A multi-scale low rank convolutional autoencoder for process monitoring of nonlinear uncertain systems

In modern industrial process monitoring, due to equipment performance degradation and equipment working environment, process variable measurement can lead to uncertainty in measurement data. Traditional process monitoring methods based on uncertain data typically assume that variables have the same...

Full description

Saved in:
Bibliographic Details
Published in:Process safety and environmental protection Vol. 188; pp. 53 - 63
Main Authors: Yin, Jiawei, Yan, Xuefeng
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2024
Subjects:
ISSN:0957-5820, 1744-3598
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In modern industrial process monitoring, due to equipment performance degradation and equipment working environment, process variable measurement can lead to uncertainty in measurement data. Traditional process monitoring methods based on uncertain data typically assume that variables have the same level of uncertainty. However, factors such as the lifespan of different devices and different working environments result in varying levels of uncertainty in variables. To monitor such processes, a multi scale low-rank convolutional autoencoder (MLRCAE) for process monitoring based on uncertain measurement data is proposed. First, to extract robust multi scale features from uncertain input, a multi scale convolution (MSC) module is designed to reduce the impact of different levels of uncertainty on the model. Second, a low-rank constraint (LRC) loss function is used to prevent models from overfitting uncertain data by punishing the rank of hidden layer robust features. In conclusion, we apply this method to numerical simulation, specifically within the Tennessee Eastman process, and wastewater treatment plants to confirm the model’s efficacy and compare it with other advanced methods. The results show that MLRCAE not only reduces the impact of uncertain data, but also maintains stable performance of the model under different levels of uncertainty.
AbstractList In modern industrial process monitoring, due to equipment performance degradation and equipment working environment, process variable measurement can lead to uncertainty in measurement data. Traditional process monitoring methods based on uncertain data typically assume that variables have the same level of uncertainty. However, factors such as the lifespan of different devices and different working environments result in varying levels of uncertainty in variables. To monitor such processes, a multi scale low-rank convolutional autoencoder (MLRCAE) for process monitoring based on uncertain measurement data is proposed. First, to extract robust multi scale features from uncertain input, a multi scale convolution (MSC) module is designed to reduce the impact of different levels of uncertainty on the model. Second, a low-rank constraint (LRC) loss function is used to prevent models from overfitting uncertain data by punishing the rank of hidden layer robust features. In conclusion, we apply this method to numerical simulation, specifically within the Tennessee Eastman process, and wastewater treatment plants to confirm the model’s efficacy and compare it with other advanced methods. The results show that MLRCAE not only reduces the impact of uncertain data, but also maintains stable performance of the model under different levels of uncertainty.
Author Yan, Xuefeng
Yin, Jiawei
Author_xml – sequence: 1
  givenname: Jiawei
  surname: Yin
  fullname: Yin, Jiawei
  organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process,Ministry of Education,East China University of Science and Technology, Shanghai, 20023, PR China
– sequence: 2
  givenname: Xuefeng
  surname: Yan
  fullname: Yan, Xuefeng
  email: xfyan@ecust.edu.cn
  organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process,Ministry of Education,East China University of Science and Technology, Shanghai, 20023, PR China
BookMark eNp9kL1OwzAURi1UJNrCCzD5BRKunX-Jpar4kyqxwGy59g1ySezIdor69iQqE0OnO52r75wVWVhnkZB7BikDVj4c0iHgkHLgeQpFChVckSWr8jzJiqZekCU0RZUUNYcbsgrhAACMV2xJ2g3txy6aJCjZIe3cD_XSflPl7NF1YzTOyo7KMTq0ymn0tHWeDt4pDIH2zprovLFf1LV02tQZi9LT0Sr0URpLwylE7MMtuW5lF_Du767J5_PTx_Y12b2_vG03u0RlADFhWPO6rEE1mjcamVRQ6kxD0TQo2Z6ptkLMVA0la3NZZUpnUOU6n3yR455na8LPf5V3IXhsxeBNL_1JMBBzKXEQcykxlxJQiImcoPofpEyUs3r00nSX0cczipPU0aAXQZmpFGrjUUWhnbmE_wLlUInS
CitedBy_id crossref_primary_10_3390_math13091371
crossref_primary_10_1016_j_psep_2025_106867
crossref_primary_10_1016_j_psep_2025_107272
crossref_primary_10_1088_1361_6501_addf6c
crossref_primary_10_1088_1361_6501_add6c6
crossref_primary_10_1016_j_jtice_2025_106235
Cites_doi 10.1016/j.psep.2022.12.081
10.1016/j.chemolab.2017.09.021
10.1109/TII.2020.3011441
10.1016/j.isatra.2020.12.046
10.1016/j.jprocont.2020.06.011
10.1016/j.compchemeng.2021.107654
10.1109/JSEN.2020.2991508
10.1016/S0959-1524(00)00041-X
10.1016/0169-7439(95)00076-3
10.1016/j.psep.2022.05.039
10.1109/CVPR.2015.7298789
10.1016/j.compchemeng.2012.06.023
10.1109/CVPR.2015.7298594
10.1016/j.conengprac.2022.105156
10.1016/j.ces.2018.11.063
10.1016/S0959-1524(00)00022-6
10.1016/j.asoc.2019.105527
10.1109/TIE.2014.2301773
10.1016/j.chemolab.2013.02.001
10.1016/j.psep.2021.11.020
10.1109/TCYB.2016.2565898
10.1016/j.ins.2017.09.047
10.1007/s00170-019-03306-z
10.1016/0098-1354(93)80018-I
10.1016/S0959-1524(99)00028-1
10.1080/08982112.2017.1391288
10.1109/CVPR.2017.636
10.1049/smt2.12069
10.1145/1970392.1970395
10.1109/TIP.2017.2725580
10.1016/j.psep.2021.07.002
10.1016/j.asoc.2022.109570
ContentType Journal Article
Copyright 2024 The Institution of Chemical Engineers
Copyright_xml – notice: 2024 The Institution of Chemical Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.psep.2024.05.070
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1744-3598
EndPage 63
ExternalDocumentID 10_1016_j_psep_2024_05_070
S0957582024005780
GroupedDBID --K
--M
-QF
.~1
0R~
123
1B1
1~.
1~5
3EH
4.4
457
4G.
4P2
53G
5VS
7-5
71M
8P~
8WZ
A6W
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ACDAQ
ACGFO
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHIDL
AHPOS
AIAGR
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CAG
COF
CS3
DU5
EBS
EDH
EFJIC
EJD
ENUVR
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KCYFY
KOM
M41
ML.
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSJ
SSR
SSZ
T5K
UNMZH
ZE2
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BANNL
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-1e828680c9d29de1ac06d3d0599ea1b1cf7ee3c8061f4a73cd3074d4070e2eb23
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001246446200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-5820
IngestDate Tue Nov 18 22:20:09 EST 2025
Sat Nov 29 01:50:07 EST 2025
Sat Aug 03 15:33:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Process monitoring
Uncertainty process
1D convolutional neural network
Low rank
Multi scale
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-1e828680c9d29de1ac06d3d0599ea1b1cf7ee3c8061f4a73cd3074d4070e2eb23
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_psep_2024_05_070
crossref_citationtrail_10_1016_j_psep_2024_05_070
elsevier_sciencedirect_doi_10_1016_j_psep_2024_05_070
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Process safety and environmental protection
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Gao, Song, Peng, Xu (bib17) 2021; 15
Chen, Zhang, Yi (bib3) 2018; 424
Xu, Z., Yang, Y., Hauptmann, A.G., A Discriminative Cnn Video Representation for Event Detection, IN: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1798-1807.2015.
Candès, Li, Ma, Wright (bib2) 2011; 58
Yin, Ding, Xie, Luo (bib31) 2014; 61
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. Going Deeper with Convolutions, IN: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-9.2014.
Wu, Lu, Yan (bib26) 2022; 129
Yu, Yan (bib33) 2021; 153
Downs, Vogel (bib6) 1993; 17
Hu, Zhao, Peng (bib10) 2022; 123
Ding, Z., Shao, M., Fu, Y.,. Low-Rank Embedded Ensemble Semantic Dictionary for Zero-shot Learning, IN: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2050-2058.2017.
Ge, Song (bib8) 2013; 123
Lee, Kwon (bib16) 2017; 26
Kesavan, Lee, Saucedo, Krishnagopalan (bib13) 2000; 10
Yong, Linzi (bib32) 2022; 163
Ge (bib7) 2017; 171
Yang, Zhang (bib30) 2020; 17
Zhang, Qiu (bib34) 2022; 158
Lahdhiri, Said, Abdellafou, Taouali, Harkat (bib15) 2019; 102
Li, Qin (bib19) 2001; 11
Ku, Storer, Georgakis (bib14) 1995; 30
Xiu, Yang, Kong, Liu (bib28) 2020; 92
Harkat, Mansouri, Nounou, Nounou (bib9) 2019; 205
Tang, Lu, Yan (bib23) 2023; 171
Huang, Wu, Long, Ji, Sun, Chen, Yang (bib11) 2021; 114
Li, Yue, Valle-Cervantes, Qin (bib20) 2000; 10
Jia, Xu, Liu, Wang (bib12) 2012; 46
Ait-Izem, Harkat, Djeghaba, Kratz (bib1) 2018; 30
Li, Wu, Zhao, Lu (bib18) 2016; 47
Wu, Yan (bib27) 2022; 72
Dhibi, Fezai, Mansouri, Kouadri, Harkat, Bouzara, Nounou, Nounou (bib4) 2020; 20
Song, Jiang (bib21) 2022; 159
Wang, Li, Dai, Lawrence, Yan (bib24) 2019; 82
WenHua, YePang, Chang, SC (bib25) 2015; 58
Yu (10.1016/j.psep.2024.05.070_bib33) 2021; 153
Xiu (10.1016/j.psep.2024.05.070_bib28) 2020; 92
Zhang (10.1016/j.psep.2024.05.070_bib34) 2022; 158
Ku (10.1016/j.psep.2024.05.070_bib14) 1995; 30
Li (10.1016/j.psep.2024.05.070_bib19) 2001; 11
Ge (10.1016/j.psep.2024.05.070_bib8) 2013; 123
Candès (10.1016/j.psep.2024.05.070_bib2) 2011; 58
Dhibi (10.1016/j.psep.2024.05.070_bib4) 2020; 20
Li (10.1016/j.psep.2024.05.070_bib20) 2000; 10
Wang (10.1016/j.psep.2024.05.070_bib24) 2019; 82
10.1016/j.psep.2024.05.070_bib22
Hu (10.1016/j.psep.2024.05.070_bib10) 2022; 123
10.1016/j.psep.2024.05.070_bib29
WenHua (10.1016/j.psep.2024.05.070_bib25) 2015; 58
Song (10.1016/j.psep.2024.05.070_bib21) 2022; 159
Harkat (10.1016/j.psep.2024.05.070_bib9) 2019; 205
Huang (10.1016/j.psep.2024.05.070_bib11) 2021; 114
Li (10.1016/j.psep.2024.05.070_bib17) 2021; 15
Yong (10.1016/j.psep.2024.05.070_bib32) 2022; 163
Chen (10.1016/j.psep.2024.05.070_bib3) 2018; 424
Wu (10.1016/j.psep.2024.05.070_bib27) 2022; 72
Yang (10.1016/j.psep.2024.05.070_bib30) 2020; 17
Tang (10.1016/j.psep.2024.05.070_bib23) 2023; 171
Ge (10.1016/j.psep.2024.05.070_bib7) 2017; 171
Yin (10.1016/j.psep.2024.05.070_bib31) 2014; 61
Li (10.1016/j.psep.2024.05.070_bib18) 2016; 47
Lahdhiri (10.1016/j.psep.2024.05.070_bib15) 2019; 102
Wu (10.1016/j.psep.2024.05.070_bib26) 2022; 129
Jia (10.1016/j.psep.2024.05.070_bib12) 2012; 46
Ait-Izem (10.1016/j.psep.2024.05.070_bib1) 2018; 30
Kesavan (10.1016/j.psep.2024.05.070_bib13) 2000; 10
10.1016/j.psep.2024.05.070_bib5
Lee (10.1016/j.psep.2024.05.070_bib16) 2017; 26
Downs (10.1016/j.psep.2024.05.070_bib6) 1993; 17
References_xml – volume: 424
  start-page: 27
  year: 2018
  end-page: 38
  ident: bib3
  article-title: Subspace clustering using a low-rank constrained autoencoder
  publication-title: Inf. Sci.
– volume: 171
  start-page: 16
  year: 2017
  end-page: 25
  ident: bib7
  article-title: Review on data-driven modeling and monitoring for plant-wide industrial processes
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 82
  year: 2019
  ident: bib24
  article-title: A probabilistic principal component analysis-based approach in process monitoring and fault diagnosis with application in wastewater treatment plant
  publication-title: Appl. Soft Comput.
– volume: 58
  start-page: 1
  year: 2011
  end-page: 37
  ident: bib2
  article-title: Robust principal component analysis?
  publication-title: J. ACM
– volume: 26
  start-page: 4843
  year: 2017
  end-page: 4855
  ident: bib16
  article-title: Going deeper with contextual cnn for hyperspectral image classification
  publication-title: IEEE Trans. Image Process.
– volume: 10
  start-page: 471
  year: 2000
  end-page: 486
  ident: bib20
  article-title: Recursive pca for adaptive process monitoring
  publication-title: J. Process Control
– reference: Ding, Z., Shao, M., Fu, Y.,. Low-Rank Embedded Ensemble Semantic Dictionary for Zero-shot Learning, IN: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2050-2058.2017.
– volume: 47
  start-page: 3516
  year: 2016
  end-page: 3529
  ident: bib18
  article-title: Low-rank discriminant embedding for multiview learning
  publication-title: IEEE Trans. Cybern.
– volume: 123
  year: 2022
  ident: bib10
  article-title: Low-rank reconstruction-based autoencoder for robust fault detection
  publication-title: Control Eng. Pract.
– volume: 163
  start-page: 438
  year: 2022
  end-page: 452
  ident: bib32
  article-title: Robust deep auto-encoding network for real-time anomaly detection at nuclear power plants
  publication-title: Process Saf. Environ. Prot.
– volume: 114
  start-page: 399
  year: 2021
  end-page: 412
  ident: bib11
  article-title: Adaptive process monitoring via online dictionary learning and its industrial application
  publication-title: ISA Trans.
– reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. Going Deeper with Convolutions, IN: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-9.2014.
– volume: 171
  start-page: 214
  year: 2023
  end-page: 224
  ident: bib23
  article-title: Dual attention bidirectional generative adversarial network for dynamic uncertainty process monitoring and diagnosis
  publication-title: Process Saf. Environ. Prot.
– volume: 123
  start-page: 1
  year: 2013
  end-page: 8
  ident: bib8
  article-title: Performance-driven ensemble learning ica model for improved non-gaussian process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 102
  start-page: 2321
  year: 2019
  end-page: 2337
  ident: bib15
  article-title: Supervised process monitoring and fault diagnosis based on machine learning methods
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 15
  start-page: 690
  year: 2021
  end-page: 699
  ident: bib17
  article-title: Influence of thermally induced self-assembly shish-kebab crystal on charge transport behaviour in polypropylene/elastomer blends
  publication-title: IET Sci. Meas. Technol.
– volume: 11
  start-page: 661
  year: 2001
  end-page: 678
  ident: bib19
  article-title: Consistent dynamic pca based on errors-in-variables subspace identification
  publication-title: J. Process Control
– volume: 72
  start-page: 1
  year: 2022
  end-page: 10
  ident: bib27
  article-title: Interval-valued-based stacked attention autoencoder model for process monitoring and fault diagnosis of nonlinear uncertain systems
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 205
  start-page: 36
  year: 2019
  end-page: 45
  ident: bib9
  article-title: Fault detection of uncertain nonlinear process using interval-valued data-driven approach
  publication-title: Chem. Eng. Sci.
– volume: 159
  start-page: 575
  year: 2022
  end-page: 584
  ident: bib21
  article-title: A multi-scale convolutional neural network based fault diagnosis model for complex chemical processes
  publication-title: Process Saf. Environ. Prot.
– volume: 58
  start-page: 1
  year: 2015
  end-page: 052102
  ident: bib25
  article-title: A survey on dependability improvement techniques for pervasive computing systems
  publication-title: Inf. Sci.
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  ident: bib6
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
– volume: 30
  start-page: 635
  year: 2018
  end-page: 647
  ident: bib1
  article-title: Sensor fault detection based on principal component analysis for interval-valued data
  publication-title: Qual. Eng.
– volume: 153
  start-page: 47
  year: 2021
  end-page: 59
  ident: bib33
  article-title: A new deep model based on the stacked autoencoder with intensified iterative learning style for industrial fault detection
  publication-title: Process Saf. Environ. Prot.
– reference: Xu, Z., Yang, Y., Hauptmann, A.G., A Discriminative Cnn Video Representation for Event Detection, IN: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1798-1807.2015.
– volume: 46
  start-page: 94
  year: 2012
  end-page: 104
  ident: bib12
  article-title: The optimization of the kind and parameters of kernel function in kpca for process monitoring
  publication-title: Comput. Chem. Eng.
– volume: 30
  start-page: 179
  year: 1995
  end-page: 196
  ident: bib14
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 10
  start-page: 229
  year: 2000
  end-page: 236
  ident: bib13
  article-title: Partial least squares (pls) based monitoring and control of batch digesters
  publication-title: J. Process Control
– volume: 17
  start-page: 6390
  year: 2020
  end-page: 6398
  ident: bib30
  article-title: A conditional convolutional autoencoder-based method for monitoring wind turbine blade breakages
  publication-title: IEEE Trans. Ind. Inform.
– volume: 92
  start-page: 212
  year: 2020
  end-page: 219
  ident: bib28
  article-title: Laplacian regularized robust principal component analysis for process monitoring
  publication-title: J. Process Control
– volume: 158
  year: 2022
  ident: bib34
  article-title: A dynamic-inner convolutional autoencoder for process monitoring
  publication-title: Comput. Chem. Eng.
– volume: 61
  start-page: 6418
  year: 2014
  end-page: 6428
  ident: bib31
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans. Ind. Electron.
– volume: 129
  year: 2022
  ident: bib26
  article-title: Process monitoring of nonlinear uncertain systems based on part interval stacked autoencoder and support vector data description
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 10228
  year: 2020
  end-page: 10239
  ident: bib4
  article-title: A hybrid approach for process monitoring: improving data-driven methodologies with dataset size reduction and interval-valued representation
  publication-title: IEEE Sens. J.
– volume: 58
  start-page: 1
  year: 2015
  ident: 10.1016/j.psep.2024.05.070_bib25
  article-title: A survey on dependability improvement techniques for pervasive computing systems
  publication-title: Inf. Sci.
– volume: 171
  start-page: 214
  year: 2023
  ident: 10.1016/j.psep.2024.05.070_bib23
  article-title: Dual attention bidirectional generative adversarial network for dynamic uncertainty process monitoring and diagnosis
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.12.081
– volume: 171
  start-page: 16
  year: 2017
  ident: 10.1016/j.psep.2024.05.070_bib7
  article-title: Review on data-driven modeling and monitoring for plant-wide industrial processes
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.09.021
– volume: 72
  start-page: 1
  year: 2022
  ident: 10.1016/j.psep.2024.05.070_bib27
  article-title: Interval-valued-based stacked attention autoencoder model for process monitoring and fault diagnosis of nonlinear uncertain systems
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 17
  start-page: 6390
  year: 2020
  ident: 10.1016/j.psep.2024.05.070_bib30
  article-title: A conditional convolutional autoencoder-based method for monitoring wind turbine blade breakages
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3011441
– volume: 114
  start-page: 399
  year: 2021
  ident: 10.1016/j.psep.2024.05.070_bib11
  article-title: Adaptive process monitoring via online dictionary learning and its industrial application
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.12.046
– volume: 92
  start-page: 212
  year: 2020
  ident: 10.1016/j.psep.2024.05.070_bib28
  article-title: Laplacian regularized robust principal component analysis for process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.06.011
– volume: 158
  year: 2022
  ident: 10.1016/j.psep.2024.05.070_bib34
  article-title: A dynamic-inner convolutional autoencoder for process monitoring
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107654
– volume: 20
  start-page: 10228
  year: 2020
  ident: 10.1016/j.psep.2024.05.070_bib4
  article-title: A hybrid approach for process monitoring: improving data-driven methodologies with dataset size reduction and interval-valued representation
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2991508
– volume: 11
  start-page: 661
  year: 2001
  ident: 10.1016/j.psep.2024.05.070_bib19
  article-title: Consistent dynamic pca based on errors-in-variables subspace identification
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(00)00041-X
– volume: 30
  start-page: 179
  year: 1995
  ident: 10.1016/j.psep.2024.05.070_bib14
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(95)00076-3
– volume: 163
  start-page: 438
  year: 2022
  ident: 10.1016/j.psep.2024.05.070_bib32
  article-title: Robust deep auto-encoding network for real-time anomaly detection at nuclear power plants
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.05.039
– ident: 10.1016/j.psep.2024.05.070_bib29
  doi: 10.1109/CVPR.2015.7298789
– volume: 46
  start-page: 94
  year: 2012
  ident: 10.1016/j.psep.2024.05.070_bib12
  article-title: The optimization of the kind and parameters of kernel function in kpca for process monitoring
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.06.023
– ident: 10.1016/j.psep.2024.05.070_bib22
  doi: 10.1109/CVPR.2015.7298594
– volume: 123
  year: 2022
  ident: 10.1016/j.psep.2024.05.070_bib10
  article-title: Low-rank reconstruction-based autoencoder for robust fault detection
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2022.105156
– volume: 205
  start-page: 36
  year: 2019
  ident: 10.1016/j.psep.2024.05.070_bib9
  article-title: Fault detection of uncertain nonlinear process using interval-valued data-driven approach
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.11.063
– volume: 10
  start-page: 471
  year: 2000
  ident: 10.1016/j.psep.2024.05.070_bib20
  article-title: Recursive pca for adaptive process monitoring
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(00)00022-6
– volume: 82
  year: 2019
  ident: 10.1016/j.psep.2024.05.070_bib24
  article-title: A probabilistic principal component analysis-based approach in process monitoring and fault diagnosis with application in wastewater treatment plant
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105527
– volume: 61
  start-page: 6418
  year: 2014
  ident: 10.1016/j.psep.2024.05.070_bib31
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2301773
– volume: 123
  start-page: 1
  year: 2013
  ident: 10.1016/j.psep.2024.05.070_bib8
  article-title: Performance-driven ensemble learning ica model for improved non-gaussian process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.02.001
– volume: 159
  start-page: 575
  year: 2022
  ident: 10.1016/j.psep.2024.05.070_bib21
  article-title: A multi-scale convolutional neural network based fault diagnosis model for complex chemical processes
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.11.020
– volume: 47
  start-page: 3516
  year: 2016
  ident: 10.1016/j.psep.2024.05.070_bib18
  article-title: Low-rank discriminant embedding for multiview learning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2565898
– volume: 424
  start-page: 27
  year: 2018
  ident: 10.1016/j.psep.2024.05.070_bib3
  article-title: Subspace clustering using a low-rank constrained autoencoder
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.09.047
– volume: 102
  start-page: 2321
  year: 2019
  ident: 10.1016/j.psep.2024.05.070_bib15
  article-title: Supervised process monitoring and fault diagnosis based on machine learning methods
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-019-03306-z
– volume: 17
  start-page: 245
  year: 1993
  ident: 10.1016/j.psep.2024.05.070_bib6
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80018-I
– volume: 10
  start-page: 229
  year: 2000
  ident: 10.1016/j.psep.2024.05.070_bib13
  article-title: Partial least squares (pls) based monitoring and control of batch digesters
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(99)00028-1
– volume: 30
  start-page: 635
  year: 2018
  ident: 10.1016/j.psep.2024.05.070_bib1
  article-title: Sensor fault detection based on principal component analysis for interval-valued data
  publication-title: Qual. Eng.
  doi: 10.1080/08982112.2017.1391288
– ident: 10.1016/j.psep.2024.05.070_bib5
  doi: 10.1109/CVPR.2017.636
– volume: 15
  start-page: 690
  year: 2021
  ident: 10.1016/j.psep.2024.05.070_bib17
  article-title: Influence of thermally induced self-assembly shish-kebab crystal on charge transport behaviour in polypropylene/elastomer blends
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/smt2.12069
– volume: 58
  start-page: 1
  year: 2011
  ident: 10.1016/j.psep.2024.05.070_bib2
  article-title: Robust principal component analysis?
  publication-title: J. ACM
  doi: 10.1145/1970392.1970395
– volume: 26
  start-page: 4843
  year: 2017
  ident: 10.1016/j.psep.2024.05.070_bib16
  article-title: Going deeper with contextual cnn for hyperspectral image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2725580
– volume: 153
  start-page: 47
  year: 2021
  ident: 10.1016/j.psep.2024.05.070_bib33
  article-title: A new deep model based on the stacked autoencoder with intensified iterative learning style for industrial fault detection
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.07.002
– volume: 129
  year: 2022
  ident: 10.1016/j.psep.2024.05.070_bib26
  article-title: Process monitoring of nonlinear uncertain systems based on part interval stacked autoencoder and support vector data description
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109570
SSID ssj0001271
Score 2.4055824
Snippet In modern industrial process monitoring, due to equipment performance degradation and equipment working environment, process variable measurement can lead to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 53
SubjectTerms 1D convolutional neural network
Low rank
Multi scale
Process monitoring
Uncertainty process
Title A multi-scale low rank convolutional autoencoder for process monitoring of nonlinear uncertain systems
URI https://dx.doi.org/10.1016/j.psep.2024.05.070
Volume 188
WOSCitedRecordID wos001246446200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1744-3598
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001271
  issn: 0957-5820
  databaseCode: AIEXJ
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEOaAwmxgbygVtkFCdOnByrqWhMaEJiSOUUOf4hdSpt1bTd_nzeq500AzQBEpeoiuLa8vv8_PLyvc-EvFN1xl2uHFggN0yonLNa6oKZPEviWmbGeUt_kldXxWRSfh4Mtm0tzHYm5_Pi7q5c_ldTwz0wNpbO_oW5uz-FG_AbjA5XMDtc_8jwI08SZA3Mvo1mi9sIz2Xf0ctDvygPsFkvUMISlSSQaLj09QLR990SXwUq9NzraKhVBLuf5w4E6eemH9SGYoOoUQ4JoJiK79XPYamXF4PoffL_Fg4Bm6pbO-1u-mTsZGOdDRtqyEckomPDhSRZWyizZyX5bKNkWZH4TzDW-1opBEMBwfvOuOi5U68jHDZm7wh_cfk--3DzftlY1B9NxE6JVcb7Da6jHX7BYeAokDgLrip-RA4SCSMYkoPRx_HkstvDebJ7Ve-GHcqtPDPw555-H9L0wpTrQ_IsvF_QkcfFczKw8yPytKc6eUSOx33j0ODdmxfEjWgPOhSgQxE69B50aA86FKBDA3ToHjp04WgHHdpBhwbovCRfP4yvzy9YOIeD6TSO14xb1BooYl2apDSWKw3rOjWo7GMVr7l20tpUFxAaOqFkqg1sHMIImBqb2DpJj8kQerWvCLUY37tClFwowXWsVOkkt3ktRVZqo08Ib6ey0kGkHs9KmVUtG_GmwumvcPqrOKugjxMSdW2WXqLlwaez1kJVCDJ98FgBoB5o9_of252SJ_tVckaG69XGviGP9XY9bVZvA-5-ACj0qEk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-scale+low+rank+convolutional+autoencoder+for+process+monitoring+of+nonlinear+uncertain+systems&rft.jtitle=Process+safety+and+environmental+protection&rft.au=Yin%2C+Jiawei&rft.au=Yan%2C+Xuefeng&rft.date=2024-08-01&rft.pub=Elsevier+Ltd&rft.issn=0957-5820&rft.eissn=1744-3598&rft.volume=188&rft.spage=53&rft.epage=63&rft_id=info:doi/10.1016%2Fj.psep.2024.05.070&rft.externalDocID=S0957582024005780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5820&client=summon