Dynamic thermal line rating model of conductor based on prediction of meteorological parameters
The main contributions of this article are as follows:•Proposing a new DTLR prediction model based on knowledge-driven and data-driven.•Preprocessing of the data is done by using VMD combined with PACF.•Optimizing the hyperparameters of the BiLSTM model by the NGO algorithm.•Proposing an objective f...
Saved in:
| Published in: | Electric power systems research Vol. 224; p. 109726 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.11.2023
|
| Subjects: | |
| ISSN: | 0378-7796 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The main contributions of this article are as follows:•Proposing a new DTLR prediction model based on knowledge-driven and data-driven.•Preprocessing of the data is done by using VMD combined with PACF.•Optimizing the hyperparameters of the BiLSTM model by the NGO algorithm.•Proposing an objective function to validate the effectiveness of the model.
This paper developed a new algorithm to predict dynamic thermal line rating to increase the capacity of transmission lines, which can enhance the capacity of wind power integrated to the grid and reduce the curtailment. The proposed dynamic thermal line rating prediction model was trained by analyzing historical meteorological data and conductor physical parameters, and used deep learning with parameters optimized by an optimized algorithm. The prediction accuracy of the model is verified by Mean Absolute Error, R2 and comparison with other models. The simulation results show that the proposed prediction model has a good performance. The suggested dynamic thermal line rating algorithm, which bears resemblance to the actual value, boosts the static thermal line rating by varying degrees of 23% to 75% at different instances throughout the sample. At the same time, this paper designs an optimal power flow economic dispatch objective function. By comparing the economic dispatch of the power grid calculated by adding static thermal line rating and the prediction models, the method proposed in this paper can effectively increase the amount of wind power integration and reduce power generation costs. |
|---|---|
| AbstractList | The main contributions of this article are as follows:•Proposing a new DTLR prediction model based on knowledge-driven and data-driven.•Preprocessing of the data is done by using VMD combined with PACF.•Optimizing the hyperparameters of the BiLSTM model by the NGO algorithm.•Proposing an objective function to validate the effectiveness of the model.
This paper developed a new algorithm to predict dynamic thermal line rating to increase the capacity of transmission lines, which can enhance the capacity of wind power integrated to the grid and reduce the curtailment. The proposed dynamic thermal line rating prediction model was trained by analyzing historical meteorological data and conductor physical parameters, and used deep learning with parameters optimized by an optimized algorithm. The prediction accuracy of the model is verified by Mean Absolute Error, R2 and comparison with other models. The simulation results show that the proposed prediction model has a good performance. The suggested dynamic thermal line rating algorithm, which bears resemblance to the actual value, boosts the static thermal line rating by varying degrees of 23% to 75% at different instances throughout the sample. At the same time, this paper designs an optimal power flow economic dispatch objective function. By comparing the economic dispatch of the power grid calculated by adding static thermal line rating and the prediction models, the method proposed in this paper can effectively increase the amount of wind power integration and reduce power generation costs. |
| ArticleNumber | 109726 |
| Author | Song, Tianhua Teh, Jiashen |
| Author_xml | – sequence: 1 givenname: Tianhua surname: Song fullname: Song, Tianhua – sequence: 2 givenname: Jiashen orcidid: 0000-0001-9741-6245 surname: Teh fullname: Teh, Jiashen email: jiashenteh@usm.my |
| BookMark | eNp9kMtqwzAQRbVIoUnbH-hKP5BUlhJbhm5K-oRAN-1ayKNxqmBLZqQW8ve1SVddZDXDZc6FOQs2CzEgY7eFWBWiKO8OKxwSraSQagzqSpYzNheq0suqqstLtkjpIIQo62ozZ-bxGGzvgecvpN52vPMBOdnsw5730WHHY8shBvcNORJvbELHY-ADofOQ_biOBz1mjBS7uPcwlgyW7BRRumYXre0S3vzNK_b5_PSxfV3u3l_etg-7JSgh8lJWqGVpBdRq3TaqllZKQC1Ay7XGunF246qybSWixjWA2ijpQDYFFHUDulBXTJ56gWJKhK0ZyPeWjqYQZtJiDmbSYiYt5qRlhPQ_CHy200-ZrO_Oo_cnFMenfjySSeAxwCiFELJx0Z_DfwHTyITS |
| CitedBy_id | crossref_primary_10_1016_j_compeleceng_2024_109401 crossref_primary_10_1016_j_epsr_2024_110931 crossref_primary_10_1016_j_ref_2024_100538 crossref_primary_10_1016_j_segan_2024_101299 crossref_primary_10_1109_TIA_2025_3529824 crossref_primary_10_1016_j_engappai_2024_108822 crossref_primary_10_1016_j_epsr_2024_110492 crossref_primary_10_1016_j_renene_2025_124030 crossref_primary_10_3390_en18164452 crossref_primary_10_1016_j_energy_2024_133945 crossref_primary_10_1016_j_eng_2024_10_004 crossref_primary_10_1016_j_esr_2023_101260 |
| Cites_doi | 10.1109/TII.2016.2530402 10.1109/TSG.2016.2553964 10.1109/59.780891 10.35833/MPCE.2022.000424 10.1109/TPWRD.2019.2929694 10.1109/ACCESS.2021.3133286 10.1016/j.ijepes.2021.107347 10.1016/j.apenergy.2021.117837 10.1109/ACCESS.2019.2907980 10.1016/j.egyr.2021.07.060 10.1109/61.194016 10.1016/j.epsr.2023.109444 10.1109/TNNLS.2019.2921952 10.1016/j.ijepes.2018.04.026 10.1016/j.epsr.2019.02.028 10.1109/TPWRS.2018.2889973 10.1016/j.epsr.2017.10.018 10.1016/j.ijepes.2014.12.088 10.1016/j.epsr.2004.01.018 10.1016/j.epsr.2015.11.004 10.1109/TPWRD.2016.2577140 10.1016/j.egyr.2022.02.085 10.1016/j.ijepes.2021.107305 10.1016/j.ijepes.2016.07.002 10.1109/TII.2017.2730846 10.1109/61.53127 10.1016/j.ijepes.2019.03.043 10.1162/neco.1997.9.8.1735 10.1109/TPWRS.2018.2857698 10.1109/TPWRD.2016.2543818 10.1016/j.epsr.2021.107433 10.1016/j.epsr.2018.11.003 10.1109/TR.2015.2495173 10.1109/TPWRS.2018.2829079 10.1016/j.ijepes.2018.03.023 10.1016/j.segan.2019.100268 10.35833/MPCE.2020.000641 10.1109/ACCESS.2019.2904877 10.1016/j.egyr.2022.10.399 10.1109/TPWRS.2014.2361012 10.3390/en11020466 10.1016/j.epsr.2019.01.035 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.epsr.2023.109726 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_epsr_2023_109726 S0378779623006156 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXKI AAXUO ABFNM ABMAC ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- 9DU AATTM AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-27e826a0c934fb392a22ce80c8248e9bda5d76ff2ee8e4cc3532dc2b1c19bc813 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001049486600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7796 |
| IngestDate | Sat Nov 29 06:43:51 EST 2025 Tue Nov 18 22:53:36 EST 2025 Sat Sep 28 16:09:01 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Optimization algorithm Optimal economic dispatch Dynamic thermal line rating Forecasting algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-27e826a0c934fb392a22ce80c8248e9bda5d76ff2ee8e4cc3532dc2b1c19bc813 |
| ORCID | 0000-0001-9741-6245 |
| ParticipantIDs | crossref_primary_10_1016_j_epsr_2023_109726 crossref_citationtrail_10_1016_j_epsr_2023_109726 elsevier_sciencedirect_doi_10_1016_j_epsr_2023_109726 |
| PublicationCentury | 2000 |
| PublicationDate | November 2023 2023-11-00 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Pavlinić, Komen, Uzelac (bib0043) 2018; 155 (bib0046) 1956 Hall, Deb (bib0020) 1988; 3 Dehghani, Hubalovsky, Trojovsky (bib0039) 2021; 9 Teh, Lai (bib0010) 2019; 20 Ngoko, Sugihara, Funaki (bib0050) 2018; 101 Su, Teh (bib0042) 2023; 11 Park, Jin, Park (bib0005) 2018; 102 Safari, Mazhari, Chung, Ko (bib0001) March 2022; 10 (bib0049) 2006 IEEE Power and Energy Society Dupin, Kariniotakis, Michiorri (bib0032) 2019; 110 Lai, Teh, Alharbi, AlKassem, Aljabr, Alshammari (bib0012) 2023; 221 Aznarte, Siebert (bib0019) 2017; 32 Sun, Jin (bib0026) 2022; 134 (bib0038) 1997; 9 Teh, Cotton (bib0004) 2016; 65 Abboud (bib0029) 2019; 170 Lai, Teh (bib0011) 2022; 305 Schiffer (bib0044) 2008 EL-Azab, Omran, Mekhamer, Talaat (bib0009) 2021; 199 Khodayar, Kaynak, Khodayar (bib0037) 2017; 13 Barton, Musilek (bib0025) 2021; 134 Qiu, Wang (bib0031) 2015; 30 Li (bib0008) 2019; 7 Mahmoudian Esfahani, Yousefi (bib0014) 2016; 12 S. D. Foss, “DYNAMIC LINE RATING IN THE OPERATING ENVIRONMENT,” 1990. Theodosoglou, Chatziathanasiou, Papagiannakis, Więcek, De Mey (bib0018) 2017; 87 Piccolo, Vaccaro, Villacci (bib0022) 2004; 71 Khodayar, Wang, Wang (bib0036) 2020; 31 Xiao, Xiang, Wang, Xie (bib0007) 2018; 33 Jiang, Liang, Chen, Zheng, Chuang, Wang (bib0027) 2018; 9 Carlini, Pisani, Vaccaro, Villacci (bib0023) 2016; 132 Fan, Bell, Infield (bib0030) 2019; 167 CIGRE (bib0048) 2014 Lai, Teh (bib0003) 2022; 8 Zhan, Liu, Chung (bib0006) 2019; 34 Bosisio, Berizzi, Le, Bassi, Giannuzzi (bib0028) 2019; 172 Banerjee, Jayaweera, Islam (bib0013) 2015; 69 Teh, Lai (bib0015) 2019; 7 Sobhy, Megahed, Abo-Zahhad (bib0033) 2021; 7 Teh, Ooi, Cheng, Zainuri, Lai (bib0016) 2018; 11 H. D. Wan James McCalley Vijay Vitta, “Increasing Thermal Rating by Risk Analysis,” 1999. Fan, Bell, Infield (bib0024) 2017; 32 Alberdi, Fernandez, Albizu, Bedialauneta, Fernandez (bib0035) 2021; 133 Dupin, Michiorri, Kariniotakis (bib0034) 2019; 34 Long, He, Cui, Li, Tan, Tang (bib0041) 2022; 8 Davidson, Donoho, Landrieu, McElhaney, Saeger (bib0047) 1969 2012. Madadi, Mohammadi-Ivatloo, Tohidi (bib0017) 2020; 35 10.1016/j.epsr.2023.109726_bib0021 Dupin (10.1016/j.epsr.2023.109726_bib0034) 2019; 34 Teh (10.1016/j.epsr.2023.109726_bib0004) 2016; 65 Davidson (10.1016/j.epsr.2023.109726_bib0047) 1969 Safari (10.1016/j.epsr.2023.109726_bib0001) 2022; 10 Aznarte (10.1016/j.epsr.2023.109726_bib0019) 2017; 32 Sobhy (10.1016/j.epsr.2023.109726_bib0033) 2021; 7 Pavlinić (10.1016/j.epsr.2023.109726_bib0043) 2018; 155 Su (10.1016/j.epsr.2023.109726_bib0042) 2023; 11 Khodayar (10.1016/j.epsr.2023.109726_bib0037) 2017; 13 (10.1016/j.epsr.2023.109726_bib0038) 1997; 9 Park (10.1016/j.epsr.2023.109726_bib0005) 2018; 102 Banerjee (10.1016/j.epsr.2023.109726_bib0013) 2015; 69 Lai (10.1016/j.epsr.2023.109726_bib0011) 2022; 305 Fan (10.1016/j.epsr.2023.109726_bib0030) 2019; 167 Zhan (10.1016/j.epsr.2023.109726_bib0006) 2019; 34 Schiffer (10.1016/j.epsr.2023.109726_bib0044) 2008 Teh (10.1016/j.epsr.2023.109726_bib0015) 2019; 7 (10.1016/j.epsr.2023.109726_bib0049) 2006 Hall (10.1016/j.epsr.2023.109726_bib0020) 1988; 3 Madadi (10.1016/j.epsr.2023.109726_bib0017) 2020; 35 Bosisio (10.1016/j.epsr.2023.109726_bib0028) 2019; 172 Dehghani (10.1016/j.epsr.2023.109726_bib0039) 2021; 9 Barton (10.1016/j.epsr.2023.109726_bib0025) 2021; 134 Teh (10.1016/j.epsr.2023.109726_bib0010) 2019; 20 Theodosoglou (10.1016/j.epsr.2023.109726_bib0018) 2017; 87 Jiang (10.1016/j.epsr.2023.109726_bib0027) 2018; 9 Fan (10.1016/j.epsr.2023.109726_bib0024) 2017; 32 Mahmoudian Esfahani (10.1016/j.epsr.2023.109726_bib0014) 2016; 12 10.1016/j.epsr.2023.109726_bib0040 10.1016/j.epsr.2023.109726_bib0002 Lai (10.1016/j.epsr.2023.109726_bib0012) 2023; 221 Abboud (10.1016/j.epsr.2023.109726_bib0029) 2019; 170 Khodayar (10.1016/j.epsr.2023.109726_bib0036) 2020; 31 Teh (10.1016/j.epsr.2023.109726_bib0016) 2018; 11 Sun (10.1016/j.epsr.2023.109726_bib0026) 2022; 134 Alberdi (10.1016/j.epsr.2023.109726_bib0035) 2021; 133 (10.1016/j.epsr.2023.109726_bib0046) 1956 CIGRE (10.1016/j.epsr.2023.109726_bib0048) 2014 Carlini (10.1016/j.epsr.2023.109726_bib0023) 2016; 132 Lai (10.1016/j.epsr.2023.109726_bib0003) 2022; 8 EL-Azab (10.1016/j.epsr.2023.109726_bib0009) 2021; 199 Qiu (10.1016/j.epsr.2023.109726_bib0031) 2015; 30 Li (10.1016/j.epsr.2023.109726_bib0008) 2019; 7 Dupin (10.1016/j.epsr.2023.109726_bib0032) 2019; 110 Piccolo (10.1016/j.epsr.2023.109726_bib0022) 2004; 71 Xiao (10.1016/j.epsr.2023.109726_bib0007) 2018; 33 Long (10.1016/j.epsr.2023.109726_bib0041) 2022; 8 Ngoko (10.1016/j.epsr.2023.109726_bib0050) 2018; 101 |
| References_xml | – volume: 12 start-page: 745 year: 2016 end-page: 754 ident: bib0014 article-title: Real Time Congestion Management in Power Systems Considering Quasi-Dynamic Thermal Rating and Congestion Clearing Time publication-title: IEEE Trans. Ind. Informatics – volume: 33 start-page: 6000 year: 2018 end-page: 6012 ident: bib0007 article-title: Power system reliability evaluation incorporating dynamic thermal rating and network topology optimization publication-title: IEEE Trans. Power Syst. – volume: 3 start-page: 2048 year: 1988 end-page: 2055 ident: bib0020 article-title: Economic evaluation of dynamic thermal rating by adaptive forecasting publication-title: IEEE Trans. Power Deliv. – volume: 110 start-page: 565 year: 2019 end-page: 578 ident: bib0032 article-title: Overhead lines Dynamic Line rating based on probabilistic day-ahead forecasting and risk assessment publication-title: Int. J. Electr. Power Energy Syst. – volume: 32 start-page: 1881 year: 2017 end-page: 1890 ident: bib0024 article-title: Probabilistic real-Time thermal rating forecasting for overhead lines by conditionally heteroscedastic auto-regressive models publication-title: IEEE Trans. Power Deliv. – volume: 34 start-page: 432 year: 2019 end-page: 443 ident: bib0006 article-title: Stochastic Transmission Expansion Planning Considering Uncertain Dynamic Thermal Rating of Overhead Lines publication-title: IEEE Trans. Power Syst. – volume: 199 year: 2021 ident: bib0009 article-title: Congestion management of power systems by optimizing grid topology and using dynamic thermal rating publication-title: Electr. Power Syst. Res. – volume: 30 start-page: 2198 year: 2015 end-page: 2199 ident: bib0031 article-title: Distributionally Robust Congestion Management with Dynamic Line Ratings publication-title: IEEE Trans. Power Syst. – volume: 34 start-page: 2836 year: 2019 end-page: 2848 ident: bib0034 article-title: Optimal Dynamic Line Rating Forecasts Selection Based on Ampacity Probabilistic Forecasting and Network Operators’ Risk Aversion publication-title: IEEE Trans. Power Syst. – start-page: 194 year: 1969 end-page: 199 ident: bib0047 article-title: Short-Time Thermal Ratings for Bare Overhead Conductors – volume: 31 start-page: 1696 year: 2020 end-page: 1709 ident: bib0036 article-title: Energy Disaggregation via Deep Temporal Dictionary Learning publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 11 year: 2018 ident: bib0016 article-title: Composite reliability evaluation of load demand side management and dynamic thermal rating systems publication-title: Energies – volume: 134 year: 2021 ident: bib0025 article-title: Probabilistic forecasting of dynamic thermal line rating with temporal correlations publication-title: Int. J. Electr. Power Energy Syst. – volume: 65 start-page: 1081 year: 2016 end-page: 1089 ident: bib0004 article-title: Reliability Impact of Dynamic Thermal Rating System in Wind Power Integrated Network publication-title: IEEE Trans. Reliab. – volume: 134 year: 2022 ident: bib0026 article-title: Spatio-temporal weather model-based probabilistic forecasting of dynamic thermal rating for overhead transmission lines publication-title: Int. J. Electr. Power Energy Syst. – volume: 8 start-page: 14183 year: 2022 end-page: 14199 ident: bib0041 article-title: Research on short-term wind speed prediction based on deep learning model in multi-fan scenario of distributed generation publication-title: Energy Reports – volume: 32 start-page: 335 year: 2017 end-page: 343 ident: bib0019 article-title: Dynamic Line Rating Using Numerical Weather Predictions and Machine Learning: A Case Study publication-title: IEEE Trans. Power Deliv. – volume: 10 start-page: 378 year: March 2022 end-page: 387 ident: bib0001 article-title: Secure Probabilistic Prediction of Dynamic Thermal Line Rating publication-title: Journal of Modern Power Systems and Clean Energy – reference: IEEE Power and Energy Society, – start-page: 601 year: 2014 ident: bib0048 article-title: Group B2. 43,‘Guide for thermal rating calculations of overhead lines – reference: S. D. Foss, “DYNAMIC LINE RATING IN THE OPERATING ENVIRONMENT,” 1990. – volume: 9 start-page: 162059 year: 2021 end-page: 162080 ident: bib0039 article-title: Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems publication-title: IEEE Access – volume: 69 start-page: 295 year: 2015 end-page: 303 ident: bib0013 article-title: Assessment of post-contingency congestion risk of wind power with asset dynamic ratings publication-title: Int. J. Electr. Power Energy Syst. – volume: 102 start-page: 211 year: 2018 end-page: 222 ident: bib0005 article-title: Stochastic security-constrained unit commitment with wind power generation based on dynamic line rating publication-title: Int. J. Electr. Power Energy Syst. – year: 2008 ident: bib0044 article-title: Power Struggles: Scientific Authority and the Creation of Practical Electricity Before Edison – volume: 11 start-page: 52 year: 2023 end-page: 65 ident: bib0042 article-title: Two-stage Optimal Dispatching of AC/DC Hybrid Active Distribution Systems Considering Network Flexibility publication-title: J. Mod. Power Syst. Clean Energy – volume: 8 start-page: 3263 year: 2022 end-page: 3288 ident: bib0003 article-title: Comprehensive review of the dynamic thermal rating system for sustainable electrical power systems publication-title: Energy Reports – reference: H. D. Wan James McCalley Vijay Vitta, “Increasing Thermal Rating by Risk Analysis,” 1999. – volume: 7 start-page: 35287 year: 2019 end-page: 35301 ident: bib0008 article-title: Day-Ahead Scheduling of Power System Incorporating Network Topology Optimization and Dynamic Thermal Rating publication-title: IEEE Access – volume: 155 start-page: 216 year: 2018 end-page: 224 ident: bib0043 article-title: Application of direct collocation method in short-term line ampacity calculation publication-title: Electr. Power Syst. Res. – volume: 132 start-page: 1 year: 2016 end-page: 8 ident: bib0023 article-title: A reliable computing framework for dynamic line rating of overhead lines publication-title: Electr. Power Syst. Res. – volume: 305 year: 2022 ident: bib0011 article-title: Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability publication-title: Appl. Energy – volume: 87 start-page: 198 year: 2017 end-page: 210 ident: bib0018 article-title: Electrothermal analysis and temperature fluctuations’ prediction of overhead power lines publication-title: Int. J. Electr. Power Energy Syst. – volume: 7 start-page: 804 year: 2021 end-page: 813 ident: bib0033 article-title: Overhead transmission lines dynamic rating estimation for renewable energy integration using machine learning publication-title: Energy Reports – volume: 13 start-page: 2770 year: 2017 end-page: 2779 ident: bib0037 article-title: Rough Deep Neural Architecture for Short-Term Wind Speed Forecasting publication-title: IEEE Trans. Ind. Informatics – volume: 101 start-page: 255 year: 2018 end-page: 267 ident: bib0050 article-title: Optimal power flow considering line-conductor temperature limits under high penetration of intermittent renewable energy sources publication-title: Int. J. Electr. Power Energy Syst. – volume: 20 year: 2019 ident: bib0010 article-title: Reliability impacts of the dynamic thermal rating and battery energy storage systems on wind-integrated power networks publication-title: Sustain. Energy, Grids Networks – reference: . 2012. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib0038 article-title: Long Short-Term Memory publication-title: Neural Computation – volume: 9 start-page: 406 year: 2018 end-page: 415 ident: bib0027 article-title: On dispatching line ampacities of power grids using weather-based conductor temperature forecasts publication-title: IEEE Trans. Smart Grid – year: 2006 ident: bib0049 article-title: Guide for selection of weather parameters for bare overhead conductor ratings – year: 1956 ident: bib0046 article-title: Thermal image of an overhead line – volume: 35 start-page: 851 year: 2020 end-page: 860 ident: bib0017 article-title: Dynamic Line Rating Forecasting Based on Integrated Factorized Ornstein-Uhlenbeck Processes publication-title: IEEE Trans. Power Deliv. – volume: 167 start-page: 213 year: 2019 end-page: 221 ident: bib0030 article-title: Transient-state real-time thermal rating forecasting for overhead lines by an enhanced analytical method publication-title: Electr. Power Syst. Res. – volume: 71 start-page: 275 year: 2004 end-page: 283 ident: bib0022 article-title: Thermal rating assessment of overhead lines by Affine Arithmetic publication-title: Electr. Power Syst. Res. – volume: 172 start-page: 193 year: 2019 end-page: 200 ident: bib0028 article-title: Improving DTR assessment by means of PCA applied to wind data publication-title: Electr. Power Syst. Res. – volume: 221 year: 2023 ident: bib0012 article-title: Optimisation of generation unit commitment and network topology with the dynamic thermal rating system considering N-1 reliability publication-title: Electr. Power Syst. Res. – volume: 133 year: 2021 ident: bib0035 article-title: Overhead line ampacity forecasting and a methodology for assessing risk and line capacity utilization publication-title: Int. J. Electr. Power Energy Syst. – volume: 7 start-page: 41625 year: 2019 end-page: 41635 ident: bib0015 article-title: Reliability Impacts of the Dynamic Thermal Rating System on Smart Grids Considering Wireless Communications publication-title: IEEE Access – volume: 170 start-page: 326 year: 2019 end-page: 337 ident: bib0029 article-title: Coupling computational fluid dynamics with the high resolution rapid refresh model for forecasting dynamic line ratings publication-title: Electr. Power Syst. Res. – volume: 12 start-page: 745 issue: 2 year: 2016 ident: 10.1016/j.epsr.2023.109726_bib0014 article-title: Real Time Congestion Management in Power Systems Considering Quasi-Dynamic Thermal Rating and Congestion Clearing Time publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2016.2530402 – volume: 9 start-page: 406 issue: 1 year: 2018 ident: 10.1016/j.epsr.2023.109726_bib0027 article-title: On dispatching line ampacities of power grids using weather-based conductor temperature forecasts publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2553964 – ident: 10.1016/j.epsr.2023.109726_bib0021 doi: 10.1109/59.780891 – volume: 11 start-page: 52 issue: 1 year: 2023 ident: 10.1016/j.epsr.2023.109726_bib0042 article-title: Two-stage Optimal Dispatching of AC/DC Hybrid Active Distribution Systems Considering Network Flexibility publication-title: J. Mod. Power Syst. Clean Energy doi: 10.35833/MPCE.2022.000424 – volume: 35 start-page: 851 issue: 2 year: 2020 ident: 10.1016/j.epsr.2023.109726_bib0017 article-title: Dynamic Line Rating Forecasting Based on Integrated Factorized Ornstein-Uhlenbeck Processes publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2019.2929694 – volume: 9 start-page: 162059 year: 2021 ident: 10.1016/j.epsr.2023.109726_bib0039 article-title: Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3133286 – volume: 134 year: 2022 ident: 10.1016/j.epsr.2023.109726_bib0026 article-title: Spatio-temporal weather model-based probabilistic forecasting of dynamic thermal rating for overhead transmission lines publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107347 – volume: 305 year: 2022 ident: 10.1016/j.epsr.2023.109726_bib0011 article-title: Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117837 – volume: 7 start-page: 41625 year: 2019 ident: 10.1016/j.epsr.2023.109726_bib0015 article-title: Reliability Impacts of the Dynamic Thermal Rating System on Smart Grids Considering Wireless Communications publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907980 – volume: 7 start-page: 804 year: 2021 ident: 10.1016/j.epsr.2023.109726_bib0033 article-title: Overhead transmission lines dynamic rating estimation for renewable energy integration using machine learning publication-title: Energy Reports doi: 10.1016/j.egyr.2021.07.060 – volume: 3 start-page: 2048 issue: 4 year: 1988 ident: 10.1016/j.epsr.2023.109726_bib0020 article-title: Economic evaluation of dynamic thermal rating by adaptive forecasting publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.194016 – start-page: 601 year: 2014 ident: 10.1016/j.epsr.2023.109726_bib0048 – volume: 221 year: 2023 ident: 10.1016/j.epsr.2023.109726_bib0012 article-title: Optimisation of generation unit commitment and network topology with the dynamic thermal rating system considering N-1 reliability publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2023.109444 – year: 2006 ident: 10.1016/j.epsr.2023.109726_bib0049 – volume: 31 start-page: 1696 issue: 5 year: 2020 ident: 10.1016/j.epsr.2023.109726_bib0036 article-title: Energy Disaggregation via Deep Temporal Dictionary Learning publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2019.2921952 – volume: 102 start-page: 211 year: 2018 ident: 10.1016/j.epsr.2023.109726_bib0005 article-title: Stochastic security-constrained unit commitment with wind power generation based on dynamic line rating publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.04.026 – volume: 172 start-page: 193 year: 2019 ident: 10.1016/j.epsr.2023.109726_bib0028 article-title: Improving DTR assessment by means of PCA applied to wind data publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2019.02.028 – year: 2008 ident: 10.1016/j.epsr.2023.109726_bib0044 – volume: 34 start-page: 2836 issue: 4 year: 2019 ident: 10.1016/j.epsr.2023.109726_bib0034 article-title: Optimal Dynamic Line Rating Forecasts Selection Based on Ampacity Probabilistic Forecasting and Network Operators’ Risk Aversion publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2018.2889973 – volume: 155 start-page: 216 year: 2018 ident: 10.1016/j.epsr.2023.109726_bib0043 article-title: Application of direct collocation method in short-term line ampacity calculation publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2017.10.018 – volume: 69 start-page: 295 year: 2015 ident: 10.1016/j.epsr.2023.109726_bib0013 article-title: Assessment of post-contingency congestion risk of wind power with asset dynamic ratings publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.12.088 – volume: 71 start-page: 275 issue: 3 year: 2004 ident: 10.1016/j.epsr.2023.109726_bib0022 article-title: Thermal rating assessment of overhead lines by Affine Arithmetic publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2004.01.018 – ident: 10.1016/j.epsr.2023.109726_bib0040 – volume: 132 start-page: 1 year: 2016 ident: 10.1016/j.epsr.2023.109726_bib0023 article-title: A reliable computing framework for dynamic line rating of overhead lines publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2015.11.004 – volume: 32 start-page: 1881 issue: 4 year: 2017 ident: 10.1016/j.epsr.2023.109726_bib0024 article-title: Probabilistic real-Time thermal rating forecasting for overhead lines by conditionally heteroscedastic auto-regressive models publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2016.2577140 – volume: 8 start-page: 3263 year: 2022 ident: 10.1016/j.epsr.2023.109726_bib0003 article-title: Comprehensive review of the dynamic thermal rating system for sustainable electrical power systems publication-title: Energy Reports doi: 10.1016/j.egyr.2022.02.085 – volume: 133 year: 2021 ident: 10.1016/j.epsr.2023.109726_bib0035 article-title: Overhead line ampacity forecasting and a methodology for assessing risk and line capacity utilization publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107305 – volume: 87 start-page: 198 year: 2017 ident: 10.1016/j.epsr.2023.109726_bib0018 article-title: Electrothermal analysis and temperature fluctuations’ prediction of overhead power lines publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2016.07.002 – volume: 13 start-page: 2770 issue: 6 year: 2017 ident: 10.1016/j.epsr.2023.109726_bib0037 article-title: Rough Deep Neural Architecture for Short-Term Wind Speed Forecasting publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2017.2730846 – ident: 10.1016/j.epsr.2023.109726_bib0002 doi: 10.1109/61.53127 – volume: 110 start-page: 565 year: 2019 ident: 10.1016/j.epsr.2023.109726_bib0032 article-title: Overhead lines Dynamic Line rating based on probabilistic day-ahead forecasting and risk assessment publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.03.043 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.epsr.2023.109726_bib0038 article-title: Long Short-Term Memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 34 start-page: 432 issue: 1 year: 2019 ident: 10.1016/j.epsr.2023.109726_bib0006 article-title: Stochastic Transmission Expansion Planning Considering Uncertain Dynamic Thermal Rating of Overhead Lines publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2018.2857698 – volume: 32 start-page: 335 issue: 1 year: 2017 ident: 10.1016/j.epsr.2023.109726_bib0019 article-title: Dynamic Line Rating Using Numerical Weather Predictions and Machine Learning: A Case Study publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2016.2543818 – volume: 199 year: 2021 ident: 10.1016/j.epsr.2023.109726_bib0009 article-title: Congestion management of power systems by optimizing grid topology and using dynamic thermal rating publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2021.107433 – volume: 167 start-page: 213 year: 2019 ident: 10.1016/j.epsr.2023.109726_bib0030 article-title: Transient-state real-time thermal rating forecasting for overhead lines by an enhanced analytical method publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2018.11.003 – volume: 65 start-page: 1081 issue: 2 year: 2016 ident: 10.1016/j.epsr.2023.109726_bib0004 article-title: Reliability Impact of Dynamic Thermal Rating System in Wind Power Integrated Network publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2015.2495173 – volume: 33 start-page: 6000 issue: 6 year: 2018 ident: 10.1016/j.epsr.2023.109726_bib0007 article-title: Power system reliability evaluation incorporating dynamic thermal rating and network topology optimization publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2018.2829079 – start-page: 194 year: 1969 ident: 10.1016/j.epsr.2023.109726_bib0047 – year: 1956 ident: 10.1016/j.epsr.2023.109726_bib0046 – volume: 101 start-page: 255 year: 2018 ident: 10.1016/j.epsr.2023.109726_bib0050 article-title: Optimal power flow considering line-conductor temperature limits under high penetration of intermittent renewable energy sources publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.03.023 – volume: 20 year: 2019 ident: 10.1016/j.epsr.2023.109726_bib0010 article-title: Reliability impacts of the dynamic thermal rating and battery energy storage systems on wind-integrated power networks publication-title: Sustain. Energy, Grids Networks doi: 10.1016/j.segan.2019.100268 – volume: 10 start-page: 378 issue: 2 year: 2022 ident: 10.1016/j.epsr.2023.109726_bib0001 article-title: Secure Probabilistic Prediction of Dynamic Thermal Line Rating publication-title: Journal of Modern Power Systems and Clean Energy doi: 10.35833/MPCE.2020.000641 – volume: 7 start-page: 35287 year: 2019 ident: 10.1016/j.epsr.2023.109726_bib0008 article-title: Day-Ahead Scheduling of Power System Incorporating Network Topology Optimization and Dynamic Thermal Rating publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904877 – volume: 134 year: 2021 ident: 10.1016/j.epsr.2023.109726_bib0025 article-title: Probabilistic forecasting of dynamic thermal line rating with temporal correlations publication-title: Int. J. Electr. Power Energy Syst. – volume: 8 start-page: 14183 year: 2022 ident: 10.1016/j.epsr.2023.109726_bib0041 article-title: Research on short-term wind speed prediction based on deep learning model in multi-fan scenario of distributed generation publication-title: Energy Reports doi: 10.1016/j.egyr.2022.10.399 – volume: 30 start-page: 2198 issue: 4 year: 2015 ident: 10.1016/j.epsr.2023.109726_bib0031 article-title: Distributionally Robust Congestion Management with Dynamic Line Ratings publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2014.2361012 – volume: 11 issue: 2 year: 2018 ident: 10.1016/j.epsr.2023.109726_bib0016 article-title: Composite reliability evaluation of load demand side management and dynamic thermal rating systems publication-title: Energies doi: 10.3390/en11020466 – volume: 170 start-page: 326 year: 2019 ident: 10.1016/j.epsr.2023.109726_bib0029 article-title: Coupling computational fluid dynamics with the high resolution rapid refresh model for forecasting dynamic line ratings publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2019.01.035 |
| SSID | ssj0006975 |
| Score | 2.4738443 |
| Snippet | The main contributions of this article are as follows:•Proposing a new DTLR prediction model based on knowledge-driven and data-driven.•Preprocessing of the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109726 |
| SubjectTerms | Deep learning Dynamic thermal line rating Forecasting algorithm Optimal economic dispatch Optimization algorithm |
| Title | Dynamic thermal line rating model of conductor based on prediction of meteorological parameters |
| URI | https://dx.doi.org/10.1016/j.epsr.2023.109726 |
| Volume | 224 |
| WOSCitedRecordID | wos001049486600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0378-7796 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006975 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdZs8N6KN0X6yc67FY8bMm2pGNpO7YyymAZ5GYkWV5bMickaemf3_cs2U66rayHXkwQsmz8U9776X0S8jHRlbMVZxHTSkZpakRkcmMiUSbA5yrmtG5K5n8TFxdyPFbfB4MfbS7M7UTUtby7U7NnhRrGAGxMnX0C3N2iMAC_AXS4Auxw_S_gT32PeWSUIHQnRw2PRJzrX77vjY8kr7HQK4Zqghor0WUwm6PPpiWQv4FMT-edZMQK4TgUfD-tKb_poQPPmmGvtVAVGv0QKyYytN6EsN8RbMXLm04PjFxj0jm_0ovLkJAWzA-Mhzy8XkpxOIYK4dvStiKVsXRFKKKT26fF_yGvvengGlTvAouzMv6pn7xeHPuB0upCCdsotesC1yhwjcKv8YIMmcgUiLrh8dez8XmnoHPV1F_u3jzkUvmwv4dv8ne-ssJBRttkKxwe6LEH_TUZuPoN2VwpKfmWFAF-GuCnCD_18NMGfjqtaAc_beCn05r28OOEdfhpD_878vPz2ejkSxSaaESWx_EyYsLBCVLHVvG0MsCGNWPWydhKlkqnTKmzUuQV_CuddKm1POOstMwkNlHGyoS_Jxv1tHYfCFV5llWpAFVtWGrjUubSlkZplZdA81S2Q5L2UxU2VJjHRieT4t8g7ZCj7p6Zr6_y6OysRaAIDNEzvwI21CP37T7pKXvkVb_T98nGcn7jDshLe7u8WswPw266Bzm2i50 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+thermal+line+rating+model+of+conductor+based+on+prediction+of+meteorological+parameters&rft.jtitle=Electric+power+systems+research&rft.au=Song%2C+Tianhua&rft.au=Teh%2C+Jiashen&rft.date=2023-11-01&rft.issn=0378-7796&rft.volume=224&rft.spage=109726&rft_id=info:doi/10.1016%2Fj.epsr.2023.109726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2023_109726 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |