hNSvsdw1a8uO3twNiHkM7ZpVlcpIK0FH5gPNXh9TGxR3UxsRYLzqZSxl61nZ5lsVj6kc6O4YMrML8LJGhlPNBqsgcE2cHkfseFcV04OKEvNnxJNpgUGtTZxvHX0eSsN8JDHTiW-z-S6qViat_DLz3tk6z5GeM3ZCsdEOhxBPYteeHbbfJ6jTZyh1QJYpogpggxjRDTADGdNrSHmAaI6bSlK4jxhd8hpiuId8mPz6PxyZcsNcrILMhhmTHp4ZRocqt52dTg8RrGrFe5VaxUXtfOCCeHTcO8V760lgvOnGV1YQtdW1Xwd2TQTlu_R6gUwhe20RI5o4VulGDGuLoohqoUzPF9UnSiqmxikcdmJtdVly54VaF4KxRvFcW7T476ObPIofLs26JDoEpeYPTuKtgwz8w7-Md5h-TVal-_J4Pl_NZ_IJv21_JyMf-Y9tU9oKaF3g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+thermal+line+rating+model+of+conductor+based+on+prediction+of+meteorological+parameters&rft.jtitle=Electric+power+systems+research&rft.au=Song%2C+Tianhua&rft.au=Teh%2C+Jiashen&rft.date=2023-11-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.volume=224&rft_id=info:doi/10.1016%2Fj.epsr.2023.109726&rft.externalDocID=S0378779623006156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon