The runner-root algorithm: A metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature
•A new optimization algorithm inspired by the plants propagated through runners is proposed.•Global search with random large steps is performed at all iterations (exploration).•Local search with random small steps (exploitation) is performed only if global search fails.•Local search is performed by...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 33; s. 292 - 303 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.08.2015
|
| Témata: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A new optimization algorithm inspired by the plants propagated through runners is proposed.•Global search with random large steps is performed at all iterations (exploration).•Local search with random small steps (exploitation) is performed only if global search fails.•Local search is performed by roots and root hairs.•It does not necessarily apply a same number of function evaluations at all iterations.
This paper proposes a new metaheuristic, the runner-root algorithm (RRA), inspired by the function of runners and roots of some plants in nature. The plants which are propagated through runners look for water resources and minerals by developing runners and roots (as well as root hairs). The first tool helps the plant for search around with random big steps while the second one is appropriate for search around with small steps. Moreover, the plant which is placed at a very good location by chance spreads in a larger area through its longer runners and roots. Similarly, the proposed algorithm is equipped with two tools for exploration: random jumps with big steps, which model the function of runners in nature, and a re-initialization strategy in case of trapping in local optima, which redistributes the computational agents randomly in the domain of problem and models the propagation of plant in a larger area in case of being located in a good position. Exploitation in RRA is performed by the so-called roots and root hairs which respectively apply random large and small changes to the variables of the best computational agent separately (in case of stagnation). Performance of the proposed algorithm is examined by applying it to the standard CEC’ 2005 benchmark problems and then comparing the results with 9 state-of-the-art algorithms using nonparametric methods. |
|---|---|
| AbstractList | •A new optimization algorithm inspired by the plants propagated through runners is proposed.•Global search with random large steps is performed at all iterations (exploration).•Local search with random small steps (exploitation) is performed only if global search fails.•Local search is performed by roots and root hairs.•It does not necessarily apply a same number of function evaluations at all iterations.
This paper proposes a new metaheuristic, the runner-root algorithm (RRA), inspired by the function of runners and roots of some plants in nature. The plants which are propagated through runners look for water resources and minerals by developing runners and roots (as well as root hairs). The first tool helps the plant for search around with random big steps while the second one is appropriate for search around with small steps. Moreover, the plant which is placed at a very good location by chance spreads in a larger area through its longer runners and roots. Similarly, the proposed algorithm is equipped with two tools for exploration: random jumps with big steps, which model the function of runners in nature, and a re-initialization strategy in case of trapping in local optima, which redistributes the computational agents randomly in the domain of problem and models the propagation of plant in a larger area in case of being located in a good position. Exploitation in RRA is performed by the so-called roots and root hairs which respectively apply random large and small changes to the variables of the best computational agent separately (in case of stagnation). Performance of the proposed algorithm is examined by applying it to the standard CEC’ 2005 benchmark problems and then comparing the results with 9 state-of-the-art algorithms using nonparametric methods. |
| Author | Merrikh-Bayat, F. |
| Author_xml | – sequence: 1 givenname: F. surname: Merrikh-Bayat fullname: Merrikh-Bayat, F. email: f.bayat@znu.ac.ir organization: Department of Electrical and Computer Engineering, University of Zanjan, Zanjan, Iran |
| BookMark | eNp9kEtKBDEQhoMo-LyAq1ygx6TTj0TciPgCwY2uQzpdmcnQnTRJWtCDeF7T46xcCAVVBfXVX_WfokPnHSB0ScmKEtpcbVcqer0qCa1XpMrBD9AJ5W1ZiIbTw1zXDS8qUTXH6DTGLcmQKPkJ-n7bAA6zcxCK4H3Calj7YNNmvMa3eISkNjAHG5PV2PiAox8-rFvj2dnR92rAyvV4nIe0b_2UK_ulkvUOT8F3A4wRWxcnG6DH3edeLO7ARTFib_A0KJeWOexUmgOcoyOjhggX-3yG3h_u3-6eipfXx-e725dCM0JSQfvGtIYZwuqSVqLuOGuFUA10nQDTVkIwxYxq20r1tGNaia5idc1pzxnkxM4Q_92rg48xgJHapt3xKSg7SErk4q_cysVfufgrSZWDZ7T8g07Bjip8_g_d_EKQn_qwEGTUFpyGPtujk-y9_Q__ARSKmyY |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2020_106412 crossref_primary_10_1016_j_cma_2021_114194 crossref_primary_10_1088_1757_899X_643_1_012054 crossref_primary_10_3390_a16030134 crossref_primary_10_1007_s10462_022_10340_z crossref_primary_10_1007_s00366_021_01460_1 crossref_primary_10_1109_ACCESS_2021_3111121 crossref_primary_10_1016_j_aei_2024_102516 crossref_primary_10_1007_s11227_023_05579_4 crossref_primary_10_1016_j_infrared_2018_08_007 crossref_primary_10_1177_0142331215603446 crossref_primary_10_1155_2022_3991870 crossref_primary_10_1007_s10586_025_05367_0 crossref_primary_10_1016_j_foodchem_2020_127681 crossref_primary_10_1016_j_asoc_2019_105517 crossref_primary_10_1007_s10462_017_9587_x crossref_primary_10_1007_s00521_020_05112_1 crossref_primary_10_1134_S0005117921060011 crossref_primary_10_1007_s00500_022_06903_5 crossref_primary_10_1016_j_cma_2022_114901 crossref_primary_10_1016_j_measurement_2018_10_018 crossref_primary_10_3846_jcem_2024_21356 crossref_primary_10_1007_s42979_023_02356_1 crossref_primary_10_1016_j_jnca_2025_104172 crossref_primary_10_3390_biomimetics10050343 crossref_primary_10_3390_drones7070427 crossref_primary_10_3233_KES_180376 crossref_primary_10_1007_s10586_025_05328_7 crossref_primary_10_1109_ACCESS_2021_3072380 crossref_primary_10_1007_s00500_019_04443_z crossref_primary_10_1007_s00521_020_05475_5 crossref_primary_10_1016_j_advengsoft_2020_102804 crossref_primary_10_22581_muet1982_2002_01 crossref_primary_10_1007_s00521_021_06175_4 crossref_primary_10_1109_ACCESS_2022_3204046 crossref_primary_10_1007_s40430_022_03911_2 crossref_primary_10_1007_s11157_023_09671_2 crossref_primary_10_1016_j_asoc_2019_106018 crossref_primary_10_1016_j_asoc_2019_105720 crossref_primary_10_1186_s43067_020_00026_3 crossref_primary_10_1002_jnm_2828 crossref_primary_10_1016_j_matcom_2022_12_027 crossref_primary_10_1016_j_asoc_2016_12_018 crossref_primary_10_1016_j_matcom_2019_06_017 crossref_primary_10_1109_TMC_2023_3291130 crossref_primary_10_1007_s12559_020_09730_8 crossref_primary_10_1016_j_jocs_2025_102686 crossref_primary_10_1007_s00521_017_3049_x crossref_primary_10_1007_s10489_025_06320_9 crossref_primary_10_1007_s11227_024_06899_9 crossref_primary_10_1007_s00521_020_04789_8 crossref_primary_10_1007_s10462_020_09952_0 crossref_primary_10_1007_s10462_023_10470_y crossref_primary_10_3233_JIFS_201075 crossref_primary_10_1007_s11063_017_9750_z crossref_primary_10_1002_oik_11103 crossref_primary_10_1007_s13369_019_04051_x crossref_primary_10_1002_nme_6573 crossref_primary_10_1080_03610926_2020_1783559 crossref_primary_10_1016_j_engappai_2017_04_018 crossref_primary_10_1007_s10489_018_1325_9 crossref_primary_10_1016_j_physa_2019_122650 crossref_primary_10_1007_s11227_020_03385_w crossref_primary_10_1080_0952813X_2020_1764635 crossref_primary_10_1109_TPDS_2024_3418620 crossref_primary_10_1007_s10489_017_0903_6 crossref_primary_10_1109_ACCESS_2020_3042763 crossref_primary_10_1007_s10462_016_9486_6 crossref_primary_10_1016_j_asoc_2017_11_043 crossref_primary_10_3390_en12010106 crossref_primary_10_1007_s11831_020_09412_6 crossref_primary_10_1007_s41403_020_00185_9 crossref_primary_10_1016_j_aei_2023_102004 crossref_primary_10_1007_s13748_019_00191_1 crossref_primary_10_1007_s11042_018_5815_x crossref_primary_10_1109_ACCESS_2020_3022531 crossref_primary_10_1007_s00500_019_04333_4 crossref_primary_10_1016_j_cie_2019_106090 crossref_primary_10_1007_s10462_017_9605_z crossref_primary_10_1155_2022_4211707 crossref_primary_10_1515_freq_2024_0307 crossref_primary_10_1016_j_matcom_2021_12_010 |
| Cites_doi | 10.1016/j.ejor.2004.08.009 10.1016/j.asoc.2014.02.009 10.1016/j.asoc.2007.05.007 10.1061/(ASCE)0733-9496(2003)129:3(210) 10.1016/j.ins.2012.05.009 10.1126/science.220.4598.671 10.1016/j.amc.2009.03.090 10.1145/2480741.2480752 10.1016/B978-0-08-094832-4.50018-0 10.1016/j.cad.2010.12.015 10.1016/j.ins.2014.08.040 10.1007/s10898-007-9149-x 10.1109/TEVC.2006.880326 10.1016/S0967-0661(02)00081-3 10.1016/S0045-7825(01)00323-1 10.1162/evco.1993.1.1.25 10.1109/TEVC.2007.896686 10.1016/j.swevo.2011.02.002 10.1109/4235.585893 10.1109/MCS.2002.1004010 10.1016/j.asoc.2013.05.010 10.1109/MCI.2006.329691 10.1007/BF00940812 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier B.V. |
| Copyright_xml | – notice: 2015 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2015.04.048 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 303 |
| ExternalDocumentID | 10_1016_j_asoc_2015_04_048 S1568494615002756 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-1d6f7f3f03521495b83799a6ebb9ef74993a3fa774ad1b3ca9b435581d83e5813 |
| ISICitedReferencesCount | 88 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000355262900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 20:54:00 EST 2025 Sat Nov 29 03:05:25 EST 2025 Fri Feb 23 02:28:01 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Meta-heuristic optimization algorithm Robust control Runner Root Nonparametric statistical analysis Nature inspired |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-1d6f7f3f03521495b83799a6ebb9ef74993a3fa774ad1b3ca9b435581d83e5813 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2015_04_048 crossref_primary_10_1016_j_asoc_2015_04_048 elsevier_sciencedirect_doi_10_1016_j_asoc_2015_04_048 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08-01 |
| PublicationDateYYYYMMDD | 2015-08-01 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Eusuff, Lansey (bib0265) 2003; 129 Dorigo, Birattari, Stutzle (bib0225) 2006; 1 Karaboga, Basturk (bib0235) 2007; 39 AlRashidi, El-Hawary (bib0290) 2009; 13 Cerny (bib0240) 1985; 45 Coello Coello (bib0325) 2002; 191 Črepinšek, Liu, Mernik (bib0390) 2012; 212 del Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (bib0285) 2008; 12 Mülenbein, Schlierkamp-Voosen (bib0350) 1993; 1 Passino (bib0255) 2002; 22 Fleming, Purshouse (bib0295) 2002; 10 Holland (bib0205) 1975 Kennedy, Eberhart (bib0215) 1995 Rao, Savsani, Vakharia (bib0250) 2011; 43 Qin, Suganthan (bib0275) 2005 Herrera, Lozano, Molina (bib0360) 2006; 169 Karaboga, Akay (bib0375) 2009; 214 Mernik, Liu, Karaboga, Črepinšek (bib0385) 2015; 291 Skogestad, Postlethwaite (bib0370) 2005 De Castro, Timmis (bib0260) 2002 Eberhart, Shi (bib0210) 2001 Derrac, García, Molina, Herrera (bib0315) 2011; 1 Corder, Foreman (bib0310) 2014 Suganthan, Hansen, Liang, Deb, Chen, Auger, Tiwari (bib0305) 2005 Auger, Hansen (bib0335) 2005 Rechenberg (bib0200) 1965 Karaboga, Basturk (bib0230) 2008; 8 Črepinšek, Liu, Mernik (bib0380) 2014; 19 Črepinšek, Liu, Mernik (bib0330) 2013; 45 Price, Rainer, Lampinen (bib0270) 2005 Salhi, Fraga (bib0300) 2011 Dorigo, Birattari (bib0220) 2010 Fernandes, Rosa (bib0345) 2001 Atashpaz-Gargari, Lucas (bib0280) 2007 Wolpert, Macready (bib0320) 1997; 1 Laguna, Martí (bib0355) 2003 Liu, Mernik, Hrnčič, Črepinšek (bib0365) 2013; 13 Eshelman, Schaffer (bib0340) 1993 Kirkpatrick, Gellat, Vecchi (bib0245) 1983; 220 Dorigo (10.1016/j.asoc.2015.04.048_bib0220) 2010 Cerny (10.1016/j.asoc.2015.04.048_bib0240) 1985; 45 Karaboga (10.1016/j.asoc.2015.04.048_bib0375) 2009; 214 Črepinšek (10.1016/j.asoc.2015.04.048_bib0330) 2013; 45 Fleming (10.1016/j.asoc.2015.04.048_bib0295) 2002; 10 Kirkpatrick (10.1016/j.asoc.2015.04.048_bib0245) 1983; 220 Eberhart (10.1016/j.asoc.2015.04.048_bib0210) 2001 Atashpaz-Gargari (10.1016/j.asoc.2015.04.048_bib0280) 2007 Auger (10.1016/j.asoc.2015.04.048_bib0335) 2005 Mülenbein (10.1016/j.asoc.2015.04.048_bib0350) 1993; 1 Liu (10.1016/j.asoc.2015.04.048_bib0365) 2013; 13 Wolpert (10.1016/j.asoc.2015.04.048_bib0320) 1997; 1 Črepinšek (10.1016/j.asoc.2015.04.048_bib0380) 2014; 19 Rao (10.1016/j.asoc.2015.04.048_bib0250) 2011; 43 De Castro (10.1016/j.asoc.2015.04.048_bib0260) 2002 Kennedy (10.1016/j.asoc.2015.04.048_bib0215) 1995 Fernandes (10.1016/j.asoc.2015.04.048_bib0345) 2001 Corder (10.1016/j.asoc.2015.04.048_bib0310) 2014 Coello Coello (10.1016/j.asoc.2015.04.048_bib0325) 2002; 191 AlRashidi (10.1016/j.asoc.2015.04.048_bib0290) 2009; 13 Eshelman (10.1016/j.asoc.2015.04.048_bib0340) 1993 Dorigo (10.1016/j.asoc.2015.04.048_bib0225) 2006; 1 Price (10.1016/j.asoc.2015.04.048_bib0270) 2005 Laguna (10.1016/j.asoc.2015.04.048_bib0355) 2003 Derrac (10.1016/j.asoc.2015.04.048_bib0315) 2011; 1 Eusuff (10.1016/j.asoc.2015.04.048_bib0265) 2003; 129 Rechenberg (10.1016/j.asoc.2015.04.048_bib0200) 1965 Herrera (10.1016/j.asoc.2015.04.048_bib0360) 2006; 169 Salhi (10.1016/j.asoc.2015.04.048_bib0300) 2011 Holland (10.1016/j.asoc.2015.04.048_bib0205) 1975 Karaboga (10.1016/j.asoc.2015.04.048_bib0235) 2007; 39 Črepinšek (10.1016/j.asoc.2015.04.048_bib0390) 2012; 212 Qin (10.1016/j.asoc.2015.04.048_bib0275) 2005 Suganthan (10.1016/j.asoc.2015.04.048_bib0305) 2005 Mernik (10.1016/j.asoc.2015.04.048_bib0385) 2015; 291 Passino (10.1016/j.asoc.2015.04.048_bib0255) 2002; 22 del Valle (10.1016/j.asoc.2015.04.048_bib0285) 2008; 12 Skogestad (10.1016/j.asoc.2015.04.048_bib0370) 2005 Karaboga (10.1016/j.asoc.2015.04.048_bib0230) 2008; 8 |
| References_xml | – start-page: 60 year: 2001 end-page: 66 ident: bib0345 article-title: A study of non-random matching and varying population size in genetic algorithm using a royal road function publication-title: Proceedings of the 2001 Congress on Evolutionary Computation – start-page: 1942 year: 1995 end-page: 1948 ident: bib0215 article-title: Particle swarm optimization publication-title: Proceedings of IV IEEE International Conference on Neural Networks – start-page: 1 year: 2011 end-page: 8 ident: bib0300 article-title: Nature-inspired optimisation approaches and the new plant propagation algorithm publication-title: Proceedings of the International Conference on Numerical Analysis and Optimization (ICeMATH 2011), vol. 1 – volume: 45 start-page: 1 year: 2013 end-page: 33 ident: bib0330 article-title: Exploration and exploitation in evolutionary algorithms: a survey publication-title: ACM Comput. Surv. – year: 2003 ident: bib0355 article-title: Scatter Search. Methodology and Implementation in C – volume: 212 start-page: 79 year: 2012 end-page: 93 ident: bib0390 article-title: A note on teaching–learning-based optimization algorithm publication-title: Inf. Sci. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib0315 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – year: 2005 ident: bib0370 article-title: Multivariable Feedback Control – volume: 13 start-page: 3792 year: 2013 end-page: 3805 ident: bib0365 article-title: A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting Sovova's mass transfer model publication-title: Appl. Soft Comput. – year: 2005 ident: bib0270 article-title: Differential Evolution: A Practical Approach to Global Optimization – year: 2002 ident: bib0260 article-title: Artificial Immune Systems: A New Computational Intelligence Approach – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: bib0235 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. – year: 2014 ident: bib0310 article-title: Nonparametric Statistics: A Step-by-Step Approach – volume: 169 start-page: 450 year: 2006 end-page: 476 ident: bib0360 article-title: Continuous scatter search: an analysis of the integration of some combination methods and improvement strategies publication-title: Eur. J. Oper. Res. – start-page: 81 year: 2001 end-page: 86 ident: bib0210 article-title: Particle swarm optimization: developments, applications and resources publication-title: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1 – start-page: 1785 year: 2005 end-page: 1791 ident: bib0275 article-title: Self-adaptive differential evolution algorithm for numerical optimization publication-title: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 2 – year: 2005 ident: bib0305 article-title: Problem definitions and evaluation criteria for the CEC’2005 special session on real parameter optimization – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: bib0245 article-title: Optimization by simulated annealing publication-title: Science – volume: 10 start-page: 1223 year: 2002 end-page: 1241 ident: bib0295 article-title: Evolutionary algorithms in control systems engineering: a survey publication-title: Control Eng. Pract. – volume: 19 start-page: 161 year: 2014 end-page: 170 ident: bib0380 article-title: Replication and comparison of computational experiments in applied evolutionary computing: common pitfalls and guidelines to avoid them publication-title: Appl. Soft Comput. – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: bib0250 article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. – volume: 22 start-page: 52 year: 2002 end-page: 67 ident: bib0255 article-title: Biomimicry of bacterial foraging for distributed optimization and control publication-title: IEEE Control Syst. Mag. – volume: 45 start-page: 41 year: 1985 end-page: 51 ident: bib0240 article-title: A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm publication-title: J. Optim. Theory Appl. – volume: 291 start-page: 115 year: 2015 end-page: 127 ident: bib0385 article-title: On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation publication-title: Inf. Sci. – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: bib0375 article-title: A comparative study of Artificial Bee Colony algorithm publication-title: Appl. Math. Comput. – volume: 129 start-page: 210 year: 2003 end-page: 225 ident: bib0265 article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm publication-title: J. Water Resour. Plan. Manag. – start-page: 187 year: 1993 end-page: 202 ident: bib0340 article-title: Real-coded genetic algorithms and interval schemata publication-title: Foundations of Genetic Algorithms – start-page: 4661 year: 2007 end-page: 4667 ident: bib0280 article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition publication-title: Proceedings of the IEEE Congress on Evolutionary Computation – volume: 13 start-page: 913 year: 2009 end-page: 918 ident: bib0290 article-title: A survey of particle swarm optimization applications in electric power systems publication-title: IEEE Trans. Evol. Comput. – start-page: 36 year: 2010 end-page: 39 ident: bib0220 article-title: Ant colony optimization publication-title: Encyclopedia of Machine Learning – volume: 8 start-page: 687 year: 2008 end-page: 697 ident: bib0230 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. – volume: 12 start-page: 171 year: 2008 end-page: 195 ident: bib0285 article-title: Particle swarm optimization: basic concepts, variants and applications in power systems publication-title: IEEE Trans. Evol. Comput. – volume: 191 start-page: 1245 year: 2002 end-page: 1287 ident: bib0325 article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art publication-title: Comput. Methods Appl. Mech. Eng. – start-page: 1769 year: 2005 end-page: 1776 ident: bib0335 article-title: A restart CMA evolution strategy with increasing population size publication-title: Proceedings of the 2005 IEEE Congress on Evolutionary Computation – year: 1975 ident: bib0205 article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: bib0225 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. – volume: 1 start-page: 25 year: 1993 end-page: 49 ident: bib0350 article-title: Predictive models for the breeding genetic algorithm in continuous parameter optimization publication-title: Evol. Comput. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib0320 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – year: 1965 ident: bib0200 article-title: Cybernetic solution path of an experimental problem publication-title: Royal Aircraft Establishment Translation No. 1122, B.F. Toms, Trans – volume: 169 start-page: 450 issue: 2 year: 2006 ident: 10.1016/j.asoc.2015.04.048_bib0360 article-title: Continuous scatter search: an analysis of the integration of some combination methods and improvement strategies publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2004.08.009 – volume: 19 start-page: 161 year: 2014 ident: 10.1016/j.asoc.2015.04.048_bib0380 article-title: Replication and comparison of computational experiments in applied evolutionary computing: common pitfalls and guidelines to avoid them publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.009 – year: 2005 ident: 10.1016/j.asoc.2015.04.048_bib0370 – year: 1965 ident: 10.1016/j.asoc.2015.04.048_bib0200 article-title: Cybernetic solution path of an experimental problem – volume: 8 start-page: 687 issue: 1 year: 2008 ident: 10.1016/j.asoc.2015.04.048_bib0230 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.05.007 – start-page: 81 year: 2001 ident: 10.1016/j.asoc.2015.04.048_bib0210 article-title: Particle swarm optimization: developments, applications and resources – volume: 129 start-page: 210 year: 2003 ident: 10.1016/j.asoc.2015.04.048_bib0265 article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2003)129:3(210) – volume: 212 start-page: 79 year: 2012 ident: 10.1016/j.asoc.2015.04.048_bib0390 article-title: A note on teaching–learning-based optimization algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.05.009 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.asoc.2015.04.048_bib0245 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 214 start-page: 108 year: 2009 ident: 10.1016/j.asoc.2015.04.048_bib0375 article-title: A comparative study of Artificial Bee Colony algorithm publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.03.090 – volume: 45 start-page: 1 issue: 3 year: 2013 ident: 10.1016/j.asoc.2015.04.048_bib0330 article-title: Exploration and exploitation in evolutionary algorithms: a survey publication-title: ACM Comput. Surv. doi: 10.1145/2480741.2480752 – start-page: 1785 year: 2005 ident: 10.1016/j.asoc.2015.04.048_bib0275 article-title: Self-adaptive differential evolution algorithm for numerical optimization – start-page: 187 year: 1993 ident: 10.1016/j.asoc.2015.04.048_bib0340 article-title: Real-coded genetic algorithms and interval schemata doi: 10.1016/B978-0-08-094832-4.50018-0 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.asoc.2015.04.048_bib0250 article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – year: 1975 ident: 10.1016/j.asoc.2015.04.048_bib0205 – start-page: 36 year: 2010 ident: 10.1016/j.asoc.2015.04.048_bib0220 article-title: Ant colony optimization – year: 2003 ident: 10.1016/j.asoc.2015.04.048_bib0355 – start-page: 1769 year: 2005 ident: 10.1016/j.asoc.2015.04.048_bib0335 article-title: A restart CMA evolution strategy with increasing population size – volume: 291 start-page: 115 year: 2015 ident: 10.1016/j.asoc.2015.04.048_bib0385 article-title: On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.08.040 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.asoc.2015.04.048_bib0235 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9149-x – volume: 13 start-page: 913 issue: 4 year: 2009 ident: 10.1016/j.asoc.2015.04.048_bib0290 article-title: A survey of particle swarm optimization applications in electric power systems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.880326 – year: 2005 ident: 10.1016/j.asoc.2015.04.048_bib0270 – year: 2002 ident: 10.1016/j.asoc.2015.04.048_bib0260 – volume: 10 start-page: 1223 issue: 11 year: 2002 ident: 10.1016/j.asoc.2015.04.048_bib0295 article-title: Evolutionary algorithms in control systems engineering: a survey publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(02)00081-3 – start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2015.04.048_bib0215 article-title: Particle swarm optimization – volume: 191 start-page: 1245 issue: 11–12 year: 2002 ident: 10.1016/j.asoc.2015.04.048_bib0325 article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(01)00323-1 – volume: 1 start-page: 25 year: 1993 ident: 10.1016/j.asoc.2015.04.048_bib0350 article-title: Predictive models for the breeding genetic algorithm in continuous parameter optimization publication-title: Evol. Comput. doi: 10.1162/evco.1993.1.1.25 – start-page: 1 year: 2011 ident: 10.1016/j.asoc.2015.04.048_bib0300 article-title: Nature-inspired optimisation approaches and the new plant propagation algorithm – volume: 12 start-page: 171 issue: 2 year: 2008 ident: 10.1016/j.asoc.2015.04.048_bib0285 article-title: Particle swarm optimization: basic concepts, variants and applications in power systems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.896686 – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.asoc.2015.04.048_bib0315 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.asoc.2015.04.048_bib0320 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – start-page: 4661 year: 2007 ident: 10.1016/j.asoc.2015.04.048_bib0280 article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition – volume: 22 start-page: 52 issue: 3 year: 2002 ident: 10.1016/j.asoc.2015.04.048_bib0255 article-title: Biomimicry of bacterial foraging for distributed optimization and control publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2002.1004010 – volume: 13 start-page: 3792 year: 2013 ident: 10.1016/j.asoc.2015.04.048_bib0365 article-title: A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting Sovova's mass transfer model publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.05.010 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10.1016/j.asoc.2015.04.048_bib0225 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 – year: 2014 ident: 10.1016/j.asoc.2015.04.048_bib0310 – volume: 45 start-page: 41 year: 1985 ident: 10.1016/j.asoc.2015.04.048_bib0240 article-title: A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940812 – year: 2005 ident: 10.1016/j.asoc.2015.04.048_bib0305 – start-page: 60 year: 2001 ident: 10.1016/j.asoc.2015.04.048_bib0345 article-title: A study of non-random matching and varying population size in genetic algorithm using a royal road function |
| SSID | ssj0016928 |
| Score | 2.4265802 |
| Snippet | •A new optimization algorithm inspired by the plants propagated through runners is proposed.•Global search with random large steps is performed at all... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 292 |
| SubjectTerms | Meta-heuristic optimization algorithm Nature inspired Nonparametric statistical analysis Robust control Root Runner |
| Title | The runner-root algorithm: A metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature |
| URI | https://dx.doi.org/10.1016/j.asoc.2015.04.048 |
| Volume | 33 |
| WOSCitedRecordID | wos000355262900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3ojy0h64Ra7srB-7vQXUCjhUSBQpN2vX9pK0wYkcu2rv_Q38Xmb24ZoWVYCEFNnJyptdZb7MzM7OfkPIWx2pcCqR-TGLZRAnIgyUBCyLCGyRitO00tIUm8iOjvh8Lj6PRpf-LMzZKqtrfn4uNv9V1NAGwsajs38h7v5LoQHeg9DhCmKH6x8LvumwolYAXjFGdL-tm2W7sBF5LBktF1VnCZpNkiFMx0QVuhrkVjruAJNoaD-uQat8d8c1J64ADWZx4R699V_tcJbtGcc06SGblUmxWdYTSx46dIO977sFI2Cy2rvWm1BDBtw0y9NF8E5eSGMjDveGwYko6VPjXMTsxqkZq2RTHsTChR4r28azaSBSW77Fa2bGhqrV1sxzVpoZZoSbBsDGIk72JGAbE_cSQ2RryTyvEWt_wXngNMAnxs3b9A7ZgZvgY7Iz-3gw_9TvRqXC1Ojt5-0OX9k8wesj_d7BGTgtxw_JfbfaoDOLkkdkVNWPyQNfyYM6xf6E_ADQ0AFoaA-afTqjv0CGAmSogwz1kKEgeXoFGTqEDPWQoR4yVF24wbamo4EMXWtqIQPPUQuZp-Tr4cHx-w-Bq9gRFCwM2yAqU51pppFkF5feirNMCJlWSolKZ7C6ZpJpCUsOWUaKFVKoGPn9o5KzCm7sGRnX67p6TugU1i2JihXHCgcFi1QJ7pYGA8RLoXXMdknkf-a8cHT2WFVllfu8xZMcRZOjaPIwhhffJZO-z8aSudz6dOKllzt31LqZOYDtln4v_rHfS3Lv6i_0iozbpqtek7vFWbvcNm8cJn8CMJa1pg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+runner-root+algorithm%3A+A+metaheuristic+for+solving+unimodal+and+multimodal+optimization+problems+inspired+by+runners+and+roots+of+plants+in+nature&rft.jtitle=Applied+soft+computing&rft.au=Merrikh-Bayat%2C+F.&rft.date=2015-08-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=33&rft.spage=292&rft.epage=303&rft_id=info:doi/10.1016%2Fj.asoc.2015.04.048&rft.externalDocID=S1568494615002756 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |