Dynamic Routing-based Multimodal Neural Network for Multi-sensory Fault Diagnosis of Induction Motor

•Dynamic routing-based multimodal neural network for multi-sensory data fusion.•>Multimodal feature extraction schema is designed to enhance the diagnostic performance.•>Effectiveness is experimentally validated with induction motor fault dataset. Induction motor is the main drive power in mod...

Full description

Saved in:
Bibliographic Details
Published in:Journal of manufacturing systems Vol. 55; pp. 264 - 272
Main Authors: Fu, Peilun, Wang, Jinjiang, Zhang, Xing, Zhang, Laibin, Gao, Robert X.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.04.2020
Subjects:
ISSN:0278-6125, 1878-6642
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Dynamic routing-based multimodal neural network for multi-sensory data fusion.•>Multimodal feature extraction schema is designed to enhance the diagnostic performance.•>Effectiveness is experimentally validated with induction motor fault dataset. Induction motor is the main drive power in modern manufacturing, and timely fault diagnosis of induction motor is of significance to production safety, part quality and maintenance cost control. Data fusion-based diagnosis is attractive for effective utilization of multi-source monitoring information of motors with the development of industrial internet of things. A new multi-sensory fusion model is proposed, named dynamic routing-based multimodal neural network (DRMNN), following the paradigm of multimodal deep learning (MDL). Specifically, the fusion of vibration and stator current signals are investigated. A multimodal feature extraction scheme is designed for dimensionality reduction and invariant features capturing based on multi-source information. Since it is necessary to determine the importance of each modality, a dynamic routing algorithm is introduced in the decision layer to adaptively assign proper weights to different modalities. The effectiveness and robustness of developed DRMNN is demonstrated in the experimental studies performed on a motor test rig. In comparison with similar neural networks without data fusion and other state-of-art fusion techniques, the proposed DRMNN yields better performance.
AbstractList •Dynamic routing-based multimodal neural network for multi-sensory data fusion.•>Multimodal feature extraction schema is designed to enhance the diagnostic performance.•>Effectiveness is experimentally validated with induction motor fault dataset. Induction motor is the main drive power in modern manufacturing, and timely fault diagnosis of induction motor is of significance to production safety, part quality and maintenance cost control. Data fusion-based diagnosis is attractive for effective utilization of multi-source monitoring information of motors with the development of industrial internet of things. A new multi-sensory fusion model is proposed, named dynamic routing-based multimodal neural network (DRMNN), following the paradigm of multimodal deep learning (MDL). Specifically, the fusion of vibration and stator current signals are investigated. A multimodal feature extraction scheme is designed for dimensionality reduction and invariant features capturing based on multi-source information. Since it is necessary to determine the importance of each modality, a dynamic routing algorithm is introduced in the decision layer to adaptively assign proper weights to different modalities. The effectiveness and robustness of developed DRMNN is demonstrated in the experimental studies performed on a motor test rig. In comparison with similar neural networks without data fusion and other state-of-art fusion techniques, the proposed DRMNN yields better performance.
Author Gao, Robert X.
Zhang, Xing
Zhang, Laibin
Fu, Peilun
Wang, Jinjiang
Author_xml – sequence: 1
  givenname: Peilun
  surname: Fu
  fullname: Fu, Peilun
  organization: School of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China
– sequence: 2
  givenname: Jinjiang
  surname: Wang
  fullname: Wang, Jinjiang
  email: jwang@cup.edu.cn
  organization: School of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China
– sequence: 3
  givenname: Xing
  surname: Zhang
  fullname: Zhang, Xing
  organization: PetroChina Pipeline Research & Development Center, Langfang, Hebei 065099, China
– sequence: 4
  givenname: Laibin
  surname: Zhang
  fullname: Zhang, Laibin
  organization: School of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China
– sequence: 5
  givenname: Robert X.
  surname: Gao
  fullname: Gao, Robert X.
  organization: Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
BookMark eNp9kM9KAzEQh4NUsK2-gKe8wK5J9j94kdZqwSqInsNski1ZdxNJUmXf3l3ryUNPM8PwDfP7FmhmrFEIXVMSU0LzmzZuez_EjDASkzQmpDpDc1oWZZTnKZuhOWFTT1l2gRbet4RQlhI2R3I9GOi1wK_2ELTZRzV4JfHu0AXdWwkdflYH91vCt3UfuLHuuI28Mt66AW9gHPFaw95Yrz22Dd4aeRBBW4N3Nlh3ic4b6Ly6-qtL9L65f1s9Rk8vD9vV3VMkEkJCRGXFGgWyaFKV5QTqPK8AMlpmVUElqAxkXieZKCpRFapMC1bnkgIkiazGQJAsETveFc5671TDP53uwQ2cEj554i2fPPHJEycpHz2NUPkPEjrA9HxwoLvT6O0RVWOoL60c90IrI5TUTonApdWn8B-P5og_
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102453
crossref_primary_10_1016_j_iswa_2022_200167
crossref_primary_10_1016_j_inffus_2023_102134
crossref_primary_10_1016_j_jmapro_2022_08_036
crossref_primary_10_3390_s22166075
crossref_primary_10_3390_s23052649
crossref_primary_10_1109_ACCESS_2023_3307770
crossref_primary_10_1109_TTE_2024_3502466
crossref_primary_10_1016_j_measurement_2021_109494
crossref_primary_10_1109_TASE_2022_3141248
crossref_primary_10_1016_j_engappai_2025_110663
crossref_primary_10_1007_s42835_022_01004_7
crossref_primary_10_1109_TII_2023_3248110
crossref_primary_10_1080_08839514_2022_2055396
crossref_primary_10_1016_j_jmsy_2020_07_003
crossref_primary_10_1155_2023_6271241
crossref_primary_10_3390_machines12070495
crossref_primary_10_1016_j_ress_2021_108018
crossref_primary_10_1016_j_jmsy_2021_03_022
crossref_primary_10_1109_ACCESS_2024_3508030
crossref_primary_10_1155_2022_5170734
crossref_primary_10_1109_JSEN_2024_3384516
crossref_primary_10_1109_ACCESS_2024_3508271
crossref_primary_10_1016_j_iswa_2022_200112
crossref_primary_10_1109_ACCESS_2024_3434635
crossref_primary_10_1016_j_eswa_2025_127726
crossref_primary_10_1007_s12541_023_00947_9
crossref_primary_10_1007_s40684_025_00712_5
crossref_primary_10_1016_j_jmsy_2022_02_004
crossref_primary_10_1016_j_jmsy_2023_11_020
crossref_primary_10_1177_01423312231157118
crossref_primary_10_1016_j_measurement_2024_114617
crossref_primary_10_1016_j_jlp_2022_104740
crossref_primary_10_1109_TMECH_2022_3169143
crossref_primary_10_1016_j_measen_2023_100944
crossref_primary_10_1016_j_suscom_2022_100763
crossref_primary_10_1016_j_jmsy_2020_09_001
crossref_primary_10_3390_s25010092
crossref_primary_10_1016_j_jmsy_2020_10_007
crossref_primary_10_1371_journal_pone_0256287
crossref_primary_10_1016_j_ress_2023_109676
crossref_primary_10_1088_1361_6501_ad6e14
crossref_primary_10_1109_TNNLS_2023_3247163
crossref_primary_10_1109_MIE_2023_3265505
crossref_primary_10_1016_j_jmsy_2020_08_010
crossref_primary_10_1007_s00202_024_02420_w
crossref_primary_10_1016_j_engappai_2025_111767
Cites_doi 10.1109/TII.2018.2793246
10.1016/j.ymssp.2018.02.009
10.1109/TMECH.2017.2759791
10.1016/j.ymssp.2013.06.001
10.1016/j.jmsy.2018.01.003
10.1016/j.jmsy.2016.01.003
10.1016/j.ymssp.2016.06.032
10.1109/ACCESS.2018.2822663
10.1016/j.jmsy.2012.06.005
10.1109/TMECH.2017.2728371
10.1109/TIE.2018.2844805
10.1109/TIE.2017.2733438
10.1109/TIA.2017.2655008
10.1016/j.measurement.2017.10.006
10.1016/j.neucom.2015.06.008
10.1109/TFUZZ.2018.2833820
10.1109/TIM.2017.2669947
10.1115/1.4045445
10.1016/j.jmsy.2018.04.005
10.1016/j.jmsy.2017.03.008
10.1109/TII.2017.2672988
10.1016/j.jmsy.2019.02.005
10.1016/j.jmsy.2018.04.007
10.1109/TIE.2006.885131
10.1109/TIE.2019.2891453
10.1016/j.measurement.2014.08.017
10.1109/TIE.2017.2682035
10.1016/j.isatra.2018.12.025
10.1016/j.jmsy.2018.04.008
10.1016/j.jmapro.2017.04.014
10.1109/TPAMI.2016.2537340
10.1016/j.inffus.2017.12.007
10.1109/TIE.2015.2509913
10.1016/j.jmsy.2015.04.008
10.1016/j.ymssp.2004.10.010
10.1109/TIM.2019.2902003
10.1016/j.eswa.2009.06.060
10.1016/j.jmsy.2019.07.005
10.1016/j.jmsy.2013.05.009
10.1016/j.ymssp.2018.03.001
10.1016/j.jmsy.2018.02.004
10.1109/TIE.2017.2745408
10.1109/TIE.2017.2745473
10.1016/j.inffus.2013.10.002
10.1049/iet-epa.2019.0273
10.1109/MSP.2017.2738401
10.1109/TIE.2016.2582729
10.1109/TMECH.2019.2928967
ContentType Journal Article
Copyright 2020 The Society of Manufacturing Engineers
Copyright_xml – notice: 2020 The Society of Manufacturing Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.jmsy.2020.04.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-6642
EndPage 272
ExternalDocumentID 10_1016_j_jmsy_2020_04_009
S0278612520300534
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
3EH
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
7WY
883
88I
8AO
8FE
8FG
8FL
8FW
8G5
8P~
8R4
8R5
9JN
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BEZIV
BGLVJ
BJAXD
BKOJK
BKOMP
BLXMC
BPHCQ
C1A
CCPQU
CS3
D-I
DU5
DWQXO
E3Z
EBS
EFJIC
EFLBG
EJD
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRNLG
FYGXN
G-2
GBLVA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K60
K6V
K6~
K7-
KOM
L6V
LY7
M0C
M0F
M0N
M2O
M2P
M41
M7S
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PQBIZ
PQQKQ
PRG
PROAC
PTHSS
Q2X
Q38
R2-
RIG
ROL
RPZ
RWL
S0X
SDF
SES
SET
SPC
SPCBC
SST
SSZ
T5K
TAE
TN5
U5U
WH7
WUQ
ZHY
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFFHD
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
PHGZM
PHGZT
PQBZA
PQGLB
~HD
ID FETCH-LOGICAL-c300t-1d92fead7f4e560ab669aa5185971dae5ad6b35c79c97e8472b6d1aa33d9001a3
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541121300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-6125
IngestDate Sat Nov 29 07:23:38 EST 2025
Tue Nov 18 22:19:43 EST 2025
Fri Feb 23 02:47:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords data fusion
Induction motor fault diagnosis
dynamic routing algorithm
multimodal deep learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-1d92fead7f4e560ab669aa5185971dae5ad6b35c79c97e8472b6d1aa33d9001a3
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_jmsy_2020_04_009
crossref_citationtrail_10_1016_j_jmsy_2020_04_009
elsevier_sciencedirect_doi_10_1016_j_jmsy_2020_04_009
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Journal of manufacturing systems
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vinayak, Anand, Jagadanand (bib0085) 2020; 14
Tarabini, Scaccabarozzi (bib0185) 2018; 114
Dong, Raed, Li, Xu, Xu (bib0015) 2019; 53
Xia, Li, Xu, Liu, Silva (bib0160) 2018; 23
Jung, Lee, Kwon (bib0030) 2006; 53
Ren, Sun, Cui, Zhang (bib0200) 2018; 48
Wang, Zheng, Wang, Gao (bib0195) 2017; 28
Tuptuk, Hailes (bib0270) 2018; 47
Su, Tao, Jin, Wang, Wang, Wang (bib0110) 2020; 20
Wang, Ma, Zhang, Gao, Wu (bib0005) 2018; 48
Yunusa-Kaltungo, Sinha, Elbhbah (bib0165) 2014; 58
Goodfellow, Bengio, Courville (bib0265) 2016
Zhang, Li, Ding (bib0105) 2019; 95
López-Pérez, Antonino-Daviu (bib0065) 2017; 53
Chen, Song, Guo (bib0145) 2018; 6
Delgado-Arredondo, Morinigo-Sotelo, Osornio-Rios, Avina-Cervantes, Rostro-Gonzalez, Romero-Troncoso (bib0070) 2017; 83
Xu, Liu, Jiang (bib0100) 2020; 69
Chen, Li (bib0240) 2017; 66
Wu, Pigou, Kindermans, Le, Shao, Dambre, Odobez (bib0205) 2016; 38
Irhoumah, Pusca, Lefevre, Mercier, Romary, Demian (bib0225) 2018; 65
Wang, Fu, Zhang, Gao, Zhao (bib0235) 2019; 24
Ji, Wang (bib0020) 2017; 43
Anna, Ottewill, James, Baranowski (bib0090) 2019; 66
Jing, Wang, Zhao, Wang (bib0170) 2017; 17
Ince, Kiranyaz, Eren, Askar, Gabbouj (bib0040) 2016; 63
Zhao, Wang, Yan, Mao, Shen, Wang (bib0140) 2017; 65
Zhao, Yan, Gao (bib0010) 2013; 32
Tian, Morillo, Azarian (bib0095) 2016; 63
Sabour, Frosst, Hinton (bib0155) 2017
Zhang, Li, Gao, Wang, Wen (bib0130) 2018; 48
Ma, Sun, Chen (bib0175) 2018; 14
Salmasi (bib0120) 2017; 64
Jiang, He, Yan, Xie (bib0255) 2019; 66
Sun, Zhao, Yan, Shao, Chen (bib0055) 2017; 13
Singh, Naikan (bib0035) 2018; 110
Shao, Jiang, Zhang, Liang (bib0260) 2018; 65
Zhong, Wong, Yang (bib0210) 2018; 108
Lei, Zuo, He, Zi (bib0215) 2010; 37
Safizadeh, Latifi (bib0125) 2014; 18
Xiao (bib0220) 2017; 17
Li, Sanchez, Zurita, Cerrada, Cabrera, Vasquez (bib0245) 2015; 168
Song, Wang, Chen (bib0075) 2018; 26
Yang, Kim (bib0115) 2006; 20
Jafari-Marandi, Khanzadeh, Tian, Smith, Bian (bib0135) 2019; 51
Ramachandram, Taylor (bib0150) 2017; 34
Charte, Charte, García, Jesus, Herrera (bib0190) 2018; 44
Sharp, Ak, Hedberg (bib0080) 2018; 48
Zadeh (bib0230) 1984; 5
Wang, Liu, Gao, Yan (bib0045) 2012; 31
Wang, Törngren, Onori (bib0025) 2015; 37
Xiong, Zhang, Wan, Liang, Cheng, Liang (bib0180) 2018; 23
Mourtzis, Vlachou, Xanthopoulos, Givehchi, Wang (bib0050) 2016; 39
Wang, Gao, Yan (bib0060) 2014; 46
Ngiam, Khosla, Kim, Nam, Lee, Ng (bib0250) 2011
Ramachandram (10.1016/j.jmsy.2020.04.009_bib0150) 2017; 34
Li (10.1016/j.jmsy.2020.04.009_bib0245) 2015; 168
Xu (10.1016/j.jmsy.2020.04.009_bib0100) 2020; 69
Anna (10.1016/j.jmsy.2020.04.009_bib0090) 2019; 66
Zadeh (10.1016/j.jmsy.2020.04.009_bib0230) 1984; 5
Chen (10.1016/j.jmsy.2020.04.009_bib0145) 2018; 6
Yunusa-Kaltungo (10.1016/j.jmsy.2020.04.009_bib0165) 2014; 58
Zhang (10.1016/j.jmsy.2020.04.009_bib0105) 2019; 95
Wang (10.1016/j.jmsy.2020.04.009_bib0235) 2019; 24
Wang (10.1016/j.jmsy.2020.04.009_bib0045) 2012; 31
Zhao (10.1016/j.jmsy.2020.04.009_bib0010) 2013; 32
Sharp (10.1016/j.jmsy.2020.04.009_bib0080) 2018; 48
Sun (10.1016/j.jmsy.2020.04.009_bib0055) 2017; 13
Wang (10.1016/j.jmsy.2020.04.009_bib0195) 2017; 28
Zhong (10.1016/j.jmsy.2020.04.009_bib0210) 2018; 108
Mourtzis (10.1016/j.jmsy.2020.04.009_bib0050) 2016; 39
Lei (10.1016/j.jmsy.2020.04.009_bib0215) 2010; 37
Xiao (10.1016/j.jmsy.2020.04.009_bib0220) 2017; 17
Wang (10.1016/j.jmsy.2020.04.009_bib0025) 2015; 37
Jing (10.1016/j.jmsy.2020.04.009_bib0170) 2017; 17
Ince (10.1016/j.jmsy.2020.04.009_bib0040) 2016; 63
Irhoumah (10.1016/j.jmsy.2020.04.009_bib0225) 2018; 65
Wang (10.1016/j.jmsy.2020.04.009_bib0060) 2014; 46
Dong (10.1016/j.jmsy.2020.04.009_bib0015) 2019; 53
López-Pérez (10.1016/j.jmsy.2020.04.009_bib0065) 2017; 53
Charte (10.1016/j.jmsy.2020.04.009_bib0190) 2018; 44
Jafari-Marandi (10.1016/j.jmsy.2020.04.009_bib0135) 2019; 51
Xiong (10.1016/j.jmsy.2020.04.009_bib0180) 2018; 23
Yang (10.1016/j.jmsy.2020.04.009_bib0115) 2006; 20
Zhao (10.1016/j.jmsy.2020.04.009_bib0140) 2017; 65
Wang (10.1016/j.jmsy.2020.04.009_bib0005) 2018; 48
Singh (10.1016/j.jmsy.2020.04.009_bib0035) 2018; 110
Chen (10.1016/j.jmsy.2020.04.009_bib0240) 2017; 66
Ngiam (10.1016/j.jmsy.2020.04.009_bib0250) 2011
Su (10.1016/j.jmsy.2020.04.009_bib0110) 2020; 20
Zhang (10.1016/j.jmsy.2020.04.009_bib0130) 2018; 48
Shao (10.1016/j.jmsy.2020.04.009_bib0260) 2018; 65
Goodfellow (10.1016/j.jmsy.2020.04.009_bib0265) 2016
Jiang (10.1016/j.jmsy.2020.04.009_bib0255) 2019; 66
Tuptuk (10.1016/j.jmsy.2020.04.009_bib0270) 2018; 47
Jung (10.1016/j.jmsy.2020.04.009_bib0030) 2006; 53
Sabour (10.1016/j.jmsy.2020.04.009_bib0155) 2017
Delgado-Arredondo (10.1016/j.jmsy.2020.04.009_bib0070) 2017; 83
Safizadeh (10.1016/j.jmsy.2020.04.009_bib0125) 2014; 18
Ji (10.1016/j.jmsy.2020.04.009_bib0020) 2017; 43
Vinayak (10.1016/j.jmsy.2020.04.009_bib0085) 2020; 14
Wu (10.1016/j.jmsy.2020.04.009_bib0205) 2016; 38
Ma (10.1016/j.jmsy.2020.04.009_bib0175) 2018; 14
Tarabini (10.1016/j.jmsy.2020.04.009_bib0185) 2018; 114
Song (10.1016/j.jmsy.2020.04.009_bib0075) 2018; 26
Salmasi (10.1016/j.jmsy.2020.04.009_bib0120) 2017; 64
Tian (10.1016/j.jmsy.2020.04.009_bib0095) 2016; 63
Xia (10.1016/j.jmsy.2020.04.009_bib0160) 2018; 23
Ren (10.1016/j.jmsy.2020.04.009_bib0200) 2018; 48
References_xml – volume: 38
  start-page: 1583
  year: 2016
  end-page: 1597
  ident: bib0205
  article-title: Deep dynamic neural networks for multimodal gesture segmentation and recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2016
  ident: bib0265
  article-title: Deep Learning
– volume: 44
  start-page: 78
  year: 2018
  end-page: 96
  ident: bib0190
  article-title: A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines
  publication-title: Information Fusion
– volume: 53
  start-page: 291
  year: 2019
  end-page: 304
  ident: bib0015
  article-title: A Simple Approach to Multivariate Monitoring of Production Processes with Non-Gaussian Data
  publication-title: Journal of Manufacturing Systems.
– volume: 37
  start-page: 517
  year: 2015
  end-page: 527
  ident: bib0025
  article-title: Current Status and Advancement of Cyber-Physical Systems in Manufacturing
  publication-title: Journal of Manufacturing Systems.
– volume: 53
  start-page: 1842
  year: 2006
  end-page: 1852
  ident: bib0030
  article-title: Online diagnosis of induction motors using MCSA
  publication-title: IEEE Transactions on Industrial Electronics.
– volume: 32
  start-page: 529
  year: 2013
  end-page: 535
  ident: bib0010
  article-title: Dual-scale cascaded adaptive stochastic resonance for rotary machine health monitoring
  publication-title: Journal of Manufacturing Systems.
– volume: 14
  start-page: 1137
  year: 2018
  end-page: 1145
  ident: bib0175
  article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data
  publication-title: IEEE Transactions on Industrial Informatics.
– volume: 65
  start-page: 2727
  year: 2018
  end-page: 2737
  ident: bib0260
  article-title: Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network
  publication-title: IEEE Transactions on Industrial Electronics.
– start-page: 1
  year: 2017
  end-page: 11
  ident: bib0155
  article-title: Dynamic routing between capsules
  publication-title: i2017 Neural Information Processing Systems (NIPS) Conference
– volume: 53
  start-page: 1901
  year: 2017
  end-page: 1908
  ident: bib0065
  article-title: Application of infrared thermography to failure detection in industrial induction motors: case stories
  publication-title: IEEE Transactions on Industry Applications.
– volume: 13
  start-page: 1350
  year: 2017
  end-page: 1359
  ident: bib0055
  article-title: Convolutional discriminative feature learning for induction motor fault diagnosis
  publication-title: IEEE Transactions on Industrial Informatics.
– volume: 66
  start-page: 1693
  year: 2017
  end-page: 1702
  ident: bib0240
  article-title: Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network
  publication-title: IEEE Transactions on Instrumentation and Measurement.
– volume: 110
  start-page: 333
  year: 2018
  end-page: 348
  ident: bib0035
  article-title: Detection of half broken rotor bar fault in vfd driven induction motor drive using motor square current MUSIC analysis
  publication-title: Mechanical Systems and Signal Processing.
– volume: 48
  start-page: 144
  year: 2018
  end-page: 156
  ident: bib0005
  article-title: Deep learning for smart manufacturing: methods and applications
  publication-title: Journal of Manufacturing Systems.
– volume: 20
  start-page: 403
  year: 2006
  end-page: 420
  ident: bib0115
  article-title: Application of Dempster–Shafer theory in fault diagnosis of induction motors using vibration and current signals
  publication-title: Mechanical Systems and Signal Processing.
– volume: 24
  start-page: 2139
  year: 2019
  end-page: 2150
  ident: bib0235
  article-title: Multilevel Information Fusion for Induction Motor Fault Diagnosis
  publication-title: IEEE-ASME Transactions on Mechatronics.
– volume: 17
  year: 2017
  ident: bib0220
  article-title: A novel evidence theory and fuzzy preference approach-based multi-sensor data fusion technique for fault diagnosis
  publication-title: Sensors
– volume: 65
  start-page: 1539
  year: 2017
  end-page: 1548
  ident: bib0140
  article-title: Machine health monitoring using local feature-based gated recurrent unit networks
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 17
  year: 2017
  ident: bib0170
  article-title: An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox
  publication-title: Sensors.
– volume: 47
  start-page: 93
  year: 2018
  end-page: 106
  ident: bib0270
  article-title: Security of Smart Manufacturing Systems
  publication-title: Journal of Manufacturing Systems.
– volume: 6
  start-page: 20195
  year: 2018
  end-page: 20208
  ident: bib0145
  article-title: Attention alignment multimodal LSTM for fine-gained common space learning
  publication-title: IEEE Access
– volume: 108
  start-page: 99
  year: 2018
  end-page: 114
  ident: bib0210
  article-title: Fault diagnosis of rotating machinery based on multiple probabilistic classifiers
  publication-title: Mechanical Systems and Signal Processing.
– volume: 23
  start-page: 101
  year: 2018
  end-page: 110
  ident: bib0160
  article-title: Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks
  publication-title: IEEE/ASME Transactions on Mechatronics.
– volume: 65
  start-page: 2642
  year: 2018
  end-page: 2652
  ident: bib0225
  article-title: Information fusion with belief functions for detection of interturn short-circuit faults in electrical machines using external flux sensors
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 66
  start-page: 9510
  year: 2019
  end-page: 9520
  ident: bib0090
  article-title: A PCA and Two-Stage Bayesian Sensor Fusion Approach for Diagnosing Electrical and Mechanical Faults in Induction Motors
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 95
  start-page: 295
  year: 2019
  end-page: 305
  ident: bib0105
  article-title: Deep residual learning-based fault diagnosis method for rotating machinery
  publication-title: ISA transaction
– volume: 34
  start-page: 96
  year: 2017
  end-page: 108
  ident: bib0150
  article-title: Deep multimodal learning: a survey on recent advances and trends
  publication-title: IEEE Signal Processing Magazine
– volume: 20
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib0110
  article-title: Failure Prognosis of Complex Equipment With Multistream Deep Recurrent Neural Network
  publication-title: Journal of Computing and Information Science in Engineering
– volume: 66
  start-page: 3196
  year: 2019
  end-page: 3207
  ident: bib0255
  article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox
  publication-title: IEEE Transactions on Industrial Electronics.
– volume: 63
  start-page: 1793
  year: 2016
  end-page: 1803
  ident: bib0095
  article-title: Motor Bearing Fault Detection Using Spectral Kurtosis-Based Feature Extraction Coupled With K-Nearest Neighbor Distance Analysis
  publication-title: IEEE Transactions on Industrial Electronic
– start-page: 1
  year: 2011
  end-page: 8
  ident: bib0250
  article-title: Multimodal deep learning
  publication-title: 2011 International Conference on Machine Learning
– volume: 14
  start-page: 82
  year: 2020
  end-page: 90
  ident: bib0085
  article-title: Wavelet-based real-time stator fault detection of inverter-fed induction motor
  publication-title: IET Electric Power Applications.
– volume: 48
  start-page: 34
  year: 2018
  end-page: 50
  ident: bib0130
  article-title: Imbalanced Data Fault Diagnosis of Rotating Machinery Using Synthetic Oversampling and Feature Learning
  publication-title: Journal of Manufacturing Systems.
– volume: 5
  start-page: 81
  year: 1984
  end-page: 83
  ident: bib0230
  article-title: Reviews of books: a mathematical theory of evidence
  publication-title: AI Magazine.
– volume: 23
  start-page: 506
  year: 2018
  end-page: 517
  ident: bib0180
  article-title: Data fusion method based on mutual dimensionless
  publication-title: IEEE/ASME Transactions on Mechatronics.
– volume: 31
  start-page: 380
  year: 2012
  end-page: 387
  ident: bib0045
  article-title: Current envelope analysis for defect identification and diagnosis in induction motors
  publication-title: Journal of Manufacturing Systems.
– volume: 63
  start-page: 7067
  year: 2016
  end-page: 7075
  ident: bib0040
  article-title: Real-time motor fault detection by 1-d convolutional neural networks
  publication-title: IEEE Transactions on Industrial Electronics.
– volume: 39
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib0050
  article-title: Cloud-Based Adaptive Process Planning Considering Availability and Capabilities of Machine Tools
  publication-title: Journal of Manufacturing Systems.
– volume: 37
  start-page: 1419
  year: 2010
  end-page: 1430
  ident: bib0215
  article-title: A multidimensional hybrid intelligent method for gear fault diagnosis
  publication-title: Expert Systems with Applications.
– volume: 83
  start-page: 568
  year: 2017
  end-page: 589
  ident: bib0070
  article-title: Methodology for fault detection in induction motors via sound and vibration signals
  publication-title: Mechanical Systems and Signal Processing.
– volume: 43
  start-page: 187
  year: 2017
  end-page: 194
  ident: bib0020
  article-title: Big Data Analytics Based Fault Prediction for Shop Floor Scheduling
  publication-title: Journal of Manufacturing Systems.
– volume: 58
  start-page: 27
  year: 2014
  end-page: 32
  ident: bib0165
  article-title: An improved data fusion technique for faults diagnosis in rotating machines
  publication-title: Measurement.
– volume: 46
  start-page: 28
  year: 2014
  end-page: 44
  ident: bib0060
  article-title: Multi-scale enveloping order spectrogram for rotating machine health diagnosis
  publication-title: Mechanical Systems and Signal Processing.
– volume: 168
  start-page: 119
  year: 2015
  end-page: 127
  ident: bib0245
  article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
  publication-title: Neurocomputing
– volume: 26
  start-page: 3467
  year: 2018
  end-page: 3478
  ident: bib0075
  article-title: Step-by-step fuzzy diagnosis method for equipment based on symptom extraction and trivalent logic fuzzy diagnosis theory
  publication-title: IEEE Transactions on Fuzzy Systems.
– volume: 18
  start-page: 1
  year: 2014
  end-page: 8
  ident: bib0125
  article-title: Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell
  publication-title: Information fusion
– volume: 28
  start-page: 472
  year: 2017
  end-page: 478
  ident: bib0195
  article-title: A virtual sensing based augmented particle filter for tool condition prognosis
  publication-title: Journal of Manufacturing Processes.
– volume: 69
  start-page: 509
  year: 2020
  end-page: 520
  ident: bib0100
  article-title: Online Fault Diagnosis Method Based on Transfer Convolutional Neural Networks
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 64
  start-page: 6105
  year: 2017
  end-page: 6115
  ident: bib0120
  article-title: A self-healing induction motor drive with model free sensor tampering and sensor fault detection, isolation, and compensation
  publication-title: IEEE Transactions on Industrial Electronics.
– volume: 114
  start-page: 409
  year: 2018
  end-page: 416
  ident: bib0185
  article-title: Uncertainty-based combination of signal processing techniques for the identification of rotor imbalance
  publication-title: Measurement.
– volume: 48
  start-page: 170
  year: 2018
  end-page: 179
  ident: bib0080
  article-title: A Survey of The Advancing Use and Development of Machine Learning in Smart Manufacturing
  publication-title: Journal of Manufacturing Systems.
– volume: 48
  start-page: 71
  year: 2018
  end-page: 77
  ident: bib0200
  article-title: Bearing Remaining Useful Life Prediction Based on Deep Autoencoder and Deep Neural Networks
  publication-title: Journal of Manufacturing Systems.
– volume: 51
  start-page: 29
  year: 2019
  end-page: 41
  ident: bib0135
  article-title: From in-situ Monitoring toward High-Throughput Process Control: Cost-Driven Decision-Making Framework for Laser-Based Additive Manufacturing
  publication-title: Journal of Manufacturing Systems.
– volume: 14
  start-page: 1137
  issue: 3
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0175
  article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data
  publication-title: IEEE Transactions on Industrial Informatics.
  doi: 10.1109/TII.2018.2793246
– volume: 108
  start-page: 99
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0210
  article-title: Fault diagnosis of rotating machinery based on multiple probabilistic classifiers
  publication-title: Mechanical Systems and Signal Processing.
  doi: 10.1016/j.ymssp.2018.02.009
– volume: 23
  start-page: 506
  issue: 2
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0180
  article-title: Data fusion method based on mutual dimensionless
  publication-title: IEEE/ASME Transactions on Mechatronics.
  doi: 10.1109/TMECH.2017.2759791
– volume: 46
  start-page: 28
  issue: 1
  year: 2014
  ident: 10.1016/j.jmsy.2020.04.009_bib0060
  article-title: Multi-scale enveloping order spectrogram for rotating machine health diagnosis
  publication-title: Mechanical Systems and Signal Processing.
  doi: 10.1016/j.ymssp.2013.06.001
– volume: 48
  start-page: 144
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0005
  article-title: Deep learning for smart manufacturing: methods and applications
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2018.01.003
– volume: 39
  start-page: 1
  year: 2016
  ident: 10.1016/j.jmsy.2020.04.009_bib0050
  article-title: Cloud-Based Adaptive Process Planning Considering Availability and Capabilities of Machine Tools
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2016.01.003
– volume: 83
  start-page: 568
  issue: 15
  year: 2017
  ident: 10.1016/j.jmsy.2020.04.009_bib0070
  article-title: Methodology for fault detection in induction motors via sound and vibration signals
  publication-title: Mechanical Systems and Signal Processing.
  doi: 10.1016/j.ymssp.2016.06.032
– volume: 6
  start-page: 20195
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0145
  article-title: Attention alignment multimodal LSTM for fine-gained common space learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2822663
– start-page: 1
  year: 2017
  ident: 10.1016/j.jmsy.2020.04.009_bib0155
  article-title: Dynamic routing between capsules
  publication-title: i2017 Neural Information Processing Systems (NIPS) Conference
– volume: 31
  start-page: 380
  issue: 4
  year: 2012
  ident: 10.1016/j.jmsy.2020.04.009_bib0045
  article-title: Current envelope analysis for defect identification and diagnosis in induction motors
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2012.06.005
– volume: 23
  start-page: 101
  issue: 1
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0160
  article-title: Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks
  publication-title: IEEE/ASME Transactions on Mechatronics.
  doi: 10.1109/TMECH.2017.2728371
– volume: 66
  start-page: 3196
  issue: 4
  year: 2019
  ident: 10.1016/j.jmsy.2020.04.009_bib0255
  article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox
  publication-title: IEEE Transactions on Industrial Electronics.
  doi: 10.1109/TIE.2018.2844805
– volume: 65
  start-page: 1539
  issue: 2
  year: 2017
  ident: 10.1016/j.jmsy.2020.04.009_bib0140
  article-title: Machine health monitoring using local feature-based gated recurrent unit networks
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2017.2733438
– volume: 53
  start-page: 1901
  issue: 3
  year: 2017
  ident: 10.1016/j.jmsy.2020.04.009_bib0065
  article-title: Application of infrared thermography to failure detection in industrial induction motors: case stories
  publication-title: IEEE Transactions on Industry Applications.
  doi: 10.1109/TIA.2017.2655008
– volume: 114
  start-page: 409
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0185
  article-title: Uncertainty-based combination of signal processing techniques for the identification of rotor imbalance
  publication-title: Measurement.
  doi: 10.1016/j.measurement.2017.10.006
– volume: 168
  start-page: 119
  year: 2015
  ident: 10.1016/j.jmsy.2020.04.009_bib0245
  article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.008
– volume: 26
  start-page: 3467
  issue: 6
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0075
  article-title: Step-by-step fuzzy diagnosis method for equipment based on symptom extraction and trivalent logic fuzzy diagnosis theory
  publication-title: IEEE Transactions on Fuzzy Systems.
  doi: 10.1109/TFUZZ.2018.2833820
– volume: 66
  start-page: 1693
  issue: 7
  year: 2017
  ident: 10.1016/j.jmsy.2020.04.009_bib0240
  article-title: Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network
  publication-title: IEEE Transactions on Instrumentation and Measurement.
  doi: 10.1109/TIM.2017.2669947
– volume: 20
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.jmsy.2020.04.009_bib0110
  article-title: Failure Prognosis of Complex Equipment With Multistream Deep Recurrent Neural Network
  publication-title: Journal of Computing and Information Science in Engineering
  doi: 10.1115/1.4045445
– volume: 48
  start-page: 34
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0130
  article-title: Imbalanced Data Fault Diagnosis of Rotating Machinery Using Synthetic Oversampling and Feature Learning
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2018.04.005
– volume: 43
  start-page: 187
  year: 2017
  ident: 10.1016/j.jmsy.2020.04.009_bib0020
  article-title: Big Data Analytics Based Fault Prediction for Shop Floor Scheduling
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2017.03.008
– volume: 13
  start-page: 1350
  issue: 3
  year: 2017
  ident: 10.1016/j.jmsy.2020.04.009_bib0055
  article-title: Convolutional discriminative feature learning for induction motor fault diagnosis
  publication-title: IEEE Transactions on Industrial Informatics.
  doi: 10.1109/TII.2017.2672988
– volume: 51
  start-page: 29
  year: 2019
  ident: 10.1016/j.jmsy.2020.04.009_bib0135
  article-title: From in-situ Monitoring toward High-Throughput Process Control: Cost-Driven Decision-Making Framework for Laser-Based Additive Manufacturing
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2019.02.005
– volume: 47
  start-page: 93
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0270
  article-title: Security of Smart Manufacturing Systems
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2018.04.007
– volume: 53
  start-page: 1842
  issue: 6
  year: 2006
  ident: 10.1016/j.jmsy.2020.04.009_bib0030
  article-title: Online diagnosis of induction motors using MCSA
  publication-title: IEEE Transactions on Industrial Electronics.
  doi: 10.1109/TIE.2006.885131
– volume: 66
  start-page: 9510
  issue: 12
  year: 2019
  ident: 10.1016/j.jmsy.2020.04.009_bib0090
  article-title: A PCA and Two-Stage Bayesian Sensor Fusion Approach for Diagnosing Electrical and Mechanical Faults in Induction Motors
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2019.2891453
– volume: 58
  start-page: 27
  year: 2014
  ident: 10.1016/j.jmsy.2020.04.009_bib0165
  article-title: An improved data fusion technique for faults diagnosis in rotating machines
  publication-title: Measurement.
  doi: 10.1016/j.measurement.2014.08.017
– volume: 64
  start-page: 6105
  issue: 8
  year: 2017
  ident: 10.1016/j.jmsy.2020.04.009_bib0120
  article-title: A self-healing induction motor drive with model free sensor tampering and sensor fault detection, isolation, and compensation
  publication-title: IEEE Transactions on Industrial Electronics.
  doi: 10.1109/TIE.2017.2682035
– start-page: 1
  year: 2011
  ident: 10.1016/j.jmsy.2020.04.009_bib0250
  article-title: Multimodal deep learning
  publication-title: 2011 International Conference on Machine Learning
– volume: 95
  start-page: 295
  year: 2019
  ident: 10.1016/j.jmsy.2020.04.009_bib0105
  article-title: Deep residual learning-based fault diagnosis method for rotating machinery
  publication-title: ISA transaction
  doi: 10.1016/j.isatra.2018.12.025
– volume: 48
  start-page: 71
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0200
  article-title: Bearing Remaining Useful Life Prediction Based on Deep Autoencoder and Deep Neural Networks
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2018.04.008
– volume: 28
  start-page: 472
  issue: 3
  year: 2017
  ident: 10.1016/j.jmsy.2020.04.009_bib0195
  article-title: A virtual sensing based augmented particle filter for tool condition prognosis
  publication-title: Journal of Manufacturing Processes.
  doi: 10.1016/j.jmapro.2017.04.014
– volume: 38
  start-page: 1583
  issue: 8
  year: 2016
  ident: 10.1016/j.jmsy.2020.04.009_bib0205
  article-title: Deep dynamic neural networks for multimodal gesture segmentation and recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2537340
– volume: 44
  start-page: 78
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0190
  article-title: A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.12.007
– volume: 63
  start-page: 1793
  issue: 3
  year: 2016
  ident: 10.1016/j.jmsy.2020.04.009_bib0095
  article-title: Motor Bearing Fault Detection Using Spectral Kurtosis-Based Feature Extraction Coupled With K-Nearest Neighbor Distance Analysis
  publication-title: IEEE Transactions on Industrial Electronic
  doi: 10.1109/TIE.2015.2509913
– volume: 37
  start-page: 517
  year: 2015
  ident: 10.1016/j.jmsy.2020.04.009_bib0025
  article-title: Current Status and Advancement of Cyber-Physical Systems in Manufacturing
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2015.04.008
– volume: 20
  start-page: 403
  issue: 2
  year: 2006
  ident: 10.1016/j.jmsy.2020.04.009_bib0115
  article-title: Application of Dempster–Shafer theory in fault diagnosis of induction motors using vibration and current signals
  publication-title: Mechanical Systems and Signal Processing.
  doi: 10.1016/j.ymssp.2004.10.010
– volume: 69
  start-page: 509
  issue: 2
  year: 2020
  ident: 10.1016/j.jmsy.2020.04.009_bib0100
  article-title: Online Fault Diagnosis Method Based on Transfer Convolutional Neural Networks
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2019.2902003
– volume: 5
  start-page: 81
  issue: 3
  year: 1984
  ident: 10.1016/j.jmsy.2020.04.009_bib0230
  article-title: Reviews of books: a mathematical theory of evidence
  publication-title: AI Magazine.
– volume: 17
  issue: 2504
  year: 2017
  ident: 10.1016/j.jmsy.2020.04.009_bib0220
  article-title: A novel evidence theory and fuzzy preference approach-based multi-sensor data fusion technique for fault diagnosis
  publication-title: Sensors
– volume: 37
  start-page: 1419
  issue: 2
  year: 2010
  ident: 10.1016/j.jmsy.2020.04.009_bib0215
  article-title: A multidimensional hybrid intelligent method for gear fault diagnosis
  publication-title: Expert Systems with Applications.
  doi: 10.1016/j.eswa.2009.06.060
– year: 2016
  ident: 10.1016/j.jmsy.2020.04.009_bib0265
– volume: 53
  start-page: 291
  year: 2019
  ident: 10.1016/j.jmsy.2020.04.009_bib0015
  article-title: A Simple Approach to Multivariate Monitoring of Production Processes with Non-Gaussian Data
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2019.07.005
– volume: 32
  start-page: 529
  issue: 4
  year: 2013
  ident: 10.1016/j.jmsy.2020.04.009_bib0010
  article-title: Dual-scale cascaded adaptive stochastic resonance for rotary machine health monitoring
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2013.05.009
– volume: 110
  start-page: 333
  issue: 15
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0035
  article-title: Detection of half broken rotor bar fault in vfd driven induction motor drive using motor square current MUSIC analysis
  publication-title: Mechanical Systems and Signal Processing.
  doi: 10.1016/j.ymssp.2018.03.001
– volume: 48
  start-page: 170
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0080
  article-title: A Survey of The Advancing Use and Development of Machine Learning in Smart Manufacturing
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2018.02.004
– volume: 65
  start-page: 2642
  issue: 3
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0225
  article-title: Information fusion with belief functions for detection of interturn short-circuit faults in electrical machines using external flux sensors
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2017.2745408
– volume: 65
  start-page: 2727
  issue: 3
  year: 2018
  ident: 10.1016/j.jmsy.2020.04.009_bib0260
  article-title: Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network
  publication-title: IEEE Transactions on Industrial Electronics.
  doi: 10.1109/TIE.2017.2745473
– volume: 18
  start-page: 1
  year: 2014
  ident: 10.1016/j.jmsy.2020.04.009_bib0125
  article-title: Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell
  publication-title: Information fusion
  doi: 10.1016/j.inffus.2013.10.002
– volume: 17
  issue: 144
  year: 2017
  ident: 10.1016/j.jmsy.2020.04.009_bib0170
  article-title: An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox
  publication-title: Sensors.
– volume: 14
  start-page: 82
  issue: 1
  year: 2020
  ident: 10.1016/j.jmsy.2020.04.009_bib0085
  article-title: Wavelet-based real-time stator fault detection of inverter-fed induction motor
  publication-title: IET Electric Power Applications.
  doi: 10.1049/iet-epa.2019.0273
– volume: 34
  start-page: 96
  issue: 6
  year: 2017
  ident: 10.1016/j.jmsy.2020.04.009_bib0150
  article-title: Deep multimodal learning: a survey on recent advances and trends
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2017.2738401
– volume: 63
  start-page: 7067
  issue: 11
  year: 2016
  ident: 10.1016/j.jmsy.2020.04.009_bib0040
  article-title: Real-time motor fault detection by 1-d convolutional neural networks
  publication-title: IEEE Transactions on Industrial Electronics.
  doi: 10.1109/TIE.2016.2582729
– volume: 24
  start-page: 2139
  issue: 5
  year: 2019
  ident: 10.1016/j.jmsy.2020.04.009_bib0235
  article-title: Multilevel Information Fusion for Induction Motor Fault Diagnosis
  publication-title: IEEE-ASME Transactions on Mechatronics.
  doi: 10.1109/TMECH.2019.2928967
SSID ssj0012402
Score 2.461273
Snippet •Dynamic routing-based multimodal neural network for multi-sensory data fusion.•>Multimodal feature extraction schema is designed to enhance the diagnostic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 264
SubjectTerms data fusion
dynamic routing algorithm
Induction motor fault diagnosis
multimodal deep learning
Title Dynamic Routing-based Multimodal Neural Network for Multi-sensory Fault Diagnosis of Induction Motor
URI https://dx.doi.org/10.1016/j.jmsy.2020.04.009
Volume 55
WOSCitedRecordID wos000541121300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-6642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012402
  issn: 0278-6125
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE-1vLQHbpEre70P77GCVlBBhUQRuVnrtY0SJU7VJFX7S_p3mdldOw6NKkDiYsebrL2a-TIznp0HIe-MKOrEahEltcwiLrmOMqNMZKwxMqt5UQvrmk2o09NsNNJfB4ObNhfmcqqaJru60uf_ldUwBszG1Nm_YHd3UxiAz8B0OALb4fhHjP_ge8wPMdYH9FKEeqocukTb2bwEjmA9DndyAeAuztB9Gy3glRa33I8NXIIwdEF4vl4JdvjwTcW_zH194m0m7cw0K8yU8KmPi14xdETIyscDj6erDpA_grf6ZNxMAKc_b7mxR-Mtg5_NuAgFw4O_gsW9MBfnRGsTadZRSyjrGLzMorHl1ZKXxRmOSb4hrIXoS1tfAD0obuZ7AN3SCd49MTmYzBbXB7giV9s21msN2MUlfsN14DJYjGX8U36P7DIlNIjL3cNPR6OTboMKN6Wc-y6sO-Rj-dDB35-03ebp2TFnj8mjwC166IHzhAyq5il52CtL-YyUAUJ0A0J0DSHqIUQDhChAiG5AiDoI0Q5CdF7TDkLUQeg5-X58dPb-YxS6cUQWaLGMklKzGuSOqnkFZrIppNTGCLD3tEpKUwlTyiIVVmmrVQVGDytkmRiTpqUGgpn0Bdlp5k21R6hklpeMV1UVZ7yQMd5KccOUia2wPNsnSUuv3IZS9dgxZZq3MYmTHGmcI43zmOdA430y7Oac-0Itd_5atGzIg6npTcgcUHPHvJf_OO8VebD-L7wmO8uLVfWG3LeXy_Hi4m0A1y_Kuac3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Routing-based+Multimodal+Neural+Network+for+Multi-sensory+Fault+Diagnosis+of+Induction+Motor&rft.jtitle=Journal+of+manufacturing+systems&rft.au=Fu%2C+Peilun&rft.au=Wang%2C+Jinjiang&rft.au=Zhang%2C+Xing&rft.au=Zhang%2C+Laibin&rft.date=2020-04-01&rft.pub=Elsevier+Ltd&rft.issn=0278-6125&rft.eissn=1878-6642&rft.volume=55&rft.spage=264&rft.epage=272&rft_id=info:doi/10.1016%2Fj.jmsy.2020.04.009&rft.externalDocID=S0278612520300534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6125&client=summon