The runner-root algorithm: A metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature

•A new optimization algorithm inspired by the plants propagated through runners is proposed.•Global search with random large steps is performed at all iterations (exploration).•Local search with random small steps (exploitation) is performed only if global search fails.•Local search is performed by...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 33; s. 292 - 303
Hlavní autor: Merrikh-Bayat, F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2015
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A new optimization algorithm inspired by the plants propagated through runners is proposed.•Global search with random large steps is performed at all iterations (exploration).•Local search with random small steps (exploitation) is performed only if global search fails.•Local search is performed by roots and root hairs.•It does not necessarily apply a same number of function evaluations at all iterations. This paper proposes a new metaheuristic, the runner-root algorithm (RRA), inspired by the function of runners and roots of some plants in nature. The plants which are propagated through runners look for water resources and minerals by developing runners and roots (as well as root hairs). The first tool helps the plant for search around with random big steps while the second one is appropriate for search around with small steps. Moreover, the plant which is placed at a very good location by chance spreads in a larger area through its longer runners and roots. Similarly, the proposed algorithm is equipped with two tools for exploration: random jumps with big steps, which model the function of runners in nature, and a re-initialization strategy in case of trapping in local optima, which redistributes the computational agents randomly in the domain of problem and models the propagation of plant in a larger area in case of being located in a good position. Exploitation in RRA is performed by the so-called roots and root hairs which respectively apply random large and small changes to the variables of the best computational agent separately (in case of stagnation). Performance of the proposed algorithm is examined by applying it to the standard CEC’ 2005 benchmark problems and then comparing the results with 9 state-of-the-art algorithms using nonparametric methods.
AbstractList •A new optimization algorithm inspired by the plants propagated through runners is proposed.•Global search with random large steps is performed at all iterations (exploration).•Local search with random small steps (exploitation) is performed only if global search fails.•Local search is performed by roots and root hairs.•It does not necessarily apply a same number of function evaluations at all iterations. This paper proposes a new metaheuristic, the runner-root algorithm (RRA), inspired by the function of runners and roots of some plants in nature. The plants which are propagated through runners look for water resources and minerals by developing runners and roots (as well as root hairs). The first tool helps the plant for search around with random big steps while the second one is appropriate for search around with small steps. Moreover, the plant which is placed at a very good location by chance spreads in a larger area through its longer runners and roots. Similarly, the proposed algorithm is equipped with two tools for exploration: random jumps with big steps, which model the function of runners in nature, and a re-initialization strategy in case of trapping in local optima, which redistributes the computational agents randomly in the domain of problem and models the propagation of plant in a larger area in case of being located in a good position. Exploitation in RRA is performed by the so-called roots and root hairs which respectively apply random large and small changes to the variables of the best computational agent separately (in case of stagnation). Performance of the proposed algorithm is examined by applying it to the standard CEC’ 2005 benchmark problems and then comparing the results with 9 state-of-the-art algorithms using nonparametric methods.
Author Merrikh-Bayat, F.
Author_xml – sequence: 1
  givenname: F.
  surname: Merrikh-Bayat
  fullname: Merrikh-Bayat, F.
  email: f.bayat@znu.ac.ir
  organization: Department of Electrical and Computer Engineering, University of Zanjan, Zanjan, Iran
BookMark eNp9kEtKBDEQhoMo-LyAq1ygx6TTj0TciPgCwY2uQzpdmcnQnTRJWtCDeF7T46xcCAVVBfXVX_WfokPnHSB0ScmKEtpcbVcqer0qCa1XpMrBD9AJ5W1ZiIbTw1zXDS8qUTXH6DTGLcmQKPkJ-n7bAA6zcxCK4H3Calj7YNNmvMa3eISkNjAHG5PV2PiAox8-rFvj2dnR92rAyvV4nIe0b_2UK_ulkvUOT8F3A4wRWxcnG6DH3edeLO7ARTFib_A0KJeWOexUmgOcoyOjhggX-3yG3h_u3-6eipfXx-e725dCM0JSQfvGtIYZwuqSVqLuOGuFUA10nQDTVkIwxYxq20r1tGNaia5idc1pzxnkxM4Q_92rg48xgJHapt3xKSg7SErk4q_cysVfufgrSZWDZ7T8g07Bjip8_g_d_EKQn_qwEGTUFpyGPtujk-y9_Q__ARSKmyY
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106412
crossref_primary_10_1016_j_cma_2021_114194
crossref_primary_10_1088_1757_899X_643_1_012054
crossref_primary_10_3390_a16030134
crossref_primary_10_1007_s10462_022_10340_z
crossref_primary_10_1007_s00366_021_01460_1
crossref_primary_10_1109_ACCESS_2021_3111121
crossref_primary_10_1016_j_aei_2024_102516
crossref_primary_10_1007_s11227_023_05579_4
crossref_primary_10_1016_j_infrared_2018_08_007
crossref_primary_10_1177_0142331215603446
crossref_primary_10_1155_2022_3991870
crossref_primary_10_1007_s10586_025_05367_0
crossref_primary_10_1016_j_foodchem_2020_127681
crossref_primary_10_1016_j_asoc_2019_105517
crossref_primary_10_1007_s10462_017_9587_x
crossref_primary_10_1007_s00521_020_05112_1
crossref_primary_10_1134_S0005117921060011
crossref_primary_10_1007_s00500_022_06903_5
crossref_primary_10_1016_j_cma_2022_114901
crossref_primary_10_1016_j_measurement_2018_10_018
crossref_primary_10_3846_jcem_2024_21356
crossref_primary_10_1007_s42979_023_02356_1
crossref_primary_10_1016_j_jnca_2025_104172
crossref_primary_10_3390_biomimetics10050343
crossref_primary_10_3390_drones7070427
crossref_primary_10_3233_KES_180376
crossref_primary_10_1007_s10586_025_05328_7
crossref_primary_10_1109_ACCESS_2021_3072380
crossref_primary_10_1007_s00500_019_04443_z
crossref_primary_10_1007_s00521_020_05475_5
crossref_primary_10_1016_j_advengsoft_2020_102804
crossref_primary_10_22581_muet1982_2002_01
crossref_primary_10_1007_s00521_021_06175_4
crossref_primary_10_1109_ACCESS_2022_3204046
crossref_primary_10_1007_s40430_022_03911_2
crossref_primary_10_1007_s11157_023_09671_2
crossref_primary_10_1016_j_asoc_2019_106018
crossref_primary_10_1016_j_asoc_2019_105720
crossref_primary_10_1186_s43067_020_00026_3
crossref_primary_10_1002_jnm_2828
crossref_primary_10_1016_j_matcom_2022_12_027
crossref_primary_10_1016_j_asoc_2016_12_018
crossref_primary_10_1016_j_matcom_2019_06_017
crossref_primary_10_1109_TMC_2023_3291130
crossref_primary_10_1007_s12559_020_09730_8
crossref_primary_10_1016_j_jocs_2025_102686
crossref_primary_10_1007_s00521_017_3049_x
crossref_primary_10_1007_s10489_025_06320_9
crossref_primary_10_1007_s11227_024_06899_9
crossref_primary_10_1007_s00521_020_04789_8
crossref_primary_10_1007_s10462_020_09952_0
crossref_primary_10_1007_s10462_023_10470_y
crossref_primary_10_3233_JIFS_201075
crossref_primary_10_1007_s11063_017_9750_z
crossref_primary_10_1002_oik_11103
crossref_primary_10_1007_s13369_019_04051_x
crossref_primary_10_1002_nme_6573
crossref_primary_10_1080_03610926_2020_1783559
crossref_primary_10_1016_j_engappai_2017_04_018
crossref_primary_10_1007_s10489_018_1325_9
crossref_primary_10_1016_j_physa_2019_122650
crossref_primary_10_1007_s11227_020_03385_w
crossref_primary_10_1080_0952813X_2020_1764635
crossref_primary_10_1109_TPDS_2024_3418620
crossref_primary_10_1007_s10489_017_0903_6
crossref_primary_10_1109_ACCESS_2020_3042763
crossref_primary_10_1007_s10462_016_9486_6
crossref_primary_10_1016_j_asoc_2017_11_043
crossref_primary_10_3390_en12010106
crossref_primary_10_1007_s11831_020_09412_6
crossref_primary_10_1007_s41403_020_00185_9
crossref_primary_10_1016_j_aei_2023_102004
crossref_primary_10_1007_s13748_019_00191_1
crossref_primary_10_1007_s11042_018_5815_x
crossref_primary_10_1109_ACCESS_2020_3022531
crossref_primary_10_1007_s00500_019_04333_4
crossref_primary_10_1016_j_cie_2019_106090
crossref_primary_10_1007_s10462_017_9605_z
crossref_primary_10_1155_2022_4211707
crossref_primary_10_1515_freq_2024_0307
crossref_primary_10_1016_j_matcom_2021_12_010
Cites_doi 10.1016/j.ejor.2004.08.009
10.1016/j.asoc.2014.02.009
10.1016/j.asoc.2007.05.007
10.1061/(ASCE)0733-9496(2003)129:3(210)
10.1016/j.ins.2012.05.009
10.1126/science.220.4598.671
10.1016/j.amc.2009.03.090
10.1145/2480741.2480752
10.1016/B978-0-08-094832-4.50018-0
10.1016/j.cad.2010.12.015
10.1016/j.ins.2014.08.040
10.1007/s10898-007-9149-x
10.1109/TEVC.2006.880326
10.1016/S0967-0661(02)00081-3
10.1016/S0045-7825(01)00323-1
10.1162/evco.1993.1.1.25
10.1109/TEVC.2007.896686
10.1016/j.swevo.2011.02.002
10.1109/4235.585893
10.1109/MCS.2002.1004010
10.1016/j.asoc.2013.05.010
10.1109/MCI.2006.329691
10.1007/BF00940812
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2015.04.048
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 303
ExternalDocumentID 10_1016_j_asoc_2015_04_048
S1568494615002756
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-1d6f7f3f03521495b83799a6ebb9ef74993a3fa774ad1b3ca9b435581d83e5813
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000355262900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 20:54:00 EST 2025
Sat Nov 29 03:05:25 EST 2025
Fri Feb 23 02:28:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Meta-heuristic optimization algorithm
Robust control
Runner
Root
Nonparametric statistical analysis
Nature inspired
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-1d6f7f3f03521495b83799a6ebb9ef74993a3fa774ad1b3ca9b435581d83e5813
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2015_04_048
crossref_primary_10_1016_j_asoc_2015_04_048
elsevier_sciencedirect_doi_10_1016_j_asoc_2015_04_048
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Eusuff, Lansey (bib0265) 2003; 129
Dorigo, Birattari, Stutzle (bib0225) 2006; 1
Karaboga, Basturk (bib0235) 2007; 39
AlRashidi, El-Hawary (bib0290) 2009; 13
Cerny (bib0240) 1985; 45
Coello Coello (bib0325) 2002; 191
Črepinšek, Liu, Mernik (bib0390) 2012; 212
del Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (bib0285) 2008; 12
Mülenbein, Schlierkamp-Voosen (bib0350) 1993; 1
Passino (bib0255) 2002; 22
Fleming, Purshouse (bib0295) 2002; 10
Holland (bib0205) 1975
Kennedy, Eberhart (bib0215) 1995
Rao, Savsani, Vakharia (bib0250) 2011; 43
Qin, Suganthan (bib0275) 2005
Herrera, Lozano, Molina (bib0360) 2006; 169
Karaboga, Akay (bib0375) 2009; 214
Mernik, Liu, Karaboga, Črepinšek (bib0385) 2015; 291
Skogestad, Postlethwaite (bib0370) 2005
De Castro, Timmis (bib0260) 2002
Eberhart, Shi (bib0210) 2001
Derrac, García, Molina, Herrera (bib0315) 2011; 1
Corder, Foreman (bib0310) 2014
Suganthan, Hansen, Liang, Deb, Chen, Auger, Tiwari (bib0305) 2005
Auger, Hansen (bib0335) 2005
Rechenberg (bib0200) 1965
Karaboga, Basturk (bib0230) 2008; 8
Črepinšek, Liu, Mernik (bib0380) 2014; 19
Črepinšek, Liu, Mernik (bib0330) 2013; 45
Price, Rainer, Lampinen (bib0270) 2005
Salhi, Fraga (bib0300) 2011
Dorigo, Birattari (bib0220) 2010
Fernandes, Rosa (bib0345) 2001
Atashpaz-Gargari, Lucas (bib0280) 2007
Wolpert, Macready (bib0320) 1997; 1
Laguna, Martí (bib0355) 2003
Liu, Mernik, Hrnčič, Črepinšek (bib0365) 2013; 13
Eshelman, Schaffer (bib0340) 1993
Kirkpatrick, Gellat, Vecchi (bib0245) 1983; 220
Dorigo (10.1016/j.asoc.2015.04.048_bib0220) 2010
Cerny (10.1016/j.asoc.2015.04.048_bib0240) 1985; 45
Karaboga (10.1016/j.asoc.2015.04.048_bib0375) 2009; 214
Črepinšek (10.1016/j.asoc.2015.04.048_bib0330) 2013; 45
Fleming (10.1016/j.asoc.2015.04.048_bib0295) 2002; 10
Kirkpatrick (10.1016/j.asoc.2015.04.048_bib0245) 1983; 220
Eberhart (10.1016/j.asoc.2015.04.048_bib0210) 2001
Atashpaz-Gargari (10.1016/j.asoc.2015.04.048_bib0280) 2007
Auger (10.1016/j.asoc.2015.04.048_bib0335) 2005
Mülenbein (10.1016/j.asoc.2015.04.048_bib0350) 1993; 1
Liu (10.1016/j.asoc.2015.04.048_bib0365) 2013; 13
Wolpert (10.1016/j.asoc.2015.04.048_bib0320) 1997; 1
Črepinšek (10.1016/j.asoc.2015.04.048_bib0380) 2014; 19
Rao (10.1016/j.asoc.2015.04.048_bib0250) 2011; 43
De Castro (10.1016/j.asoc.2015.04.048_bib0260) 2002
Kennedy (10.1016/j.asoc.2015.04.048_bib0215) 1995
Fernandes (10.1016/j.asoc.2015.04.048_bib0345) 2001
Corder (10.1016/j.asoc.2015.04.048_bib0310) 2014
Coello Coello (10.1016/j.asoc.2015.04.048_bib0325) 2002; 191
AlRashidi (10.1016/j.asoc.2015.04.048_bib0290) 2009; 13
Eshelman (10.1016/j.asoc.2015.04.048_bib0340) 1993
Dorigo (10.1016/j.asoc.2015.04.048_bib0225) 2006; 1
Price (10.1016/j.asoc.2015.04.048_bib0270) 2005
Laguna (10.1016/j.asoc.2015.04.048_bib0355) 2003
Derrac (10.1016/j.asoc.2015.04.048_bib0315) 2011; 1
Eusuff (10.1016/j.asoc.2015.04.048_bib0265) 2003; 129
Rechenberg (10.1016/j.asoc.2015.04.048_bib0200) 1965
Herrera (10.1016/j.asoc.2015.04.048_bib0360) 2006; 169
Salhi (10.1016/j.asoc.2015.04.048_bib0300) 2011
Holland (10.1016/j.asoc.2015.04.048_bib0205) 1975
Karaboga (10.1016/j.asoc.2015.04.048_bib0235) 2007; 39
Črepinšek (10.1016/j.asoc.2015.04.048_bib0390) 2012; 212
Qin (10.1016/j.asoc.2015.04.048_bib0275) 2005
Suganthan (10.1016/j.asoc.2015.04.048_bib0305) 2005
Mernik (10.1016/j.asoc.2015.04.048_bib0385) 2015; 291
Passino (10.1016/j.asoc.2015.04.048_bib0255) 2002; 22
del Valle (10.1016/j.asoc.2015.04.048_bib0285) 2008; 12
Skogestad (10.1016/j.asoc.2015.04.048_bib0370) 2005
Karaboga (10.1016/j.asoc.2015.04.048_bib0230) 2008; 8
References_xml – start-page: 60
  year: 2001
  end-page: 66
  ident: bib0345
  article-title: A study of non-random matching and varying population size in genetic algorithm using a royal road function
  publication-title: Proceedings of the 2001 Congress on Evolutionary Computation
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0215
  article-title: Particle swarm optimization
  publication-title: Proceedings of IV IEEE International Conference on Neural Networks
– start-page: 1
  year: 2011
  end-page: 8
  ident: bib0300
  article-title: Nature-inspired optimisation approaches and the new plant propagation algorithm
  publication-title: Proceedings of the International Conference on Numerical Analysis and Optimization (ICeMATH 2011), vol. 1
– volume: 45
  start-page: 1
  year: 2013
  end-page: 33
  ident: bib0330
  article-title: Exploration and exploitation in evolutionary algorithms: a survey
  publication-title: ACM Comput. Surv.
– year: 2003
  ident: bib0355
  article-title: Scatter Search. Methodology and Implementation in C
– volume: 212
  start-page: 79
  year: 2012
  end-page: 93
  ident: bib0390
  article-title: A note on teaching–learning-based optimization algorithm
  publication-title: Inf. Sci.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib0315
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– year: 2005
  ident: bib0370
  article-title: Multivariable Feedback Control
– volume: 13
  start-page: 3792
  year: 2013
  end-page: 3805
  ident: bib0365
  article-title: A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting Sovova's mass transfer model
  publication-title: Appl. Soft Comput.
– year: 2005
  ident: bib0270
  article-title: Differential Evolution: A Practical Approach to Global Optimization
– year: 2002
  ident: bib0260
  article-title: Artificial Immune Systems: A New Computational Intelligence Approach
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: bib0235
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Glob. Optim.
– year: 2014
  ident: bib0310
  article-title: Nonparametric Statistics: A Step-by-Step Approach
– volume: 169
  start-page: 450
  year: 2006
  end-page: 476
  ident: bib0360
  article-title: Continuous scatter search: an analysis of the integration of some combination methods and improvement strategies
  publication-title: Eur. J. Oper. Res.
– start-page: 81
  year: 2001
  end-page: 86
  ident: bib0210
  article-title: Particle swarm optimization: developments, applications and resources
  publication-title: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1
– start-page: 1785
  year: 2005
  end-page: 1791
  ident: bib0275
  article-title: Self-adaptive differential evolution algorithm for numerical optimization
  publication-title: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 2
– year: 2005
  ident: bib0305
  article-title: Problem definitions and evaluation criteria for the CEC’2005 special session on real parameter optimization
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: bib0245
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 10
  start-page: 1223
  year: 2002
  end-page: 1241
  ident: bib0295
  article-title: Evolutionary algorithms in control systems engineering: a survey
  publication-title: Control Eng. Pract.
– volume: 19
  start-page: 161
  year: 2014
  end-page: 170
  ident: bib0380
  article-title: Replication and comparison of computational experiments in applied evolutionary computing: common pitfalls and guidelines to avoid them
  publication-title: Appl. Soft Comput.
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: bib0250
  article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
– volume: 22
  start-page: 52
  year: 2002
  end-page: 67
  ident: bib0255
  article-title: Biomimicry of bacterial foraging for distributed optimization and control
  publication-title: IEEE Control Syst. Mag.
– volume: 45
  start-page: 41
  year: 1985
  end-page: 51
  ident: bib0240
  article-title: A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm
  publication-title: J. Optim. Theory Appl.
– volume: 291
  start-page: 115
  year: 2015
  end-page: 127
  ident: bib0385
  article-title: On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation
  publication-title: Inf. Sci.
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: bib0375
  article-title: A comparative study of Artificial Bee Colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 129
  start-page: 210
  year: 2003
  end-page: 225
  ident: bib0265
  article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm
  publication-title: J. Water Resour. Plan. Manag.
– start-page: 187
  year: 1993
  end-page: 202
  ident: bib0340
  article-title: Real-coded genetic algorithms and interval schemata
  publication-title: Foundations of Genetic Algorithms
– start-page: 4661
  year: 2007
  end-page: 4667
  ident: bib0280
  article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation
– volume: 13
  start-page: 913
  year: 2009
  end-page: 918
  ident: bib0290
  article-title: A survey of particle swarm optimization applications in electric power systems
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 36
  year: 2010
  end-page: 39
  ident: bib0220
  article-title: Ant colony optimization
  publication-title: Encyclopedia of Machine Learning
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: bib0230
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– volume: 12
  start-page: 171
  year: 2008
  end-page: 195
  ident: bib0285
  article-title: Particle swarm optimization: basic concepts, variants and applications in power systems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 191
  start-page: 1245
  year: 2002
  end-page: 1287
  ident: bib0325
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 1769
  year: 2005
  end-page: 1776
  ident: bib0335
  article-title: A restart CMA evolution strategy with increasing population size
  publication-title: Proceedings of the 2005 IEEE Congress on Evolutionary Computation
– year: 1975
  ident: bib0205
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: bib0225
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
– volume: 1
  start-page: 25
  year: 1993
  end-page: 49
  ident: bib0350
  article-title: Predictive models for the breeding genetic algorithm in continuous parameter optimization
  publication-title: Evol. Comput.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0320
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 1965
  ident: bib0200
  article-title: Cybernetic solution path of an experimental problem
  publication-title: Royal Aircraft Establishment Translation No. 1122, B.F. Toms, Trans
– volume: 169
  start-page: 450
  issue: 2
  year: 2006
  ident: 10.1016/j.asoc.2015.04.048_bib0360
  article-title: Continuous scatter search: an analysis of the integration of some combination methods and improvement strategies
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2004.08.009
– volume: 19
  start-page: 161
  year: 2014
  ident: 10.1016/j.asoc.2015.04.048_bib0380
  article-title: Replication and comparison of computational experiments in applied evolutionary computing: common pitfalls and guidelines to avoid them
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.009
– year: 2005
  ident: 10.1016/j.asoc.2015.04.048_bib0370
– year: 1965
  ident: 10.1016/j.asoc.2015.04.048_bib0200
  article-title: Cybernetic solution path of an experimental problem
– volume: 8
  start-page: 687
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2015.04.048_bib0230
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.05.007
– start-page: 81
  year: 2001
  ident: 10.1016/j.asoc.2015.04.048_bib0210
  article-title: Particle swarm optimization: developments, applications and resources
– volume: 129
  start-page: 210
  year: 2003
  ident: 10.1016/j.asoc.2015.04.048_bib0265
  article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2003)129:3(210)
– volume: 212
  start-page: 79
  year: 2012
  ident: 10.1016/j.asoc.2015.04.048_bib0390
  article-title: A note on teaching–learning-based optimization algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.05.009
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.asoc.2015.04.048_bib0245
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 214
  start-page: 108
  year: 2009
  ident: 10.1016/j.asoc.2015.04.048_bib0375
  article-title: A comparative study of Artificial Bee Colony algorithm
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.03.090
– volume: 45
  start-page: 1
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2015.04.048_bib0330
  article-title: Exploration and exploitation in evolutionary algorithms: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2480741.2480752
– start-page: 1785
  year: 2005
  ident: 10.1016/j.asoc.2015.04.048_bib0275
  article-title: Self-adaptive differential evolution algorithm for numerical optimization
– start-page: 187
  year: 1993
  ident: 10.1016/j.asoc.2015.04.048_bib0340
  article-title: Real-coded genetic algorithms and interval schemata
  doi: 10.1016/B978-0-08-094832-4.50018-0
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2015.04.048_bib0250
  article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– year: 1975
  ident: 10.1016/j.asoc.2015.04.048_bib0205
– start-page: 36
  year: 2010
  ident: 10.1016/j.asoc.2015.04.048_bib0220
  article-title: Ant colony optimization
– year: 2003
  ident: 10.1016/j.asoc.2015.04.048_bib0355
– start-page: 1769
  year: 2005
  ident: 10.1016/j.asoc.2015.04.048_bib0335
  article-title: A restart CMA evolution strategy with increasing population size
– volume: 291
  start-page: 115
  year: 2015
  ident: 10.1016/j.asoc.2015.04.048_bib0385
  article-title: On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.08.040
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2015.04.048_bib0235
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9149-x
– volume: 13
  start-page: 913
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2015.04.048_bib0290
  article-title: A survey of particle swarm optimization applications in electric power systems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.880326
– year: 2005
  ident: 10.1016/j.asoc.2015.04.048_bib0270
– year: 2002
  ident: 10.1016/j.asoc.2015.04.048_bib0260
– volume: 10
  start-page: 1223
  issue: 11
  year: 2002
  ident: 10.1016/j.asoc.2015.04.048_bib0295
  article-title: Evolutionary algorithms in control systems engineering: a survey
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(02)00081-3
– start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2015.04.048_bib0215
  article-title: Particle swarm optimization
– volume: 191
  start-page: 1245
  issue: 11–12
  year: 2002
  ident: 10.1016/j.asoc.2015.04.048_bib0325
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(01)00323-1
– volume: 1
  start-page: 25
  year: 1993
  ident: 10.1016/j.asoc.2015.04.048_bib0350
  article-title: Predictive models for the breeding genetic algorithm in continuous parameter optimization
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1993.1.1.25
– start-page: 1
  year: 2011
  ident: 10.1016/j.asoc.2015.04.048_bib0300
  article-title: Nature-inspired optimisation approaches and the new plant propagation algorithm
– volume: 12
  start-page: 171
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2015.04.048_bib0285
  article-title: Particle swarm optimization: basic concepts, variants and applications in power systems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.896686
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.asoc.2015.04.048_bib0315
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2015.04.048_bib0320
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– start-page: 4661
  year: 2007
  ident: 10.1016/j.asoc.2015.04.048_bib0280
  article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition
– volume: 22
  start-page: 52
  issue: 3
  year: 2002
  ident: 10.1016/j.asoc.2015.04.048_bib0255
  article-title: Biomimicry of bacterial foraging for distributed optimization and control
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2002.1004010
– volume: 13
  start-page: 3792
  year: 2013
  ident: 10.1016/j.asoc.2015.04.048_bib0365
  article-title: A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting Sovova's mass transfer model
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.05.010
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 10.1016/j.asoc.2015.04.048_bib0225
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– year: 2014
  ident: 10.1016/j.asoc.2015.04.048_bib0310
– volume: 45
  start-page: 41
  year: 1985
  ident: 10.1016/j.asoc.2015.04.048_bib0240
  article-title: A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940812
– year: 2005
  ident: 10.1016/j.asoc.2015.04.048_bib0305
– start-page: 60
  year: 2001
  ident: 10.1016/j.asoc.2015.04.048_bib0345
  article-title: A study of non-random matching and varying population size in genetic algorithm using a royal road function
SSID ssj0016928
Score 2.4265802
Snippet •A new optimization algorithm inspired by the plants propagated through runners is proposed.•Global search with random large steps is performed at all...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 292
SubjectTerms Meta-heuristic optimization algorithm
Nature inspired
Nonparametric statistical analysis
Robust control
Root
Runner
Title The runner-root algorithm: A metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature
URI https://dx.doi.org/10.1016/j.asoc.2015.04.048
Volume 33
WOSCitedRecordID wos000355262900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3ojy0h64Ra7srB-7vQXUCjhUSBQpN2vX9pK0wYkcu2rv_Q38Xmb24ZoWVYCEFNnJyptdZb7MzM7OfkPIWx2pcCqR-TGLZRAnIgyUBCyLCGyRitO00tIUm8iOjvh8Lj6PRpf-LMzZKqtrfn4uNv9V1NAGwsajs38h7v5LoQHeg9DhCmKH6x8LvumwolYAXjFGdL-tm2W7sBF5LBktF1VnCZpNkiFMx0QVuhrkVjruAJNoaD-uQat8d8c1J64ADWZx4R699V_tcJbtGcc06SGblUmxWdYTSx46dIO977sFI2Cy2rvWm1BDBtw0y9NF8E5eSGMjDveGwYko6VPjXMTsxqkZq2RTHsTChR4r28azaSBSW77Fa2bGhqrV1sxzVpoZZoSbBsDGIk72JGAbE_cSQ2RryTyvEWt_wXngNMAnxs3b9A7ZgZvgY7Iz-3gw_9TvRqXC1Ojt5-0OX9k8wesj_d7BGTgtxw_JfbfaoDOLkkdkVNWPyQNfyYM6xf6E_ADQ0AFoaA-afTqjv0CGAmSogwz1kKEgeXoFGTqEDPWQoR4yVF24wbamo4EMXWtqIQPPUQuZp-Tr4cHx-w-Bq9gRFCwM2yAqU51pppFkF5feirNMCJlWSolKZ7C6ZpJpCUsOWUaKFVKoGPn9o5KzCm7sGRnX67p6TugU1i2JihXHCgcFi1QJ7pYGA8RLoXXMdknkf-a8cHT2WFVllfu8xZMcRZOjaPIwhhffJZO-z8aSudz6dOKllzt31LqZOYDtln4v_rHfS3Lv6i_0iozbpqtek7vFWbvcNm8cJn8CMJa1pg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+runner-root+algorithm%3A+A+metaheuristic+for+solving+unimodal+and+multimodal+optimization+problems+inspired+by+runners+and+roots+of+plants+in+nature&rft.jtitle=Applied+soft+computing&rft.au=Merrikh-Bayat%2C+F.&rft.date=2015-08-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=33&rft.spage=292&rft.epage=303&rft_id=info:doi/10.1016%2Fj.asoc.2015.04.048&rft.externalDocID=S1568494615002756
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon