Local contextual information and Gaussian function induced fuzzy clustering algorithm for brain MR image segmentation and intensity inhomogeneity estimation

•A Fuzzy clustering algorithm using local contextual information and Gaussian function is devised for bias field and brain MR image segmentation.•The algorithm works directly on the MR signal model without transforming it into a log-transformed domain.•We have used Gaussian surface to compensate the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 68; s. 586 - 596
Hlavní autoři: Mahata, Nabanita, Kahali, Sayan, Adhikari, Sudip Kumar, Sing, Jamuna Kanta
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2018
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A Fuzzy clustering algorithm using local contextual information and Gaussian function is devised for bias field and brain MR image segmentation.•The algorithm works directly on the MR signal model without transforming it into a log-transformed domain.•We have used Gaussian surface to compensate the effect of bias field and the local contextual information for final labeling of pixels.•We have introduced global and local membership functions for each pixel to define its belongingness into a tissue region.•Simulation results on real-patient and simulated brain MR images demonstrate its effectiveness and superiority over other similar methods. This paper presents a fuzzy clustering algorithm, where local contextual information and a Gaussian function are incorporated into the objective function, for simultaneous brain MR image segmentation and intensity inhomogeneity estimation. In doing so, for each pixel, we define a local contextual information, which actually defines its association among the other neighboring pixels based on intensity distribution. In particular, this information defines the possibility of the pixel to belong into a specific tissue type. Whereas, for each tissue region, a Gaussian surface is defined to estimate the intensity inhomogeneity (IIH) using the local image gradients, which are believed to be caused by the IIH. We use this Gaussian surface to compensate the effect of IIH. In addition, for each pixel, we have introduced global and local membership functions, which in combined in association with the other parameters are responsible for generation of cluster prototypes. The IIH of the entire image region is iteratively removed from the image and the final segmentation result is obtained based on the global membership values. The simulation results on two benchmarks brain MR image databases and four volumes of real-patient brain MR image data show its efficiency and superiority over other fuzzy-based clustering algorithms.
AbstractList •A Fuzzy clustering algorithm using local contextual information and Gaussian function is devised for bias field and brain MR image segmentation.•The algorithm works directly on the MR signal model without transforming it into a log-transformed domain.•We have used Gaussian surface to compensate the effect of bias field and the local contextual information for final labeling of pixels.•We have introduced global and local membership functions for each pixel to define its belongingness into a tissue region.•Simulation results on real-patient and simulated brain MR images demonstrate its effectiveness and superiority over other similar methods. This paper presents a fuzzy clustering algorithm, where local contextual information and a Gaussian function are incorporated into the objective function, for simultaneous brain MR image segmentation and intensity inhomogeneity estimation. In doing so, for each pixel, we define a local contextual information, which actually defines its association among the other neighboring pixels based on intensity distribution. In particular, this information defines the possibility of the pixel to belong into a specific tissue type. Whereas, for each tissue region, a Gaussian surface is defined to estimate the intensity inhomogeneity (IIH) using the local image gradients, which are believed to be caused by the IIH. We use this Gaussian surface to compensate the effect of IIH. In addition, for each pixel, we have introduced global and local membership functions, which in combined in association with the other parameters are responsible for generation of cluster prototypes. The IIH of the entire image region is iteratively removed from the image and the final segmentation result is obtained based on the global membership values. The simulation results on two benchmarks brain MR image databases and four volumes of real-patient brain MR image data show its efficiency and superiority over other fuzzy-based clustering algorithms.
Author Adhikari, Sudip Kumar
Mahata, Nabanita
Sing, Jamuna Kanta
Kahali, Sayan
Author_xml – sequence: 1
  givenname: Nabanita
  surname: Mahata
  fullname: Mahata, Nabanita
  email: mahatanabanita1990@gmail.com
  organization: Dept. of Computer Science & Engineering, Jadavpur University, Kolkata 700032, India
– sequence: 2
  givenname: Sayan
  surname: Kahali
  fullname: Kahali, Sayan
  email: sayankahaliiway@gmail.com
  organization: Dept. of Computer Science & Engineering, Jadavpur University, Kolkata 700032, India
– sequence: 3
  givenname: Sudip Kumar
  surname: Adhikari
  fullname: Adhikari, Sudip Kumar
  email: sudipadhikari@ieee.org
  organization: Cooch Behar Govt. Engineering College, Ghughumari, Cooch Behar, India
– sequence: 4
  givenname: Jamuna Kanta
  orcidid: 0000-0003-1006-6006
  surname: Sing
  fullname: Sing, Jamuna Kanta
  email: jksing@ieee.org
  organization: Dept. of Computer Science & Engineering, Jadavpur University, Kolkata 700032, India
BookMark eNp9kM1KxDAUhYMoOP68gKu8QGuS_kwKbkR0FEYE0XVI05tOhjaRJBXHZ_FhzTiC4GJWObnwnXvPOUGH1llA6IKSnBJaX65zGZzKGaE8J2VOCnqAZpTPWdbUnB4mXdU8K5uyPkYnIaxJghrGZ-hr6ZQcsHI2wkeckjRWOz_KaJzF0nZ4IacQjLRYT1b9TI3tJgVdGnx-brAaphDBG9tjOfTOm7gacbLArZfG4sdnbEbZAw7Qj2Djn7FJK20wcZPUyo2uBwvbH4RodvvP0JGWQ4Dz3_cUvd7dvtzcZ8unxcPN9TJTBSExY0UDnW6bQlYVm2tgBVSdrFpeUGCt0qqcA2U1qYjmvG50UTHdkrosq7opmWqLU8R2vsq7EDxo8ebTCX4jKBHbfsVabPsV234FKUXqN0H8H6TMLl1MwYf96NUOhRTq3YAXQRmwqVPjQUXRObMP_wYpl54r
CitedBy_id crossref_primary_10_1371_journal_pone_0304017
crossref_primary_10_1155_2022_7700511
crossref_primary_10_1007_s10489_021_03108_5
crossref_primary_10_1016_j_ins_2021_06_034
crossref_primary_10_1016_j_rsase_2020_100319
crossref_primary_10_1002_ima_22495
crossref_primary_10_1016_j_eswa_2024_124943
crossref_primary_10_3390_app8122393
crossref_primary_10_1109_TFUZZ_2024_3409412
crossref_primary_10_3390_electronics10020101
crossref_primary_10_1016_j_mri_2019_05_043
crossref_primary_10_1155_2022_1442745
crossref_primary_10_1016_j_patcog_2019_03_004
crossref_primary_10_1166_jmihi_2021_3860
crossref_primary_10_1016_j_bspc_2023_104925
crossref_primary_10_1049_iet_ipr_2019_0698
crossref_primary_10_1007_s13042_023_01790_0
crossref_primary_10_1016_j_asoc_2019_105858
crossref_primary_10_1016_j_asoc_2020_106364
crossref_primary_10_1111_coin_12259
crossref_primary_10_1155_2019_4625371
crossref_primary_10_1016_j_asoc_2020_106982
crossref_primary_10_1049_iet_ipr_2018_5164
crossref_primary_10_4018_IJFSA_2019070105
crossref_primary_10_1016_j_ins_2022_11_170
crossref_primary_10_1016_j_bspc_2022_103571
crossref_primary_10_1016_j_patcog_2021_108201
crossref_primary_10_1016_j_amc_2023_128050
crossref_primary_10_1016_j_patcog_2021_108420
crossref_primary_10_3390_app9071332
crossref_primary_10_1007_s00500_023_08542_w
crossref_primary_10_1016_j_sigpro_2019_107347
crossref_primary_10_1016_j_asoc_2020_106171
crossref_primary_10_1109_ACCESS_2019_2896635
crossref_primary_10_1109_ACCESS_2020_2993249
crossref_primary_10_1007_s00521_024_10749_3
crossref_primary_10_1016_j_asoc_2022_108891
crossref_primary_10_1049_ipr2_12534
crossref_primary_10_1109_ACCESS_2020_3011224
crossref_primary_10_1007_s11042_023_14857_5
Cites_doi 10.1016/j.eswa.2014.01.021
10.1109/TMI.2006.891486
10.1007/s11760-014-0689-5
10.1016/j.cviu.2013.05.001
10.1016/j.patcog.2011.07.012
10.1109/42.996338
10.1016/j.patrec.2013.04.021
10.1016/j.compmedimag.2005.10.001
10.1002/cem.2825
10.1002/cem.2728
10.1016/j.patcog.2006.07.011
10.1109/TFUZZ.2004.840099
10.1016/j.procs.2016.09.407
10.1016/j.asoc.2017.07.001
10.1109/TMI.2003.816956
10.1109/TST.2014.6961028
10.1016/j.asoc.2015.05.038
10.1016/j.patrec.2008.03.012
10.1016/j.media.2005.09.004
10.1155/IJBI/2006/49515
10.1016/j.dsp.2013.07.005
10.1080/02564602.2014.906861
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.04.031
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 596
ExternalDocumentID 10_1016_j_asoc_2018_04_031
S1568494618302229
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-239edfb93a5527fe23e5da5b831e2bcfc47e126050f8869f352fb064456942cb3
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433155300039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:05:34 EST 2025
Tue Nov 18 22:20:08 EST 2025
Fri Feb 23 02:24:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Intensity inhomogeneity
Bias field
Brain MR image segmentation
Fuzzy clustering algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-239edfb93a5527fe23e5da5b831e2bcfc47e126050f8869f352fb064456942cb3
ORCID 0000-0003-1006-6006
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_asoc_2018_04_031
crossref_citationtrail_10_1016_j_asoc_2018_04_031
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_04_031
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Balafar, Ramli, Saripan, Mashohor (bib0015) 2010; 33
Wu (bib0115) 2012; 45
Adhikari, Sing, Basu, Nasipuri (bib0080) 2015; 34
Adhikari, Sing, Basu, Nasipuri, Saha (bib0025) 2015; 9
Cocosco, Kollokian, Kwan, Evans (bib0120) 1997; 5
Liew, Yan (bib0045) 2003; 22
Cai, Chen, Zhang (bib0055) 2007; 40
Vovk, Pernujs, Likar (bib0005) 2007; 26
Benaichouche, Oulhadj, Siarry (bib0070) 2013; 23
Hou (bib0010) 2006; 2006
Pal, Pal, Keller (bib0125) 2005; 13
Wang, Song, Soh, Sim (bib0065) 2013; 117
Kahali, Adhikari, Sing (bib0030) 2016; 30
El-Dahshan, Mohsen, Revett, Salem (bib0105) 2014; 41
Liu, Li, Wang, Wu, Liu, Pan (bib0100) 2014; 19
Kahali, Adhikari, Sing (bib0085) 2017; 60
Ahmed, Yamany, Mohamed, Farag, Moriarty (bib0040) 2002; 21
Qiu, Xiao, Yu, Han, Iqbal (bib0060) 2013; 34
Iṣin, Direkoğlu, Şah (bib0110) 2016; 102
Sing, Adhikari, Basu (bib0075) 2015; 29
The Internet Brain Segmentation Repository (IBSR) Database. Available at
Norouzi, Rahim, Altameen, Saba, Rad, Rehman, Uddin (bib0095) 2014; 5
.
Belaroussia, Millesb, Carmec, Zhua, Benoit-Cattin (bib0020) 2006; 10
Bezdek (bib0035) 1981
Chuang, Tzeng, Chen, Wu, Chen (bib0050) 2006; 30
Liao, Lin, Li (bib0090) 2008; 29
Adhikari (10.1016/j.asoc.2018.04.031_bib0025) 2015; 9
Liu (10.1016/j.asoc.2018.04.031_bib0100) 2014; 19
Norouzi (10.1016/j.asoc.2018.04.031_bib0095) 2014; 5
Ahmed (10.1016/j.asoc.2018.04.031_bib0040) 2002; 21
Bezdek (10.1016/j.asoc.2018.04.031_bib0035) 1981
Cai (10.1016/j.asoc.2018.04.031_bib0055) 2007; 40
Iṣin (10.1016/j.asoc.2018.04.031_bib0110) 2016; 102
Pal (10.1016/j.asoc.2018.04.031_bib0125) 2005; 13
El-Dahshan (10.1016/j.asoc.2018.04.031_bib0105) 2014; 41
Vovk (10.1016/j.asoc.2018.04.031_bib0005) 2007; 26
Hou (10.1016/j.asoc.2018.04.031_bib0010) 2006; 2006
Chuang (10.1016/j.asoc.2018.04.031_bib0050) 2006; 30
Benaichouche (10.1016/j.asoc.2018.04.031_bib0070) 2013; 23
10.1016/j.asoc.2018.04.031_bib0130
Liew (10.1016/j.asoc.2018.04.031_bib0045) 2003; 22
Wang (10.1016/j.asoc.2018.04.031_bib0065) 2013; 117
Qiu (10.1016/j.asoc.2018.04.031_bib0060) 2013; 34
Liao (10.1016/j.asoc.2018.04.031_bib0090) 2008; 29
Kahali (10.1016/j.asoc.2018.04.031_bib0030) 2016; 30
Cocosco (10.1016/j.asoc.2018.04.031_bib0120) 1997; 5
Belaroussia (10.1016/j.asoc.2018.04.031_bib0020) 2006; 10
Kahali (10.1016/j.asoc.2018.04.031_bib0085) 2017; 60
Sing (10.1016/j.asoc.2018.04.031_bib0075) 2015; 29
Adhikari (10.1016/j.asoc.2018.04.031_bib0080) 2015; 34
Balafar (10.1016/j.asoc.2018.04.031_bib0015) 2010; 33
Wu (10.1016/j.asoc.2018.04.031_bib0115) 2012; 45
References_xml – volume: 13
  start-page: 517
  year: 2005
  end-page: 530
  ident: bib0125
  article-title: A possibilistic fuzzy c-means clustering algorithm
  publication-title: IEEE Trans. Fuzzy Systems
– volume: 26
  start-page: 405
  year: 2007
  end-page: 421
  ident: bib0005
  article-title: A review of methods for correction of intensity inhomogeneity in MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 45
  start-page: 407
  year: 2012
  end-page: 415
  ident: bib0115
  article-title: Analysis of parameter selections for fuzzy c-means
  publication-title: Pattern Recogn.
– volume: 22
  start-page: 1063
  year: 2003
  end-page: 1075
  ident: bib0045
  article-title: An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 5
  year: 1997
  ident: bib0120
  article-title: Brainweb online interface to a 3D MRI simulated brain database
  publication-title: Neuroimage
– volume: 9
  start-page: 1945
  year: 2015
  end-page: 1954
  ident: bib0025
  article-title: A nonparametric method for intensity inhomogeneity correction in MRI brain images by fusion of Gaussian surfacesl
  publication-title: Signal Image Video Process.
– volume: 30
  start-page: 602
  year: 2016
  end-page: 620
  ident: bib0030
  article-title: On estimation of bias field in MRI images: polynomial vs Gaussian surface fitting method
  publication-title: J. Chemom.
– reference: The Internet Brain Segmentation Repository (IBSR) Database. Available at:
– year: 1981
  ident: bib0035
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– volume: 2006
  start-page: 1
  year: 2006
  end-page: 11
  ident: bib0010
  article-title: A review on MR image intensity inhomogeneity correction
  publication-title: Int. J. Biomed. Imaging
– volume: 21
  start-page: 193
  year: 2002
  end-page: 199
  ident: bib0040
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 30
  start-page: 9
  year: 2006
  end-page: 15
  ident: bib0050
  article-title: Fuzzy C-means clustering with spatial information for image Segmentation
  publication-title: Comput. Med. Imaging Graph.
– volume: 19
  start-page: 578
  year: 2014
  end-page: 595
  ident: bib0100
  article-title: A survey of MRI-based brain tumor segmentation methods
  publication-title: Tsinghua Sci. Technol.
– volume: 117
  start-page: 1412
  year: 2013
  end-page: 1420
  ident: bib0065
  article-title: An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation
  publication-title: Comput. Vision Image Underst.
– volume: 5
  start-page: 199
  year: 2014
  end-page: 213
  ident: bib0095
  article-title: Medical image segmentation methods, algorithms, and applications
  publication-title: IETE Tech. Rev.
– volume: 34
  start-page: 758
  year: 2015
  end-page: 769
  ident: bib0080
  article-title: Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images
  publication-title: Appl. Soft Comput.
– volume: 10
  start-page: 234
  year: 2006
  end-page: 246
  ident: bib0020
  article-title: Intensity non-uniformity correction in MRI: Existing methods and their validation
  publication-title: Med. Image Anal.
– reference: .
– volume: 41
  start-page: 5526
  year: 2014
  end-page: 5545
  ident: bib0105
  article-title: Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm
  publication-title: Expert Syst. Appl.
– volume: 29
  start-page: 1580
  year: 2008
  end-page: 1588
  ident: bib0090
  article-title: MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach
  publication-title: Pattern Recognit. Lett.
– volume: 34
  start-page: 1329
  year: 2013
  end-page: 1338
  ident: bib0060
  article-title: A modified interval type-2 fuzzy C-means algorithm with application in MR image segmentation
  publication-title: Pattern Recognit. Lett.
– volume: 23
  start-page: 390
  year: 2013
  end-page: 1400
  ident: bib0070
  article-title: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction
  publication-title: Digital Signal Process.
– volume: 33
  start-page: 261
  year: 2010
  end-page: 274
  ident: bib0015
  article-title: Review of brain MRI image segmentation methods
  publication-title: J. Artif. Intell.
– volume: 60
  start-page: 312
  year: 2017
  end-page: 327
  ident: bib0085
  article-title: A two-stage fuzzy multi-objective framework for segmentation of 3D MRI brain image data
  publication-title: Appl. Soft Comput.
– volume: 40
  start-page: 835
  year: 2007
  end-page: 838
  ident: bib0055
  article-title: Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation
  publication-title: Pattern Recognit.
– volume: 29
  start-page: 492
  year: 2015
  end-page: 505
  ident: bib0075
  article-title: A modified fuzzy C-means algorithm using scale control spatial information for MRI image segmentation in the presence of noise
  publication-title: J. Chemom.
– volume: 102
  start-page: 317
  year: 2016
  end-page: 324
  ident: bib0110
  article-title: Review of MRI-based brain tumor image segmentation using deep learning methods
  publication-title: Procedia Comput. Sci.
– volume: 41
  start-page: 5526
  year: 2014
  ident: 10.1016/j.asoc.2018.04.031_bib0105
  article-title: Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.01.021
– volume: 26
  start-page: 405
  year: 2007
  ident: 10.1016/j.asoc.2018.04.031_bib0005
  article-title: A review of methods for correction of intensity inhomogeneity in MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.891486
– volume: 9
  start-page: 1945
  year: 2015
  ident: 10.1016/j.asoc.2018.04.031_bib0025
  article-title: A nonparametric method for intensity inhomogeneity correction in MRI brain images by fusion of Gaussian surfacesl
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-014-0689-5
– volume: 5
  year: 1997
  ident: 10.1016/j.asoc.2018.04.031_bib0120
  article-title: Brainweb online interface to a 3D MRI simulated brain database
  publication-title: Neuroimage
– volume: 117
  start-page: 1412
  year: 2013
  ident: 10.1016/j.asoc.2018.04.031_bib0065
  article-title: An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation
  publication-title: Comput. Vision Image Underst.
  doi: 10.1016/j.cviu.2013.05.001
– volume: 45
  start-page: 407
  year: 2012
  ident: 10.1016/j.asoc.2018.04.031_bib0115
  article-title: Analysis of parameter selections for fuzzy c-means
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2011.07.012
– volume: 21
  start-page: 193
  year: 2002
  ident: 10.1016/j.asoc.2018.04.031_bib0040
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.996338
– volume: 34
  start-page: 1329
  year: 2013
  ident: 10.1016/j.asoc.2018.04.031_bib0060
  article-title: A modified interval type-2 fuzzy C-means algorithm with application in MR image segmentation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.04.021
– volume: 30
  start-page: 9
  year: 2006
  ident: 10.1016/j.asoc.2018.04.031_bib0050
  article-title: Fuzzy C-means clustering with spatial information for image Segmentation
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2005.10.001
– volume: 30
  start-page: 602
  year: 2016
  ident: 10.1016/j.asoc.2018.04.031_bib0030
  article-title: On estimation of bias field in MRI images: polynomial vs Gaussian surface fitting method
  publication-title: J. Chemom.
  doi: 10.1002/cem.2825
– volume: 29
  start-page: 492
  year: 2015
  ident: 10.1016/j.asoc.2018.04.031_bib0075
  article-title: A modified fuzzy C-means algorithm using scale control spatial information for MRI image segmentation in the presence of noise
  publication-title: J. Chemom.
  doi: 10.1002/cem.2728
– volume: 40
  start-page: 835
  year: 2007
  ident: 10.1016/j.asoc.2018.04.031_bib0055
  article-title: Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.07.011
– volume: 13
  start-page: 517
  year: 2005
  ident: 10.1016/j.asoc.2018.04.031_bib0125
  article-title: A possibilistic fuzzy c-means clustering algorithm
  publication-title: IEEE Trans. Fuzzy Systems
  doi: 10.1109/TFUZZ.2004.840099
– volume: 33
  start-page: 261
  year: 2010
  ident: 10.1016/j.asoc.2018.04.031_bib0015
  article-title: Review of brain MRI image segmentation methods
  publication-title: J. Artif. Intell.
– volume: 102
  start-page: 317
  year: 2016
  ident: 10.1016/j.asoc.2018.04.031_bib0110
  article-title: Review of MRI-based brain tumor image segmentation using deep learning methods
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.09.407
– volume: 60
  start-page: 312
  year: 2017
  ident: 10.1016/j.asoc.2018.04.031_bib0085
  article-title: A two-stage fuzzy multi-objective framework for segmentation of 3D MRI brain image data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.07.001
– volume: 22
  start-page: 1063
  year: 2003
  ident: 10.1016/j.asoc.2018.04.031_bib0045
  article-title: An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.816956
– ident: 10.1016/j.asoc.2018.04.031_bib0130
– volume: 19
  start-page: 578
  year: 2014
  ident: 10.1016/j.asoc.2018.04.031_bib0100
  article-title: A survey of MRI-based brain tumor segmentation methods
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1109/TST.2014.6961028
– volume: 34
  start-page: 758
  year: 2015
  ident: 10.1016/j.asoc.2018.04.031_bib0080
  article-title: Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.05.038
– volume: 29
  start-page: 1580
  year: 2008
  ident: 10.1016/j.asoc.2018.04.031_bib0090
  article-title: MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.03.012
– volume: 10
  start-page: 234
  year: 2006
  ident: 10.1016/j.asoc.2018.04.031_bib0020
  article-title: Intensity non-uniformity correction in MRI: Existing methods and their validation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2005.09.004
– volume: 2006
  start-page: 1
  year: 2006
  ident: 10.1016/j.asoc.2018.04.031_bib0010
  article-title: A review on MR image intensity inhomogeneity correction
  publication-title: Int. J. Biomed. Imaging
  doi: 10.1155/IJBI/2006/49515
– volume: 23
  start-page: 390
  year: 2013
  ident: 10.1016/j.asoc.2018.04.031_bib0070
  article-title: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2013.07.005
– volume: 5
  start-page: 199
  year: 2014
  ident: 10.1016/j.asoc.2018.04.031_bib0095
  article-title: Medical image segmentation methods, algorithms, and applications
  publication-title: IETE Tech. Rev.
  doi: 10.1080/02564602.2014.906861
– year: 1981
  ident: 10.1016/j.asoc.2018.04.031_bib0035
SSID ssj0016928
Score 2.4273093
Snippet •A Fuzzy clustering algorithm using local contextual information and Gaussian function is devised for bias field and brain MR image segmentation.•The algorithm...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 586
SubjectTerms Bias field
Brain MR image segmentation
Fuzzy clustering algorithm
Intensity inhomogeneity
Title Local contextual information and Gaussian function induced fuzzy clustering algorithm for brain MR image segmentation and intensity inhomogeneity estimation
URI https://dx.doi.org/10.1016/j.asoc.2018.04.031
Volume 68
WOSCitedRecordID wos000433155300039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbptAFB25SRfd9F0lfWkW3SEqGMDMLK0qfeRhVXFaeYdmYCYmNdiyIUryLf2x_k3nCU5TRW2lbpDBBka-h7l3LueeC8AbFoeURoT5CRHIjwsa-jSNhY8LlLJQBILqPOTXw3Q8xtMp-TwY_HC1MOfztK7xxQVZ_ldTy2PS2Kp09i_M3V1UHpCfpdHlVppdbv_I8IcLo_lRK05HqzU1ugpF_argA23XunRS-TTLdSxaxQMQ7dXVpZfPW6WeoKsX56eLVdnMKsPqVO0kvKNjr6wU02fNTytbuVRbESdNh29UKeFsUS3kELnaU0IeVY8Ap3lr49-1dASa2d42zo3qDPmMmsB2TJmS6Ojcx4H8xtR0T-hlj-1RMSu_UVM3P2mLculp9niXQbK9W_Zp1dbUO5CAopsZjxB37FibhrtRimNm7iH2Y2LzmdwcwynyydD0hHHTveniY-frxOlwmz3TXPeGVzEJjrO3VD4wig2ItTqu9V7X1bonahxqGKESVkOI3AHbKE2InHC3R5_2pvvdK64h0Y1_u3Hbii5DPvz1Tr-PmjYioZOH4L5dwsCRgd4jMOD1Y_DAtQeB1ls8Ad81EmGPRLiBRCgBAx0SoUMitEiEGomwRyLskAjlJaBGIjw6hhqJcBOJ-sIdEuE1JMIeiU_Bl_d7J-8--rYZiJ9HQdD4KCK8EIxEVGkGCo4inhQ0YTgKOWK5yOOUh2pxHgiMh0TIhYVgMt6WCwQSo5xFz8BWvaj5DoApY1FAWEI5iWJSRIyiNA1loMpZznCe7ILQ_dlZbpXyVcOWeeYokWeZMlCmDJQFcSYNtAu87pyl0Ym59deJs2FmI10TwWYScrec9_wfz3sB7vUP0kuw1axa_grczc-bcr16bZH5E35x2Qk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+contextual+information+and+Gaussian+function+induced+fuzzy+clustering+algorithm+for+brain+MR+image+segmentation+and+intensity+inhomogeneity+estimation&rft.jtitle=Applied+soft+computing&rft.au=Mahata%2C+Nabanita&rft.au=Kahali%2C+Sayan&rft.au=Adhikari%2C+Sudip+Kumar&rft.au=Sing%2C+Jamuna+Kanta&rft.date=2018-07-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=68&rft.spage=586&rft.epage=596&rft_id=info:doi/10.1016%2Fj.asoc.2018.04.031&rft.externalDocID=S1568494618302229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon