Pipelined Preconditioned Conjugate Gradient Methods for real and complex linear systems for distributed memory architectures

•We introduce PIPECG-OATI-c to solve complex Hermitian and symmetric linear systems.•PIPECG-OATI-c reduces synchronizations in PCG and overlaps them with computations.•We provide optimized implementations for PIPECG-OATI-c.•We obtain 25% performance improvement over PCG for 1B problem on 16K cores.•...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of parallel and distributed computing Jg. 163; S. 147 - 155
Hauptverfasser: Tiwari, Manasi, Vadhiyar, Sathish
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.05.2022
Schlagworte:
ISSN:0743-7315, 1096-0848
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We introduce PIPECG-OATI-c to solve complex Hermitian and symmetric linear systems.•PIPECG-OATI-c reduces synchronizations in PCG and overlaps them with computations.•We provide optimized implementations for PIPECG-OATI-c.•We obtain 25% performance improvement over PCG for 1B problem on 16K cores.•We obtain 2.48X performance improvement over PCG for 20M problem on 16K cores. Preconditioned Conjugate Gradient (PCG) is a popular method for solving large and sparse linear systems of equations. The performance of PCG at scale is affected due to the costly global synchronization steps that arise in dot-products on distributed memory systems. Pipelined PCG (PIPECG) removes the costly global synchronization steps from PCG by only executing a single non-blocking allreduce per iteration and overlapping it with independent computations. In our previous work, we have developed a novel pipelined PCG algorithm called PIPECG-OATI (One Allreduce per Two Iterations) for real linear systems which executes a single non-blocking allreduce per two iterations and provides a large overlap of global communication with independent computations at higher number of cores. Our method achieves this overlap by using iteration combination and by introducing new recurrence and non-recurrence computations. We implement optimizations in the PIPECG-OATI method to use cache memory efficiently. In this work, we present PIPECG-OATI-c method for linear systems with complex Hermitian positive definite and complex symmetric matrices. We compare our method with various pipelined CG methods on a variety of problems and demonstrate that our method always gives the least run times. We performed experiments with our method using 20M and 30M unknowns on up to 16K cores and obtained up to 2.48X performance improvement over PCG and 2.14X performance improvement over PIPECG methods. We also experimented with up to 1-billion unknowns on 16K cores, the largest problem size explored for the CG problem, to our knowledge, and obtained about 25% improvement over PCG.
AbstractList •We introduce PIPECG-OATI-c to solve complex Hermitian and symmetric linear systems.•PIPECG-OATI-c reduces synchronizations in PCG and overlaps them with computations.•We provide optimized implementations for PIPECG-OATI-c.•We obtain 25% performance improvement over PCG for 1B problem on 16K cores.•We obtain 2.48X performance improvement over PCG for 20M problem on 16K cores. Preconditioned Conjugate Gradient (PCG) is a popular method for solving large and sparse linear systems of equations. The performance of PCG at scale is affected due to the costly global synchronization steps that arise in dot-products on distributed memory systems. Pipelined PCG (PIPECG) removes the costly global synchronization steps from PCG by only executing a single non-blocking allreduce per iteration and overlapping it with independent computations. In our previous work, we have developed a novel pipelined PCG algorithm called PIPECG-OATI (One Allreduce per Two Iterations) for real linear systems which executes a single non-blocking allreduce per two iterations and provides a large overlap of global communication with independent computations at higher number of cores. Our method achieves this overlap by using iteration combination and by introducing new recurrence and non-recurrence computations. We implement optimizations in the PIPECG-OATI method to use cache memory efficiently. In this work, we present PIPECG-OATI-c method for linear systems with complex Hermitian positive definite and complex symmetric matrices. We compare our method with various pipelined CG methods on a variety of problems and demonstrate that our method always gives the least run times. We performed experiments with our method using 20M and 30M unknowns on up to 16K cores and obtained up to 2.48X performance improvement over PCG and 2.14X performance improvement over PIPECG methods. We also experimented with up to 1-billion unknowns on 16K cores, the largest problem size explored for the CG problem, to our knowledge, and obtained about 25% improvement over PCG.
Author Tiwari, Manasi
Vadhiyar, Sathish
Author_xml – sequence: 1
  givenname: Manasi
  orcidid: 0000-0002-7012-7846
  surname: Tiwari
  fullname: Tiwari, Manasi
  email: manasitiwari@iisc.ac.in
– sequence: 2
  givenname: Sathish
  surname: Vadhiyar
  fullname: Vadhiyar, Sathish
  email: vss@iisc.ac.in
BookMark eNp9kM1KAzEUhYNUsFZfwFVeYMab-elkwI0U_6BiF7oOmeTGZpiZlCQVCz68M9SVi64uB-534HyXZDa4AQm5YZAyYMvbNm13WqUZZFkKLAXgZ2TOoF4mwAs-I3OoijypclZekMsQWgDGyorPyc_G7rCzA2q68ajcoG20boorN7T7TxmRPnmpLQ6RvmLcOh2ocZ56lB2Vg6bK9bsOv-lUIj0NhxCxP_5oG6K3zT6OdT32zh-o9GprI6q49xiuyLmRXcDrv7sgH48P76vnZP329LK6XycqB4hJBszIutZ5rvKirivNTGVqKGuZZ40pG66Bm4pXhTIll7gsltpIWTCV8abUjcoXhB97lXcheDRC2SinndFL2wkGYrIoWjFZFJNFAUyMFkc0-4fuvO2lP5yG7o4QjqO-LHoR1ChQobaj4yi0s6fwX7oUkdI
CitedBy_id crossref_primary_10_1016_j_istruc_2023_06_063
crossref_primary_10_1016_j_gsd_2024_101172
crossref_primary_10_3390_math12172629
Cites_doi 10.1177/1094342015593158
10.1137/0913023
10.1137/0905015
10.1016/0167-8191(87)90037-8
10.1016/j.parco.2013.06.001
10.1016/0167-8191(94)00087-Q
10.1137/0906018
10.1109/71.780863
10.6028/jres.049.044
10.1007/BF02145754
10.1137/0727091
10.1016/0377-0427(89)90045-9
10.1137/0720025
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jpdc.2022.01.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1096-0848
EndPage 155
ExternalDocumentID 10_1016_j_jpdc_2022_01_008
S0743731522000156
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
~G0
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-201fa99d33c34997d1f7f9059a32bf5b8d08f7874cf58ae646dfaa41c28b5dbc3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777831100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0743-7315
IngestDate Sat Nov 29 07:19:55 EST 2025
Tue Nov 18 20:27:40 EST 2025
Fri Feb 23 02:40:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Complex Hermitian positive definite systems
Overlapping communication and computations
Pipelining
Complex symmetric systems
Preconditioned Conjugate Gradient
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-201fa99d33c34997d1f7f9059a32bf5b8d08f7874cf58ae646dfaa41c28b5dbc3
ORCID 0000-0002-7012-7846
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_jpdc_2022_01_008
crossref_primary_10_1016_j_jpdc_2022_01_008
elsevier_sciencedirect_doi_10_1016_j_jpdc_2022_01_008
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References J. Dongarra, M. Heroux, P. Luszczek, HPCG Benchmark: a new metric for ranking high performance computing systems
Gropp (br0150)
Meurant (br0110) 1987; 5
D'Azevedo, Eijkhout, Romine (br0120) 1993
Ghysels, Vanroose (br0160) 2014; 40
Hestenes, Stiefel (br0010) 1952; 49
Catalyurek, Aykanat (br0230) 1999; 10
Freund (br0060) 1992; 13
Tiwari, Vadhiyar (br0200) 2020
Pinar, Heath (br0210) 1999
Balay, Gropp, McInnes, Smith (br0090) 1997
Balay, Abhyankar, Adams, Brown, Brune, Buschelman, Dalcin, Dener, Eijkhout, Gropp, Karpeyev, Kaushik, Knepley, May, McInnes, Mills, Munson, Rupp, Sanan, Smith, Zampini, Zhang, Zhang (br0070) 2019
(br0290) 2019
(br0140) 2019
2015.
Saad (br0100) 1984; 5
Ashby, Manteuffel, Saylor (br0040) 1990; 27
Cornelis, Cools, Vanroose (br0170) 2018
(br0300) 2020
Concus, Golub, Meurant (br0270) 1985; 6
Tatebe, Oyanagi (br0250) 1994
Balay, Abhyankar, Adams, Brown, Brune, Buschelman, Dalcin, Dener, Eijkhout, Gropp, Karpeyev, Kaushik, Knepley, May, McInnes, Mills, Munson, Rupp, Sanan, Smith, Zampini, Zhang, Zhang (br0080) 2020
White, Sadayappan (br0220) 1997
Romero, Zapata (br0240) 1995; 21
Johnson, Micchelli, Paul (br0260) 1983; 20
Serra-Capizzano (br0030) 1995; 2563
Cools, Cornelis, Vanroose (br0180) 2019
Joly, Meurant (br0050) 1993; 4
Chronopoulos, Gear (br0130) 1989; 25
Eller, Gropp (br0190) 2016
Saad (br0020) 2003
Pinar (10.1016/j.jpdc.2022.01.008_br0210) 1999
Concus (10.1016/j.jpdc.2022.01.008_br0270) 1985; 6
White (10.1016/j.jpdc.2022.01.008_br0220) 1997
Tatebe (10.1016/j.jpdc.2022.01.008_br0250) 1994
Freund (10.1016/j.jpdc.2022.01.008_br0060) 1992; 13
Meurant (10.1016/j.jpdc.2022.01.008_br0110) 1987; 5
Balay (10.1016/j.jpdc.2022.01.008_br0090) 1997
D'Azevedo (10.1016/j.jpdc.2022.01.008_br0120) 1993
Chronopoulos (10.1016/j.jpdc.2022.01.008_br0130) 1989; 25
Eller (10.1016/j.jpdc.2022.01.008_br0190) 2016
Johnson (10.1016/j.jpdc.2022.01.008_br0260) 1983; 20
Serra-Capizzano (10.1016/j.jpdc.2022.01.008_br0030) 1995; 2563
Saad (10.1016/j.jpdc.2022.01.008_br0100) 1984; 5
Ashby (10.1016/j.jpdc.2022.01.008_br0040) 1990; 27
10.1016/j.jpdc.2022.01.008_br0280
Ghysels (10.1016/j.jpdc.2022.01.008_br0160) 2014; 40
Saad (10.1016/j.jpdc.2022.01.008_br0020) 2003
Balay (10.1016/j.jpdc.2022.01.008_br0080) 2020
Hestenes (10.1016/j.jpdc.2022.01.008_br0010) 1952; 49
Catalyurek (10.1016/j.jpdc.2022.01.008_br0230) 1999; 10
Balay (10.1016/j.jpdc.2022.01.008_br0070)
Tiwari (10.1016/j.jpdc.2022.01.008_br0200) 2020
Cornelis (10.1016/j.jpdc.2022.01.008_br0170)
Romero (10.1016/j.jpdc.2022.01.008_br0240) 1995; 21
Gropp (10.1016/j.jpdc.2022.01.008_br0150)
Joly (10.1016/j.jpdc.2022.01.008_br0050) 1993; 4
Cools (10.1016/j.jpdc.2022.01.008_br0180)
References_xml – year: 2019
  ident: br0180
  article-title: Numerically stable recurrence relations for the communication hiding pipelined conjugate gradient method
– year: 2003
  ident: br0020
  article-title: Iterative Methods for Sparse Linear Systems
– volume: 5
  start-page: 267
  year: 1987
  end-page: 280
  ident: br0110
  article-title: Multitasking the conjugate gradient method on the cray x-mp/48
  publication-title: Parallel Comput.
– volume: 40
  start-page: 224
  year: 2014
  end-page: 238
  ident: br0160
  article-title: Hiding global synchronization latency in the preconditioned conjugate gradient algorithm
  publication-title: Parallel Comput.
– volume: 49
  start-page: 409
  year: 1952
  end-page: 436
  ident: br0010
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J. Res. Natl. Bur. Stand.
– reference: J. Dongarra, M. Heroux, P. Luszczek, HPCG Benchmark: a new metric for ranking high performance computing systems
– volume: 10
  start-page: 673
  year: 1999
  end-page: 693
  ident: br0230
  article-title: Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 21
  start-page: 583
  year: 1995
  end-page: 605
  ident: br0240
  article-title: Data distributions for sparse matrix vector multiplication
  publication-title: Parallel Comput.
– volume: 20
  start-page: 362
  year: 1983
  end-page: 376
  ident: br0260
  article-title: Polynomial preconditioners for conjugate gradient calculations
  publication-title: SIAM J. Numer. Anal.
– reference: , 2015.
– start-page: 163
  year: 1997
  end-page: 202
  ident: br0090
  article-title: Efficient management of parallelism in object oriented numerical software libraries
  publication-title: Modern Software Tools in Scientific Computing
– volume: 25
  start-page: 153
  year: 1989
  end-page: 168
  ident: br0130
  article-title: S-step iterative methods for symmetric linear systems
  publication-title: J. Comput. Appl. Math.
– year: 2018
  ident: br0170
  article-title: The communication-hiding conjugate gradient method with deep pipelines
– year: 2020
  ident: br0300
  article-title: OpenFOAM Poisson solver example
– start-page: 151
  year: 2020
  end-page: 160
  ident: br0200
  article-title: Pipelined preconditioned conjugate gradient methods for distributed memory systems
  publication-title: 27th IEEE International Conference on High Performance Computing, Data, and Analytics
– year: 2019
  ident: br0290
– volume: 27
  start-page: 1542
  year: 1990
  end-page: 1568
  ident: br0040
  article-title: A taxonomy for conjugate gradient methods
  publication-title: SIAM J. Numer. Anal.
– ident: br0150
  article-title: Update on Libraries for Blue Waters
– year: 2016
  ident: br0190
  article-title: Scalable non-blocking preconditioned conjugate gradient methods
  publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
– year: 2019
  ident: br0140
– year: 1993
  ident: br0120
  article-title: Lapack working note 56: Reducing communication costs in the conjugate gradient algorithm on distributed memory multiprocessors
– volume: 5
  start-page: 203
  year: 1984
  end-page: 228
  ident: br0100
  article-title: Practical use of some Krylov subspace methods for solving indefinite and nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 6
  start-page: 220
  year: 1985
  end-page: 252
  ident: br0270
  article-title: Block preconditioning for the conjugate gradient method
  publication-title: SIAM J. Sci. Stat. Comput.
– start-page: 194
  year: 1994
  end-page: 203
  ident: br0250
  article-title: Efficient implementation of the multigrid preconditioned conjugate gradient method on distributed memory machines
  publication-title: Supercomputing '94:Proceedings of the 1994 ACM/IEEE Conference on Supercomputing
– start-page: 66
  year: 1997
  end-page: 71
  ident: br0220
  article-title: On improving the performance of sparse matrix-vector multiplication
  publication-title: Proceedings Fourth International Conference on High-Performance Computing
– year: 2019
  ident: br0070
– volume: 13
  start-page: 425
  year: 1992
  end-page: 448
  ident: br0060
  article-title: Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 2563
  start-page: 326
  year: 1995
  end-page: 337
  ident: br0030
  article-title: Conditioning and solution of Hermitian (block) Toeplitz systems by means of preconditioned conjugate gradient methods
  publication-title: Proc. SPIE Int. Soc. Opt. Eng.
– volume: 4
  start-page: 379
  year: 1993
  end-page: 406
  ident: br0050
  article-title: Complex conjugate gradient methods
  publication-title: Numer. Algorithms
– start-page: 30
  year: 1999
  ident: br0210
  article-title: Improving performance of sparse matrix-vector multiplication
  publication-title: SC '99: Proceedings of the 1999 ACM/IEEE Conference on Supercomputing
– year: 2020
  ident: br0080
  article-title: PETSc users manual
– volume: 2563
  start-page: 326
  year: 1995
  ident: 10.1016/j.jpdc.2022.01.008_br0030
  article-title: Conditioning and solution of Hermitian (block) Toeplitz systems by means of preconditioned conjugate gradient methods
  publication-title: Proc. SPIE Int. Soc. Opt. Eng.
– ident: 10.1016/j.jpdc.2022.01.008_br0170
– ident: 10.1016/j.jpdc.2022.01.008_br0280
  doi: 10.1177/1094342015593158
– volume: 13
  start-page: 425
  issue: 1
  year: 1992
  ident: 10.1016/j.jpdc.2022.01.008_br0060
  article-title: Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0913023
– volume: 5
  start-page: 203
  issue: 1
  year: 1984
  ident: 10.1016/j.jpdc.2022.01.008_br0100
  article-title: Practical use of some Krylov subspace methods for solving indefinite and nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0905015
– start-page: 194
  year: 1994
  ident: 10.1016/j.jpdc.2022.01.008_br0250
  article-title: Efficient implementation of the multigrid preconditioned conjugate gradient method on distributed memory machines
– year: 2016
  ident: 10.1016/j.jpdc.2022.01.008_br0190
  article-title: Scalable non-blocking preconditioned conjugate gradient methods
– volume: 5
  start-page: 267
  issue: 3
  year: 1987
  ident: 10.1016/j.jpdc.2022.01.008_br0110
  article-title: Multitasking the conjugate gradient method on the cray x-mp/48
  publication-title: Parallel Comput.
  doi: 10.1016/0167-8191(87)90037-8
– volume: 40
  start-page: 224
  issue: 7
  year: 2014
  ident: 10.1016/j.jpdc.2022.01.008_br0160
  article-title: Hiding global synchronization latency in the preconditioned conjugate gradient algorithm
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2013.06.001
– volume: 21
  start-page: 583
  issue: 4
  year: 1995
  ident: 10.1016/j.jpdc.2022.01.008_br0240
  article-title: Data distributions for sparse matrix vector multiplication
  publication-title: Parallel Comput.
  doi: 10.1016/0167-8191(94)00087-Q
– year: 2020
  ident: 10.1016/j.jpdc.2022.01.008_br0080
– volume: 6
  start-page: 220
  issue: 1
  year: 1985
  ident: 10.1016/j.jpdc.2022.01.008_br0270
  article-title: Block preconditioning for the conjugate gradient method
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0906018
– start-page: 163
  year: 1997
  ident: 10.1016/j.jpdc.2022.01.008_br0090
  article-title: Efficient management of parallelism in object oriented numerical software libraries
– year: 1993
  ident: 10.1016/j.jpdc.2022.01.008_br0120
– start-page: 66
  year: 1997
  ident: 10.1016/j.jpdc.2022.01.008_br0220
  article-title: On improving the performance of sparse matrix-vector multiplication
– volume: 10
  start-page: 673
  issue: 7
  year: 1999
  ident: 10.1016/j.jpdc.2022.01.008_br0230
  article-title: Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.780863
– volume: 49
  start-page: 409
  year: 1952
  ident: 10.1016/j.jpdc.2022.01.008_br0010
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J. Res. Natl. Bur. Stand.
  doi: 10.6028/jres.049.044
– ident: 10.1016/j.jpdc.2022.01.008_br0180
– start-page: 30
  year: 1999
  ident: 10.1016/j.jpdc.2022.01.008_br0210
  article-title: Improving performance of sparse matrix-vector multiplication
– volume: 4
  start-page: 379
  year: 1993
  ident: 10.1016/j.jpdc.2022.01.008_br0050
  article-title: Complex conjugate gradient methods
  publication-title: Numer. Algorithms
  doi: 10.1007/BF02145754
– volume: 27
  start-page: 1542
  issue: 6
  year: 1990
  ident: 10.1016/j.jpdc.2022.01.008_br0040
  article-title: A taxonomy for conjugate gradient methods
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0727091
– volume: 25
  start-page: 153
  issue: 2
  year: 1989
  ident: 10.1016/j.jpdc.2022.01.008_br0130
  article-title: S-step iterative methods for symmetric linear systems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(89)90045-9
– ident: 10.1016/j.jpdc.2022.01.008_br0070
– year: 2003
  ident: 10.1016/j.jpdc.2022.01.008_br0020
– volume: 20
  start-page: 362
  issue: 2
  year: 1983
  ident: 10.1016/j.jpdc.2022.01.008_br0260
  article-title: Polynomial preconditioners for conjugate gradient calculations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0720025
– start-page: 151
  year: 2020
  ident: 10.1016/j.jpdc.2022.01.008_br0200
  article-title: Pipelined preconditioned conjugate gradient methods for distributed memory systems
– ident: 10.1016/j.jpdc.2022.01.008_br0150
SSID ssj0011578
Score 2.3349729
Snippet •We introduce PIPECG-OATI-c to solve complex Hermitian and symmetric linear systems.•PIPECG-OATI-c reduces synchronizations in PCG and overlaps them with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 147
SubjectTerms Complex Hermitian positive definite systems
Complex symmetric systems
Overlapping communication and computations
Pipelining
Preconditioned Conjugate Gradient
Title Pipelined Preconditioned Conjugate Gradient Methods for real and complex linear systems for distributed memory architectures
URI https://dx.doi.org/10.1016/j.jpdc.2022.01.008
Volume 163
WOSCitedRecordID wos000777831100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0848
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011578
  issn: 0743-7315
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIde-i5N-kCH3oyDbVkr6xhK-qINgaRhb0a2JLLLdll2N-kG8kP6czvSSI63j9AWejGLkbSy5_PMSJr5hpBXJThsivEm1bywaTkcNqnKK5sKzsGfs7AA8Qftpx_F4WE1GsmjweBbzIW5mIrZrFqv5fy_ihrugbBd6uxfiLsbFG7AbxA6XEHscP0jwR-N5y7H3LgkALfa1chGpF1y3-Tc7Zolbxc-0GuVfPL1oz0lQ7IwgTbAR5mbdeIGUZHrGdtoR7PrKmTBcF9cjO5l0j-JWP7G1XX84tOpweH7Y7S-pkS0nj4a-KvC3HcXl7Mcx_unSp-NLzEY_NgXUT7r71fAUreLDsRNtJhIsxHn6ZlSBcPMzj2Dujhz8dEVEnF2yjqoQ1S3ObJ1BsudI-HvT0YB9ycme5O5dqSVReGJWrPq2gR2gYnHbiJuHkWBWea3yHYhuAR9ub3__mD0oTuhyjla-TjxkJCFsYM__tOvnZ6eI3Nyn9wNYqH7iJwHZGBmD8m9WN2DBmX_iFx1QKKbQKIdkGgEEg1AogAS6oBEQdI0AIkikGgAkm_TAwFFINENID0mn98cnLx-l4ZaHWnLsmwFX2BulZSasZbBIlro3AorwXdXrGgsbyqdVRaMQ9laXikzLIfaKlXmbVE1XDcte0K2ZvAMTwk1QjdlJsH3bUrwloxkWrbCCNYIeNGF3CF5fJl1G4jsXT2VaR0jFie1E0DtBFBneQ0C2CFJ12eONC43tuZRRnVwRNHBrAFSN_Tb_cd-z8id6y_lOdlaLc7NC3K7vViNl4uXAXnfAZEVs-Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pipelined+Preconditioned+Conjugate+Gradient+Methods+for+real+and+complex+linear+systems+for+distributed+memory+architectures&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Tiwari%2C+Manasi&rft.au=Vadhiyar%2C+Sathish&rft.date=2022-05-01&rft.pub=Elsevier+Inc&rft.issn=0743-7315&rft.eissn=1096-0848&rft.volume=163&rft.spage=147&rft.epage=155&rft_id=info:doi/10.1016%2Fj.jpdc.2022.01.008&rft.externalDocID=S0743731522000156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon