Getting to know low-light images with the Exclusively Dark dataset
Low-light is an inescapable element of our daily surroundings that greatly affects the efficiency of our vision. Research works on low-light imagery have seen a steady growth, particularly in the field of image enhancement, but there is still a lack of a go-to database as a benchmark. Besides, resea...
Uložené v:
| Vydané v: | Computer vision and image understanding Ročník 178; s. 30 - 42 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.01.2019
|
| Predmet: | |
| ISSN: | 1077-3142, 1090-235X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Low-light is an inescapable element of our daily surroundings that greatly affects the efficiency of our vision. Research works on low-light imagery have seen a steady growth, particularly in the field of image enhancement, but there is still a lack of a go-to database as a benchmark. Besides, research fields that may assist us in low-light environments, such as object detection, has glossed over this aspect even though breakthroughs-after-breakthroughs had been achieved in recent years, most noticeably from the lack of low-light data (less than 2% of the total images) in successful public benchmark datasets such as PASCAL VOC, ImageNet, and Microsoft COCO. Thus, we propose the Exclusively Dark dataset to elevate this data drought. It consists exclusively of low-light images captured in visible light only, with image and object level annotations. Moreover, we share insightful findings in regards to the effects of low-light on the object detection task by analyzing the visualizations of both hand-crafted and learned features. We found that the effects of low-light reach far deeper into the features than can be solved by simple “illumination invariance”. It is our hope that this analysis and the Exclusively Dark dataset can encourage the growth in low-light domain researches on different fields. The dataset can be downloaded at https://github.com/cs-chan/Exclusively-Dark-Image-Dataset.
•A new lowlight image only dataset, the Exclusively DARK is proposed.•Dataset contains 10 lowlight illumination types and annotation of 12 object classes.•Analysis of lowlight images with handcrafted and learned features of object detection.•Lowlight presents illumination challenges that is fundamentally different from bright.•Dataset can be the go-to database to benchmark low-light domain research. |
|---|---|
| AbstractList | Low-light is an inescapable element of our daily surroundings that greatly affects the efficiency of our vision. Research works on low-light imagery have seen a steady growth, particularly in the field of image enhancement, but there is still a lack of a go-to database as a benchmark. Besides, research fields that may assist us in low-light environments, such as object detection, has glossed over this aspect even though breakthroughs-after-breakthroughs had been achieved in recent years, most noticeably from the lack of low-light data (less than 2% of the total images) in successful public benchmark datasets such as PASCAL VOC, ImageNet, and Microsoft COCO. Thus, we propose the Exclusively Dark dataset to elevate this data drought. It consists exclusively of low-light images captured in visible light only, with image and object level annotations. Moreover, we share insightful findings in regards to the effects of low-light on the object detection task by analyzing the visualizations of both hand-crafted and learned features. We found that the effects of low-light reach far deeper into the features than can be solved by simple “illumination invariance”. It is our hope that this analysis and the Exclusively Dark dataset can encourage the growth in low-light domain researches on different fields. The dataset can be downloaded at https://github.com/cs-chan/Exclusively-Dark-Image-Dataset.
•A new lowlight image only dataset, the Exclusively DARK is proposed.•Dataset contains 10 lowlight illumination types and annotation of 12 object classes.•Analysis of lowlight images with handcrafted and learned features of object detection.•Lowlight presents illumination challenges that is fundamentally different from bright.•Dataset can be the go-to database to benchmark low-light domain research. |
| Author | Chan, Chee Seng Loh, Yuen Peng |
| Author_xml | – sequence: 1 givenname: Yuen Peng surname: Loh fullname: Loh, Yuen Peng – sequence: 2 givenname: Chee Seng surname: Chan fullname: Chan, Chee Seng email: cs.chan@um.edu.my |
| BookMark | eNp9kM1OwzAQhC1UJNrCC3DyCySs4zg_EhcopSBV4gISN8txNq3bkCDbbenb46icOPS0q5G-3ZmZkFHXd0jILYOYAcvuNrHem12cACuCEAODCzJmUEKUcPE5GvY8jzhLkysycW4DwFhasjF5XKD3pltR39Nt1x9o2x-i1qzWnpovtUJHD8avqV8jnf_odufMHtsjfVJ2S2vllUN_TS4b1Tq8-ZtT8vE8f5-9RMu3xevsYRlpDuCj4A1qVjMuAMsMIU9BY83zklciz0WWFqJoGArIhaiaTFSKF5qXWlUMsiZN-JQkp7va9s5ZbOS3DR7tUTKQQwtyI4cW5NDCoIWHASr-Qdp45U3featMex69P6EYQu0NWum0wS6YNha1l3VvzuG_GnF51w |
| CitedBy_id | crossref_primary_10_1016_j_compag_2021_106266 crossref_primary_10_1109_TNNLS_2023_3270159 crossref_primary_10_3390_app15105362 crossref_primary_10_1038_s41598_023_39524_5 crossref_primary_10_1049_ipr2_12173 crossref_primary_10_1145_3750732 crossref_primary_10_1002_cpe_7347 crossref_primary_10_1016_j_patcog_2024_110650 crossref_primary_10_1016_j_image_2019_02_001 crossref_primary_10_1109_TITS_2023_3342799 crossref_primary_10_1016_j_engappai_2023_106925 crossref_primary_10_1016_j_jfranklin_2023_02_023 crossref_primary_10_1016_j_imavis_2024_105035 crossref_primary_10_1007_s00530_025_01873_8 crossref_primary_10_1109_TETCI_2024_3378651 crossref_primary_10_1016_j_jksuci_2024_102234 crossref_primary_10_1016_j_imavis_2024_105271 crossref_primary_10_1016_j_heliyon_2023_e14558 crossref_primary_10_3390_s25113382 crossref_primary_10_1007_s11063_023_11303_3 crossref_primary_10_1016_j_image_2021_116527 crossref_primary_10_1016_j_engappai_2024_109906 crossref_primary_10_1016_j_neucom_2025_131383 crossref_primary_10_1109_JSEN_2025_3543860 crossref_primary_10_1109_TIM_2022_3165303 crossref_primary_10_1016_j_patcog_2025_112421 crossref_primary_10_1007_s00371_023_03091_7 crossref_primary_10_1007_s11277_022_10020_9 crossref_primary_10_3390_electronics9061011 crossref_primary_10_1007_s11042_023_15147_w crossref_primary_10_1016_j_memori_2024_100115 crossref_primary_10_1109_TITS_2023_3308894 crossref_primary_10_1007_s11042_025_21051_2 crossref_primary_10_1016_j_asoc_2025_112865 crossref_primary_10_1016_j_neucom_2025_129507 crossref_primary_10_1016_j_optlastec_2025_113165 crossref_primary_10_3390_app13021034 crossref_primary_10_1016_j_neucom_2025_129866 crossref_primary_10_1109_TII_2020_3026036 crossref_primary_10_1109_TMM_2024_3391907 crossref_primary_10_1109_TPAMI_2021_3126387 crossref_primary_10_1109_ACCESS_2025_3530089 crossref_primary_10_1007_s00371_023_03039_x crossref_primary_10_1007_s11263_023_01900_z crossref_primary_10_1016_j_patcog_2024_111076 crossref_primary_10_1109_TIM_2024_3497140 crossref_primary_10_1007_s11042_023_16841_5 crossref_primary_10_1049_ipr2_12732 crossref_primary_10_1109_ACCESS_2024_3434531 crossref_primary_10_1016_j_aej_2025_04_047 crossref_primary_10_1109_TCSVT_2024_3480930 crossref_primary_10_1016_j_eswa_2025_126504 crossref_primary_10_1109_JSEN_2021_3092583 crossref_primary_10_1109_TITS_2023_3270887 crossref_primary_10_1007_s11263_021_01466_8 crossref_primary_10_3390_s24092711 crossref_primary_10_1016_j_image_2023_116971 crossref_primary_10_3390_app15010090 crossref_primary_10_1038_s41598_025_95329_8 crossref_primary_10_1007_s11042_024_20552_w crossref_primary_10_1016_j_eswa_2023_119739 crossref_primary_10_1007_s11263_024_02239_9 crossref_primary_10_1007_s00530_025_01859_6 crossref_primary_10_1109_ACCESS_2025_3550947 crossref_primary_10_3390_s24175787 crossref_primary_10_3390_app13169261 crossref_primary_10_1007_s11263_023_01932_5 crossref_primary_10_1007_s11042_023_16852_2 crossref_primary_10_1109_TCSVT_2025_3541429 crossref_primary_10_3390_sym12091561 crossref_primary_10_1007_s11042_024_19380_9 crossref_primary_10_1007_s11042_021_11590_9 crossref_primary_10_1016_j_rineng_2024_102510 crossref_primary_10_1016_j_inffus_2024_102467 crossref_primary_10_3390_app15094950 crossref_primary_10_1007_s11042_024_19271_z crossref_primary_10_1111_cgf_14960 crossref_primary_10_1109_TCSVT_2024_3520802 crossref_primary_10_1109_TCI_2024_3378091 crossref_primary_10_3788_LOP242249 crossref_primary_10_1109_TIP_2021_3062184 crossref_primary_10_3390_wevj16060305 crossref_primary_10_1080_10095020_2025_2542964 crossref_primary_10_1145_3618373 crossref_primary_10_1016_j_neucom_2024_128974 crossref_primary_10_1007_s11263_023_01808_8 crossref_primary_10_1007_s11042_024_20086_1 crossref_primary_10_1109_ACCESS_2024_3451556 crossref_primary_10_3390_s23187763 crossref_primary_10_1007_s00530_024_01589_1 crossref_primary_10_1109_ACCESS_2024_3435764 crossref_primary_10_1049_ipr2_12771 crossref_primary_10_1007_s11042_020_09562_6 crossref_primary_10_1016_j_dsp_2024_104802 crossref_primary_10_12677_mos_2025_148567 crossref_primary_10_1109_TCSVT_2024_3408007 crossref_primary_10_3390_electronics10222756 crossref_primary_10_1007_s11042_021_10614_8 crossref_primary_10_1016_j_dsp_2025_105176 crossref_primary_10_1016_j_knosys_2021_108010 crossref_primary_10_1109_TCE_2025_3572099 crossref_primary_10_3390_s24030772 crossref_primary_10_1016_j_sigpro_2022_108821 crossref_primary_10_1016_j_compind_2025_104314 crossref_primary_10_1049_ipr2_13180 crossref_primary_10_1007_s10489_024_05534_7 crossref_primary_10_1111_1556_4029_15673 crossref_primary_10_1016_j_engappai_2025_111115 crossref_primary_10_1109_JIOT_2024_3402622 crossref_primary_10_1007_s11760_021_01915_4 crossref_primary_10_1145_3758097 crossref_primary_10_1007_s00521_022_07612_8 crossref_primary_10_1016_j_neucom_2025_129399 crossref_primary_10_1016_j_dsp_2024_104808 crossref_primary_10_1007_s11042_024_20070_9 crossref_primary_10_1016_j_eswa_2025_129476 crossref_primary_10_1007_s42979_023_02145_w crossref_primary_10_1016_j_patcog_2024_111033 crossref_primary_10_1109_TIM_2024_3350120 crossref_primary_10_1117_1_JEI_33_6_063013 crossref_primary_10_1109_TIP_2025_3553070 crossref_primary_10_3390_s25144463 crossref_primary_10_3390_s22103703 crossref_primary_10_1016_j_patrec_2021_10_030 crossref_primary_10_3390_rs16234493 crossref_primary_10_1093_comjnl_bxab055 crossref_primary_10_3390_s20010043 crossref_primary_10_1038_s41598_024_54428_8 crossref_primary_10_1142_S0219467825500287 crossref_primary_10_3390_photonics10020198 crossref_primary_10_1007_s11042_024_19594_x crossref_primary_10_1007_s00530_023_01100_2 crossref_primary_10_1007_s00371_025_04147_6 crossref_primary_10_1109_JPROC_2023_3338272 crossref_primary_10_1109_TCSVT_2023_3241162 crossref_primary_10_1109_TCSVT_2023_3303574 crossref_primary_10_1007_s00371_022_02402_8 crossref_primary_10_1049_ccs2_12114 crossref_primary_10_1016_j_cviu_2023_103916 crossref_primary_10_1109_TCSVT_2023_3305996 crossref_primary_10_1109_LRA_2022_3187831 crossref_primary_10_1049_ipr2_12311 crossref_primary_10_3390_sym17071122 crossref_primary_10_1051_jnwpu_20234110144 crossref_primary_10_3390_app15095170 crossref_primary_10_1109_LSP_2021_3134943 crossref_primary_10_1109_TITS_2024_3359755 crossref_primary_10_1007_s11760_024_03810_0 crossref_primary_10_1016_j_eswa_2025_127638 crossref_primary_10_1007_s40747_024_01681_z crossref_primary_10_1109_ACCESS_2020_3007610 crossref_primary_10_1007_s10462_025_11294_8 crossref_primary_10_3389_fpls_2024_1501043 crossref_primary_10_1038_s41598_025_98173_y crossref_primary_10_1117_1_JEI_32_4_043024 crossref_primary_10_17694_bajece_1415025 crossref_primary_10_1007_s00371_023_03024_4 crossref_primary_10_1088_1742_6596_3055_1_012006 crossref_primary_10_1109_TCSVT_2023_3286802 crossref_primary_10_1007_s10586_024_04829_1 crossref_primary_10_3390_jimaging11080253 crossref_primary_10_1109_TIP_2020_2981922 crossref_primary_10_1088_1742_6596_1964_6_062077 crossref_primary_10_1109_ACCESS_2025_3596308 crossref_primary_10_1109_TMM_2023_3348333 crossref_primary_10_3390_rs14184608 crossref_primary_10_1145_3550298 crossref_primary_10_3390_electronics12143089 crossref_primary_10_1371_journal_pone_0247440 crossref_primary_10_1016_j_scs_2022_104064 crossref_primary_10_1177_00202940251356201 crossref_primary_10_1109_TCSVT_2024_3377108 crossref_primary_10_1109_ACCESS_2025_3595572 crossref_primary_10_3390_electronics11172750 crossref_primary_10_1049_iet_ipr_2020_0100 crossref_primary_10_1109_TIE_2020_3013783 crossref_primary_10_1109_TIM_2022_3222517 crossref_primary_10_1016_j_optlaseng_2024_108154 crossref_primary_10_1109_TNSE_2022_3151502 crossref_primary_10_1109_ACCESS_2020_2992749 crossref_primary_10_1007_s00521_024_10885_w crossref_primary_10_1007_s00530_025_01940_0 crossref_primary_10_1016_j_jvcir_2024_104079 crossref_primary_10_1109_JSEN_2023_3314898 crossref_primary_10_1109_LSP_2021_3096160 crossref_primary_10_1016_j_image_2024_117174 crossref_primary_10_1109_TIP_2021_3051462 crossref_primary_10_1007_s11831_025_10226_7 crossref_primary_10_1177_30504554251342571 crossref_primary_10_1007_s00371_022_02412_6 crossref_primary_10_3390_automation5030013 crossref_primary_10_1016_j_jvcir_2025_104480 crossref_primary_10_1007_s11760_023_02850_2 crossref_primary_10_1155_int_8834271 crossref_primary_10_1109_TIM_2024_3351255 crossref_primary_10_1007_s00371_023_02770_9 crossref_primary_10_1016_j_procs_2024_09_219 crossref_primary_10_1109_TGRS_2024_3351134 crossref_primary_10_3390_s21155116 crossref_primary_10_1109_TNNLS_2023_3274926 crossref_primary_10_1109_TIP_2025_3587588 crossref_primary_10_1109_TCSVT_2025_3547029 crossref_primary_10_1016_j_dsp_2025_105268 crossref_primary_10_1016_j_compeleceng_2024_109622 crossref_primary_10_1016_j_image_2025_117345 crossref_primary_10_1016_j_cviu_2024_104271 crossref_primary_10_1109_TGRS_2025_3596581 crossref_primary_10_1109_TMM_2025_3543047 crossref_primary_10_1007_s00371_024_03452_w crossref_primary_10_1016_j_patrec_2020_07_041 crossref_primary_10_1109_ACCESS_2024_3467395 crossref_primary_10_1016_j_patcog_2025_112264 crossref_primary_10_1155_2024_4650233 crossref_primary_10_1109_TCSVT_2022_3186880 crossref_primary_10_1109_ACCESS_2022_3202940 crossref_primary_10_1109_TIP_2023_3286254 crossref_primary_10_3390_sym14061165 crossref_primary_10_3390_biomimetics9030158 crossref_primary_10_3390_math12244028 crossref_primary_10_3390_photonics10030273 crossref_primary_10_1016_j_dsp_2024_104467 crossref_primary_10_1007_s11554_023_01320_9 crossref_primary_10_1016_j_jvcir_2023_104010 crossref_primary_10_1049_ipr2_12114 crossref_primary_10_1016_j_patcog_2025_111882 crossref_primary_10_3390_electronics14010143 crossref_primary_10_1007_s00371_023_03249_3 crossref_primary_10_1016_j_knosys_2025_113827 crossref_primary_10_1109_ACCESS_2020_2983457 crossref_primary_10_32604_cmc_2023_044374 crossref_primary_10_3390_electronics13183713 crossref_primary_10_1109_TETCI_2021_3053253 crossref_primary_10_1007_s10489_020_02119_y crossref_primary_10_1117_1_JEI_31_6_063055 crossref_primary_10_1177_30504554251319452 crossref_primary_10_1016_j_knosys_2024_112544 crossref_primary_10_1631_FITEE_2200344 crossref_primary_10_1016_j_neucom_2025_129572 crossref_primary_10_1109_ACCESS_2021_3097913 crossref_primary_10_1007_s10489_023_05082_6 crossref_primary_10_1016_j_knosys_2023_111053 crossref_primary_10_1016_j_eswa_2025_128761 crossref_primary_10_1117_1_JEI_31_6_063050 crossref_primary_10_1016_j_image_2022_116848 crossref_primary_10_1109_TITS_2022_3165176 crossref_primary_10_1016_j_dsp_2025_104999 crossref_primary_10_1002_rob_70064 crossref_primary_10_1049_ipr2_12124 crossref_primary_10_1007_s00371_022_02560_9 crossref_primary_10_3389_fphy_2023_1147031 crossref_primary_10_1007_s00530_023_01228_1 crossref_primary_10_3390_electronics12214445 crossref_primary_10_1007_s00530_025_01820_7 crossref_primary_10_1145_3654668 crossref_primary_10_1016_j_imavis_2024_105202 crossref_primary_10_3390_app11188694 crossref_primary_10_1109_TIP_2021_3135473 crossref_primary_10_1117_1_JEI_34_1_013007 crossref_primary_10_1007_s11263_024_02250_0 crossref_primary_10_3390_rs17122069 crossref_primary_10_3390_app142311033 crossref_primary_10_1080_13682199_2023_2260663 crossref_primary_10_1007_s13735_025_00374_8 crossref_primary_10_1007_s11042_024_18866_w crossref_primary_10_1109_TPAMI_2025_3586712 crossref_primary_10_1016_j_cviu_2024_103933 crossref_primary_10_1016_j_dsp_2024_104524 crossref_primary_10_1007_s11042_023_16742_7 crossref_primary_10_3390_electronics11030458 crossref_primary_10_3390_machines11020246 crossref_primary_10_1109_TITS_2023_3328294 crossref_primary_10_1007_s11760_025_04195_4 crossref_primary_10_1049_el_2020_0106 crossref_primary_10_3390_electronics13010230 crossref_primary_10_1016_j_compind_2023_103862 crossref_primary_10_1016_j_dsp_2024_104521 crossref_primary_10_1016_j_displa_2023_102614 crossref_primary_10_3390_app13095499 crossref_primary_10_1016_j_knosys_2025_113611 crossref_primary_10_1007_s11760_025_04090_y crossref_primary_10_1109_JAS_2025_125333 crossref_primary_10_1049_ipr2_12369 crossref_primary_10_3390_s25082464 crossref_primary_10_1007_s11760_022_02319_8 crossref_primary_10_1016_j_eswa_2025_129529 crossref_primary_10_1080_10589759_2023_2274011 crossref_primary_10_1109_TNNLS_2025_3566647 crossref_primary_10_1016_j_knosys_2024_111958 crossref_primary_10_1109_ACCESS_2022_3197629 crossref_primary_10_1109_TGRS_2025_3558541 crossref_primary_10_1145_3638772 crossref_primary_10_1109_TCE_2024_3476033 crossref_primary_10_1038_s41598_025_04172_4 crossref_primary_10_3390_app13052871 crossref_primary_10_3390_s22103667 crossref_primary_10_1016_j_dsp_2025_105221 crossref_primary_10_1038_s41598_024_80265_w crossref_primary_10_1109_ACCESS_2025_3545258 crossref_primary_10_1109_TCI_2023_3323835 crossref_primary_10_1109_ACCESS_2025_3573171 crossref_primary_10_1007_s00034_023_02311_8 crossref_primary_10_1007_s11042_024_19087_x crossref_primary_10_3758_s13428_022_01833_4 crossref_primary_10_1016_j_patcog_2025_111814 crossref_primary_10_1016_j_imavis_2024_105102 crossref_primary_10_1109_TNNLS_2021_3071245 crossref_primary_10_3390_ani14243635 crossref_primary_10_7717_peerj_cs_2799 crossref_primary_10_3390_aerospace9120829 crossref_primary_10_1016_j_knosys_2025_112998 crossref_primary_10_1016_j_eswa_2025_128795 crossref_primary_10_1117_1_JEI_31_4_043050 crossref_primary_10_1007_s11801_025_4038_4 crossref_primary_10_1017_S1431927621013799 crossref_primary_10_3390_app15031604 crossref_primary_10_1016_j_neucom_2025_131052 crossref_primary_10_1016_j_neucom_2025_131174 crossref_primary_10_1007_s00138_022_01365_z crossref_primary_10_1016_j_cviu_2024_103952 crossref_primary_10_1007_s00530_025_01710_y crossref_primary_10_1109_TIP_2020_3045617 crossref_primary_10_1007_s11263_020_01418_8 crossref_primary_10_1016_j_jvcir_2024_104337 crossref_primary_10_3390_computation9110117 crossref_primary_10_1016_j_sigpro_2021_108447 crossref_primary_10_1109_TPAMI_2025_3563612 crossref_primary_10_1016_j_patcog_2025_112370 crossref_primary_10_1080_02533839_2025_2491425 crossref_primary_10_1049_ipr2_12287 crossref_primary_10_1109_TCI_2023_3240087 crossref_primary_10_3390_app14188109 crossref_primary_10_3390_app122312476 crossref_primary_10_1109_TCSVT_2025_3540495 crossref_primary_10_1109_ACCESS_2025_3558574 crossref_primary_10_1016_j_displa_2025_103174 crossref_primary_10_1016_j_engappai_2024_109967 crossref_primary_10_3390_app15020701 crossref_primary_10_3390_s23083784 crossref_primary_10_3390_photonics12090832 crossref_primary_10_1109_TIV_2024_3395455 crossref_primary_10_1109_TMM_2022_3175634 crossref_primary_10_1016_j_inffus_2023_101822 crossref_primary_10_1109_ACCESS_2019_2908856 crossref_primary_10_1177_09544070211016254 crossref_primary_10_1109_TPAMI_2022_3152562 crossref_primary_10_1016_j_procs_2025_04_562 |
| Cites_doi | 10.1023/B:VISI.0000029664.99615.94 10.1109/TCE.2015.7064113 10.1016/j.jvcir.2016.11.001 10.1007/s11263-009-0275-4 10.1007/s11263-007-0090-8 10.1016/j.patcog.2014.06.004 10.1007/s11263-015-0816-y 10.1109/TIP.2018.2810539 10.1109/TIP.2007.901238 10.1109/TPAMI.2007.1014 10.1016/j.patcog.2017.05.015 10.1109/TIP.2016.2639450 10.1016/j.patcog.2016.06.008 10.1016/j.cviu.2013.07.007 10.1016/j.cviu.2006.06.010 10.1016/j.sigpro.2016.05.031 10.1109/TCE.2005.1468014 10.1016/j.infrared.2014.02.005 10.1016/j.cviu.2016.09.001 10.1109/TIP.2013.2261309 10.1016/j.patcog.2014.12.013 10.1109/TIP.2012.2226047 10.1007/s11263-014-0733-5 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. |
| Copyright_xml | – notice: 2018 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cviu.2018.10.010 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1090-235X |
| EndPage | 42 |
| ExternalDocumentID | 10_1016_j_cviu_2018_10_010 S1077314218304296 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HF~ HVGLF HZ~ IHE J1W JJJVA KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TN5 XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS SST ~HD |
| ID | FETCH-LOGICAL-c300t-2010d1d1350e96e0740ced3793b577564858f1e50755bf65ba38c39cab106f423 |
| ISICitedReferencesCount | 471 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454372800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-3142 |
| IngestDate | Sat Nov 29 07:07:04 EST 2025 Tue Nov 18 21:44:07 EST 2025 Fri Feb 23 02:26:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 65D05 65D17 41A05 41A10 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-2010d1d1350e96e0740ced3793b577564858f1e50755bf65ba38c39cab106f423 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_cviu_2018_10_010 crossref_citationtrail_10_1016_j_cviu_2018_10_010 elsevier_sciencedirect_doi_10_1016_j_cviu_2018_10_010 |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer vision and image understanding |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Zeiler, Fergus (b57) 2014 He, Zhang, Ren, Sun (b19) 2016 Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H., 2015. Understanding neural networks through deep visualization. arXiv preprint Dollár, P., Piotr’s Computer Vision Matlab Toolbox (PMT). Olmeda, D., Premebida, C., Nunes, U., Armingol, J.M., Escalera, A.d.l., 2013. Lsi far infrared pedestrian dataset. Krizhevsky, Sutskever, Hinton (b24) 2012 Lee, Maik, Jang, Shin, Paik (b27) 2005; 51 Fu, Zeng, Huang, Zhang, Ding (b17) 2016 Maaten, Hinton (b37) 2008; 9 Wang, Zheng, Hu, Li (b54) 2013; 22 Kim, Park, Han, Ko (b23) 2015; 61 Mahendran, Vedaldi (b38) 2015 Li, Chu, Liao, Zhang (b29) 2007; 29 Malm, Oskarsson, Warrant, Clarberg, Hasselgren, Lejdfors (b39) 2007 Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint Li, Wang, Wang, Gao (b31) 2015 Loh, Chan (b34) 2015 Kang, Han, Jain, Lee (b22) 2014; 47 Qi, John, Liu, Mita (b42) 2014 Redmon, Divvala, Girshick, Farhadi (b43) 2016 Shen, L., Yue, Z., Feng, F., Chen, Q., Liu, S., Ma, J., 2017. Msr-net: Low-light image enhancement using deep convolutional network. arXiv preprint Leo, Medioni, Trivedi, Kanade, Farinella (b28) 2017; 154 Zitnick, Dollár (b59) 2014 Chen, Chen, Xu, Koltun (b2) 2018 Huang, Cheng, Chiu (b20) 2013; 22 Guo, Li, Ling (b18) 2017; 26 Davis, Keck (b6) 2005 Jung, Yang, Sun, Fu, Song (b21) 2017; 42 . Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b47) 2015; 115 Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell (b9) 2014 Fang, Cao, Xiao, Zhu, Yuan (b14) 2016; 25 Remez, T., Litany, O., Giryes, R., Bronstein, A.M., 2017. Deep convolutional denoising of low-light images. arXiv preprint Wei, Wang, Yang, Liu (b55) 2018 Le Callet, P., Autrusseau, F., 2005. Subjective quality assessment irccyn/ivc database. Fu, Zeng, Huang, Liao, Ding, Paisley (b16) 2016; 129 Bilodeau, Torabi, St-Charles, Riahi (b1) 2014; 64 Cheng, Zhang, Lin, Torr (b3) 2014 Russell, Torralba, Murphy, Freeman (b48) 2008; 77 Dabov, Foi, Katkovnik, Egiazarian (b4) 2007; 16 Li, Liu, Yang, Sun, Guo (b30) 2018; 27 Torralba, Efros (b52) 2011 Davis, Sharma (b7) 2007; 106 Lowe (b36) 2004; 60 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (b46) 2015; 115 Dalal, Triggs (b5) 2005 Everingham, Van Gool, Williams, Winn, Zisserman (b13) 2010; 88 Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (b12) 2015; 111 Lee, Chan, Mayo, Remagnino (b26) 2017; 71 Philbin, Chum, Isard, Sivic, Zisserman (b41) 2008 Felzenszwalb, McAllester, Ramanan (b15) 2008 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b33) 2014 Elguebaly, Bouguila (b11) 2013; 117 Zhao, He, Zhang, Liang (b58) 2015; 48 Dong, Ge, Luo (b10) 2007 Ren, He, Girshick, Sun (b45) 2015 Lim, Kim, Sim, Kim (b32) 2015 Wang, Yang, Yu, Lv, Huang, Gong (b53) 2010 Lore, Akintayo, Sarkar (b35) 2017; 61 Su, Jung (b51) 2017 Leo (10.1016/j.cviu.2018.10.010_b28) 2017; 154 Li (10.1016/j.cviu.2018.10.010_b31) 2015 Krizhevsky (10.1016/j.cviu.2018.10.010_b24) 2012 Everingham (10.1016/j.cviu.2018.10.010_b13) 2010; 88 Felzenszwalb (10.1016/j.cviu.2018.10.010_b15) 2008 Ren (10.1016/j.cviu.2018.10.010_b45) 2015 Jung (10.1016/j.cviu.2018.10.010_b21) 2017; 42 Russakovsky (10.1016/j.cviu.2018.10.010_b47) 2015; 115 Fang (10.1016/j.cviu.2018.10.010_b14) 2016; 25 Loh (10.1016/j.cviu.2018.10.010_b34) 2015 Davis (10.1016/j.cviu.2018.10.010_b6) 2005 Guo (10.1016/j.cviu.2018.10.010_b18) 2017; 26 Lowe (10.1016/j.cviu.2018.10.010_b36) 2004; 60 Zhao (10.1016/j.cviu.2018.10.010_b58) 2015; 48 Lim (10.1016/j.cviu.2018.10.010_b32) 2015 Li (10.1016/j.cviu.2018.10.010_b30) 2018; 27 Huang (10.1016/j.cviu.2018.10.010_b20) 2013; 22 Zeiler (10.1016/j.cviu.2018.10.010_b57) 2014 Fu (10.1016/j.cviu.2018.10.010_b17) 2016 Elguebaly (10.1016/j.cviu.2018.10.010_b11) 2013; 117 Malm (10.1016/j.cviu.2018.10.010_b39) 2007 Wei (10.1016/j.cviu.2018.10.010_b55) 2018 Torralba (10.1016/j.cviu.2018.10.010_b52) 2011 Russell (10.1016/j.cviu.2018.10.010_b48) 2008; 77 Lin (10.1016/j.cviu.2018.10.010_b33) 2014 Wang (10.1016/j.cviu.2018.10.010_b54) 2013; 22 10.1016/j.cviu.2018.10.010_b25 Li (10.1016/j.cviu.2018.10.010_b29) 2007; 29 10.1016/j.cviu.2018.10.010_b44 Maaten (10.1016/j.cviu.2018.10.010_b37) 2008; 9 Russakovsky (10.1016/j.cviu.2018.10.010_b46) 2015; 115 10.1016/j.cviu.2018.10.010_b40 Su (10.1016/j.cviu.2018.10.010_b51) 2017 Fu (10.1016/j.cviu.2018.10.010_b16) 2016; 129 Lee (10.1016/j.cviu.2018.10.010_b26) 2017; 71 Cheng (10.1016/j.cviu.2018.10.010_b3) 2014 Chen (10.1016/j.cviu.2018.10.010_b2) 2018 Mahendran (10.1016/j.cviu.2018.10.010_b38) 2015 10.1016/j.cviu.2018.10.010_b56 Lee (10.1016/j.cviu.2018.10.010_b27) 2005; 51 10.1016/j.cviu.2018.10.010_b50 Davis (10.1016/j.cviu.2018.10.010_b7) 2007; 106 Bilodeau (10.1016/j.cviu.2018.10.010_b1) 2014; 64 10.1016/j.cviu.2018.10.010_b8 Donahue (10.1016/j.cviu.2018.10.010_b9) 2014 He (10.1016/j.cviu.2018.10.010_b19) 2016 Qi (10.1016/j.cviu.2018.10.010_b42) 2014 Philbin (10.1016/j.cviu.2018.10.010_b41) 2008 Wang (10.1016/j.cviu.2018.10.010_b53) 2010 Everingham (10.1016/j.cviu.2018.10.010_b12) 2015; 111 Dalal (10.1016/j.cviu.2018.10.010_b5) 2005 Redmon (10.1016/j.cviu.2018.10.010_b43) 2016 Dabov (10.1016/j.cviu.2018.10.010_b4) 2007; 16 Kang (10.1016/j.cviu.2018.10.010_b22) 2014; 47 Zitnick (10.1016/j.cviu.2018.10.010_b59) 2014 Dong (10.1016/j.cviu.2018.10.010_b10) 2007 Kim (10.1016/j.cviu.2018.10.010_b23) 2015; 61 Lore (10.1016/j.cviu.2018.10.010_b35) 2017; 61 10.1016/j.cviu.2018.10.010_b49 |
| References_xml | – start-page: 647 year: 2014 end-page: 655 ident: b9 article-title: Decaf: A deep convolutional activation feature for generic visual recognition publication-title: International Conference on Machine Learning – reference: Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H., 2015. Understanding neural networks through deep visualization. arXiv preprint – reference: Remez, T., Litany, O., Giryes, R., Bronstein, A.M., 2017. Deep convolutional denoising of low-light images. arXiv preprint – start-page: 391 year: 2014 end-page: 405 ident: b59 article-title: Edge boxes: Locating object proposals from edges publication-title: European Conference on Computer Vision – volume: 154 start-page: 1 year: 2017 end-page: 15 ident: b28 article-title: Computer vision for assistive technologies publication-title: Comput. Vision Image Understanding – volume: 64 start-page: 79 year: 2014 end-page: 86 ident: b1 article-title: Thermal–visible registration of human silhouettes: A similarity measure performance evaluation publication-title: Infrared Phys. Technol. – volume: 111 start-page: 98 year: 2015 end-page: 136 ident: b12 article-title: The pascal visual object classes challenge: A retrospective publication-title: Int. J. Comput. Vis. – start-page: 5188 year: 2015 end-page: 5196 ident: b38 article-title: Understanding deep image representations by inverting them publication-title: Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on – reference: Le Callet, P., Autrusseau, F., 2005. Subjective quality assessment irccyn/ivc database. – start-page: 274 year: 2014 end-page: 280 ident: b42 article-title: Use of sparse representation for pedestrian detection in thermal images publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – start-page: 1 year: 2008 end-page: 8 ident: b41 article-title: Lost in quantization: Improving particular object retrieval in large scale image databases publication-title: Computer Vision and Pattern Recognition (CVPR), 2008 IEEE Conference on – volume: 51 start-page: 648 year: 2005 end-page: 653 ident: b27 article-title: Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images publication-title: IEEE Trans. Consum. Electron. – volume: 129 start-page: 82 year: 2016 end-page: 96 ident: b16 article-title: A fusion-based enhancing method for weakly illuminated images publication-title: Signal Process. – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b46 article-title: ImageNet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – volume: 117 start-page: 1659 year: 2013 end-page: 1671 ident: b11 article-title: Finite asymmetric generalized gaussian mixture models learning for infrared object detection publication-title: Comput. Vision Image Understanding – volume: 61 start-page: 650 year: 2017 end-page: 662 ident: b35 article-title: Llnet: A deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recognit. – start-page: 1097 year: 2012 end-page: 1105 ident: b24 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 22 start-page: 1032 year: 2013 end-page: 1041 ident: b20 article-title: Efficient contrast enhancement using adaptive gamma correction with weighting distribution publication-title: IEEE Trans. Image Process. – start-page: 740 year: 2014 end-page: 755 ident: b33 article-title: Microsoft coco: Common objects in context publication-title: European Conference on Computer Vision – start-page: 2782 year: 2016 end-page: 2790 ident: b17 article-title: A weighted variational model for simultaneous reflectance and illumination estimation publication-title: Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on – start-page: 1 year: 2008 end-page: 8 ident: b15 article-title: A discriminatively trained, multiscale, deformable part model publication-title: Computer Vision and Pattern Recognition (CVPR), 2008 IEEE Conference on – start-page: 1521 year: 2011 end-page: 1528 ident: b52 article-title: Unbiased look at dataset bias publication-title: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on – start-page: 770 year: 2016 end-page: 778 ident: b19 article-title: Deep residual learning for image recognition publication-title: Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on – start-page: 3360 year: 2010 end-page: 3367 ident: b53 article-title: Locality-constrained linear coding for image classification publication-title: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on – start-page: 3730 year: 2015 end-page: 3734 ident: b31 article-title: A low-light image enhancement method for both denoising and contrast enlarging publication-title: Image Processing (ICIP), 2015 IEEE International Conference on – volume: 42 start-page: 28 year: 2017 end-page: 36 ident: b21 article-title: Low light image enhancement with dual-tree complex wavelet transform publication-title: J. Vis. Commun. Image Represent. – volume: 77 start-page: 157 year: 2008 end-page: 173 ident: b48 article-title: Labelme: a database and web-based tool for image annotation publication-title: Int. J. Comput. Vis. – year: 2018 ident: b55 article-title: Deep retinex decomposition for low-light enhancement publication-title: British Machine Vision Conference – volume: 106 start-page: 162 year: 2007 end-page: 182 ident: b7 article-title: Background-subtraction using contour-based fusion of thermal and visible imagery publication-title: Comput. Vision Image Understanding – start-page: 266 year: 2015 end-page: 270 ident: b34 article-title: Unveiling contrast in darkness publication-title: Pattern Recognition (ACPR), 2015 3rd IAPR Asian Conference on – volume: 16 start-page: 2080 year: 2007 end-page: 2095 ident: b4 article-title: Image denoising by sparse 3-d transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b47 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – reference: Shen, L., Yue, Z., Feng, F., Chen, Q., Liu, S., Ma, J., 2017. Msr-net: Low-light image enhancement using deep convolutional network. arXiv preprint – start-page: 818 year: 2014 end-page: 833 ident: b57 article-title: Visualizing and understanding convolutional networks publication-title: European Conference on Computer Vision – start-page: 1977 year: 2017 end-page: 1981 ident: b51 article-title: Low light image enhancement based on two-step noise suppression publication-title: Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on – volume: 61 start-page: 72 year: 2015 end-page: 80 ident: b23 article-title: A novel approach for denoising and enhancement of extremely low-light video publication-title: IEEE Trans. Consum. Electron. – volume: 22 start-page: 3538 year: 2013 end-page: 3548 ident: b54 article-title: Naturalness preserved enhancement algorithm for non-uniform illumination images publication-title: IEEE Trans. Image Process. – reference: Olmeda, D., Premebida, C., Nunes, U., Armingol, J.M., Escalera, A.d.l., 2013. Lsi far infrared pedestrian dataset. – volume: 71 start-page: 1 year: 2017 end-page: 13 ident: b26 article-title: How deep learning extracts and learns leaf features for plant classification publication-title: Pattern Recognit. – start-page: 886 year: 2005 end-page: 893 ident: b5 article-title: Histograms of oriented gradients for human detection publication-title: Computer Vision and Pattern Recognition (CVPR), 2005 IEEE Conference on – volume: 47 start-page: 3750 year: 2014 end-page: 3766 ident: b22 article-title: Nighttime face recognition at large standoff: Cross-distance and cross-spectral matching publication-title: Pattern Recognit. – volume: 25 start-page: 4116 year: 2016 end-page: 4128 ident: b14 article-title: Adobe boxes: Locating object proposals using object adobes publication-title: IEEE Trans. Image Process. – start-page: 4131 year: 2015 end-page: 4135 ident: b32 article-title: Robust contrast enhancement of noisy low-light images: Denoising-enhancement-completion publication-title: Image Processing (ICIP), 2015 IEEE International Conference on – volume: 60 start-page: 91 year: 2004 end-page: 110 ident: b36 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b37 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – volume: 48 start-page: 1947 year: 2015 end-page: 1960 ident: b58 article-title: Robust pedestrian detection in thermal infrared imagery using a shape distribution histogram feature and modified sparse representation classification publication-title: Pattern Recognit. – volume: 27 start-page: 2828 year: 2018 end-page: 2841 ident: b30 article-title: Structure-revealing low-light image enhancement via robust retinex model publication-title: IEEE Trans. Image Process. – reference: Dollár, P., Piotr’s Computer Vision Matlab Toolbox (PMT). – volume: 88 start-page: 303 year: 2010 end-page: 338 ident: b13 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vis. – start-page: 364 year: 2005 end-page: 369 ident: b6 article-title: A two-stage template approach to person detection in thermal imagery publication-title: Application of Computer Vision, 2005. WACV/MOTIONS’05 Volume 1. Seventh IEEE Workshops on – volume: 26 start-page: 982 year: 2017 end-page: 993 ident: b18 article-title: Lime: Low-light image enhancement via illumination map estimation publication-title: IEEE Trans. Image Process. – year: 2018 ident: b2 article-title: Learning to see in the dark publication-title: Computer Vision and Pattern Recognition (CVPR), 2018 IEEE Conference on – reference: . – start-page: 91 year: 2015 end-page: 99 ident: b45 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Advances in Neural Information Processing Systems – year: 2007 ident: b39 article-title: Adaptive enhancement and noise reduction in very low light-level video publication-title: ICCV – start-page: VI year: 2007 end-page: 185 ident: b10 article-title: Nighttime pedestrian detection with near infrared using cascaded classifiers publication-title: Image Processing (ICIP), 2007 IEEE International Conference on – volume: 29 start-page: 627 year: 2007 end-page: 639 ident: b29 article-title: Illumination invariant face recognition using near-infrared images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 779 year: 2016 end-page: 788 ident: b43 article-title: You only look once: Unified, real-time object detection publication-title: Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on – reference: Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint – start-page: 3286 year: 2014 end-page: 3293 ident: b3 article-title: Bing: Binarized normed gradients for objectness estimation at 300fps publication-title: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on – year: 2018 ident: 10.1016/j.cviu.2018.10.010_b2 article-title: Learning to see in the dark – start-page: 3730 year: 2015 ident: 10.1016/j.cviu.2018.10.010_b31 article-title: A low-light image enhancement method for both denoising and contrast enlarging – start-page: 818 year: 2014 ident: 10.1016/j.cviu.2018.10.010_b57 article-title: Visualizing and understanding convolutional networks – volume: 60 start-page: 91 year: 2004 ident: 10.1016/j.cviu.2018.10.010_b36 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 61 start-page: 72 year: 2015 ident: 10.1016/j.cviu.2018.10.010_b23 article-title: A novel approach for denoising and enhancement of extremely low-light video publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2015.7064113 – ident: 10.1016/j.cviu.2018.10.010_b50 – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.cviu.2018.10.010_b37 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – start-page: 779 year: 2016 ident: 10.1016/j.cviu.2018.10.010_b43 article-title: You only look once: Unified, real-time object detection – volume: 42 start-page: 28 year: 2017 ident: 10.1016/j.cviu.2018.10.010_b21 article-title: Low light image enhancement with dual-tree complex wavelet transform publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2016.11.001 – volume: 88 start-page: 303 year: 2010 ident: 10.1016/j.cviu.2018.10.010_b13 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0275-4 – start-page: 647 year: 2014 ident: 10.1016/j.cviu.2018.10.010_b9 article-title: Decaf: A deep convolutional activation feature for generic visual recognition – ident: 10.1016/j.cviu.2018.10.010_b25 – ident: 10.1016/j.cviu.2018.10.010_b44 – start-page: 1097 year: 2012 ident: 10.1016/j.cviu.2018.10.010_b24 article-title: Imagenet classification with deep convolutional neural networks – ident: 10.1016/j.cviu.2018.10.010_b40 – volume: 77 start-page: 157 year: 2008 ident: 10.1016/j.cviu.2018.10.010_b48 article-title: Labelme: a database and web-based tool for image annotation publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-007-0090-8 – ident: 10.1016/j.cviu.2018.10.010_b49 – volume: 47 start-page: 3750 year: 2014 ident: 10.1016/j.cviu.2018.10.010_b22 article-title: Nighttime face recognition at large standoff: Cross-distance and cross-spectral matching publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.06.004 – volume: 115 start-page: 211 year: 2015 ident: 10.1016/j.cviu.2018.10.010_b47 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 27 start-page: 2828 year: 2018 ident: 10.1016/j.cviu.2018.10.010_b30 article-title: Structure-revealing low-light image enhancement via robust retinex model publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2810539 – volume: 16 start-page: 2080 year: 2007 ident: 10.1016/j.cviu.2018.10.010_b4 article-title: Image denoising by sparse 3-d transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – start-page: 4131 year: 2015 ident: 10.1016/j.cviu.2018.10.010_b32 article-title: Robust contrast enhancement of noisy low-light images: Denoising-enhancement-completion – volume: 29 start-page: 627 year: 2007 ident: 10.1016/j.cviu.2018.10.010_b29 article-title: Illumination invariant face recognition using near-infrared images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1014 – start-page: 740 year: 2014 ident: 10.1016/j.cviu.2018.10.010_b33 article-title: Microsoft coco: Common objects in context – start-page: 3360 year: 2010 ident: 10.1016/j.cviu.2018.10.010_b53 article-title: Locality-constrained linear coding for image classification – start-page: 391 year: 2014 ident: 10.1016/j.cviu.2018.10.010_b59 article-title: Edge boxes: Locating object proposals from edges – start-page: 274 year: 2014 ident: 10.1016/j.cviu.2018.10.010_b42 article-title: Use of sparse representation for pedestrian detection in thermal images – start-page: 266 year: 2015 ident: 10.1016/j.cviu.2018.10.010_b34 article-title: Unveiling contrast in darkness – start-page: 770 year: 2016 ident: 10.1016/j.cviu.2018.10.010_b19 article-title: Deep residual learning for image recognition – ident: 10.1016/j.cviu.2018.10.010_b8 – start-page: 1977 year: 2017 ident: 10.1016/j.cviu.2018.10.010_b51 article-title: Low light image enhancement based on two-step noise suppression – volume: 71 start-page: 1 year: 2017 ident: 10.1016/j.cviu.2018.10.010_b26 article-title: How deep learning extracts and learns leaf features for plant classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.05.015 – start-page: 886 year: 2005 ident: 10.1016/j.cviu.2018.10.010_b5 article-title: Histograms of oriented gradients for human detection – ident: 10.1016/j.cviu.2018.10.010_b56 – volume: 26 start-page: 982 year: 2017 ident: 10.1016/j.cviu.2018.10.010_b18 article-title: Lime: Low-light image enhancement via illumination map estimation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2639450 – volume: 61 start-page: 650 year: 2017 ident: 10.1016/j.cviu.2018.10.010_b35 article-title: Llnet: A deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.06.008 – start-page: 2782 year: 2016 ident: 10.1016/j.cviu.2018.10.010_b17 article-title: A weighted variational model for simultaneous reflectance and illumination estimation – start-page: VI year: 2007 ident: 10.1016/j.cviu.2018.10.010_b10 article-title: Nighttime pedestrian detection with near infrared using cascaded classifiers – volume: 117 start-page: 1659 year: 2013 ident: 10.1016/j.cviu.2018.10.010_b11 article-title: Finite asymmetric generalized gaussian mixture models learning for infrared object detection publication-title: Comput. Vision Image Understanding doi: 10.1016/j.cviu.2013.07.007 – start-page: 364 year: 2005 ident: 10.1016/j.cviu.2018.10.010_b6 article-title: A two-stage template approach to person detection in thermal imagery – volume: 106 start-page: 162 year: 2007 ident: 10.1016/j.cviu.2018.10.010_b7 article-title: Background-subtraction using contour-based fusion of thermal and visible imagery publication-title: Comput. Vision Image Understanding doi: 10.1016/j.cviu.2006.06.010 – volume: 129 start-page: 82 year: 2016 ident: 10.1016/j.cviu.2018.10.010_b16 article-title: A fusion-based enhancing method for weakly illuminated images publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.05.031 – volume: 51 start-page: 648 year: 2005 ident: 10.1016/j.cviu.2018.10.010_b27 article-title: Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2005.1468014 – volume: 64 start-page: 79 year: 2014 ident: 10.1016/j.cviu.2018.10.010_b1 article-title: Thermal–visible registration of human silhouettes: A similarity measure performance evaluation publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2014.02.005 – volume: 25 start-page: 4116 year: 2016 ident: 10.1016/j.cviu.2018.10.010_b14 article-title: Adobe boxes: Locating object proposals using object adobes publication-title: IEEE Trans. Image Process. – volume: 154 start-page: 1 year: 2017 ident: 10.1016/j.cviu.2018.10.010_b28 article-title: Computer vision for assistive technologies publication-title: Comput. Vision Image Understanding doi: 10.1016/j.cviu.2016.09.001 – year: 2018 ident: 10.1016/j.cviu.2018.10.010_b55 article-title: Deep retinex decomposition for low-light enhancement – start-page: 1 year: 2008 ident: 10.1016/j.cviu.2018.10.010_b15 article-title: A discriminatively trained, multiscale, deformable part model – volume: 22 start-page: 3538 year: 2013 ident: 10.1016/j.cviu.2018.10.010_b54 article-title: Naturalness preserved enhancement algorithm for non-uniform illumination images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2261309 – volume: 48 start-page: 1947 year: 2015 ident: 10.1016/j.cviu.2018.10.010_b58 article-title: Robust pedestrian detection in thermal infrared imagery using a shape distribution histogram feature and modified sparse representation classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.12.013 – start-page: 1 year: 2008 ident: 10.1016/j.cviu.2018.10.010_b41 article-title: Lost in quantization: Improving particular object retrieval in large scale image databases – volume: 115 start-page: 211 year: 2015 ident: 10.1016/j.cviu.2018.10.010_b46 article-title: ImageNet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – year: 2007 ident: 10.1016/j.cviu.2018.10.010_b39 article-title: Adaptive enhancement and noise reduction in very low light-level video – start-page: 1521 year: 2011 ident: 10.1016/j.cviu.2018.10.010_b52 article-title: Unbiased look at dataset bias – start-page: 3286 year: 2014 ident: 10.1016/j.cviu.2018.10.010_b3 article-title: Bing: Binarized normed gradients for objectness estimation at 300fps – start-page: 91 year: 2015 ident: 10.1016/j.cviu.2018.10.010_b45 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks – start-page: 5188 year: 2015 ident: 10.1016/j.cviu.2018.10.010_b38 article-title: Understanding deep image representations by inverting them – volume: 22 start-page: 1032 year: 2013 ident: 10.1016/j.cviu.2018.10.010_b20 article-title: Efficient contrast enhancement using adaptive gamma correction with weighting distribution publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2226047 – volume: 111 start-page: 98 year: 2015 ident: 10.1016/j.cviu.2018.10.010_b12 article-title: The pascal visual object classes challenge: A retrospective publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0733-5 |
| SSID | ssj0011491 |
| Score | 2.6949553 |
| Snippet | Low-light is an inescapable element of our daily surroundings that greatly affects the efficiency of our vision. Research works on low-light imagery have seen... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 30 |
| Title | Getting to know low-light images with the Exclusively Dark dataset |
| URI | https://dx.doi.org/10.1016/j.cviu.2018.10.010 |
| Volume | 178 |
| WOSCitedRecordID | wos000454372800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1FLQc4lFJALZRqD9wiV7tx1rs-FpTSAoo4BBROlr1ZSynGqfJF-PfMeNZuEiCiBy5WNLHXid_TeHb2zQ5jr6W0NndWBlmYYgszJwKTiiywOlSjKIptXpVHf_mo-30zHMafWq0PdS3MstBlaVar-Pa_Qg02ABtLZ-8BdzMoGOAzgA5HgB2O_wT8O0dSZggqq0K3YvIjKHAK3h5_T3FHB0q9Aj16K1ssUL5e_AT0p9_aKBeduY1sfd31oU1F6LTWgONUDXSbsphG1zOp0jRfFw58q7uzYxEDre47B_7Jf-GzDVjg1GQbyEEKjXnN7qYHpS483gf6dRZ6m9KJv_lpShncnNvleIH6OnOOEjsvcN3YFHvrZdVICGt12k2CYyQ4BhiSqtxuv6NVDF56_-K6N3zfLCrBZFCSBJX-gq-hIrnf9i_5c5yyFnsMDtmBnzTwCwL7CWu58og99hMI7t3zDEw1WrXtiD1a23DyKXvjycHnE47k4A05OJGDIzk4kIOvkYMjObgnxzP2-bI3eHsV-C4agQ2FmAcodxjJkQyVcHHkIGQU1o1C8MuZ0lpFXaNMLh3MC5TK8khlaWhsGNs0kyLKIdp-zvbKSemOGYdYNbNhnsGj7HRtbmLb1UJ1dCxNlMKb84TJ-pkl1m8xj51OiuTvaJ2wdnPNLW2wsvNsVUOR-BCRQr8EmLXjuhf3ustL9vCO-6dsbz5duFfsgV3Ox7PpmafVL2lKhgE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Getting+to+know+low-light+images+with+the+Exclusively+Dark+dataset&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Loh%2C+Yuen+Peng&rft.au=Chan%2C+Chee+Seng&rft.date=2019-01-01&rft.issn=1077-3142&rft.volume=178&rft.spage=30&rft.epage=42&rft_id=info:doi/10.1016%2Fj.cviu.2018.10.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2018_10_010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon |