Early detection of brain tumors: Harnessing the power of GRU networks and hybrid dwarf mongoose optimization algorithm
•Novel approach combining deep learning and medical imaging for brain tumor diagnosis.•Gated Recurrent Unit networks optimized by an improved political optimizer.•Ability to analyze large and complex datasets.•High accuracy and early-stage diagnosis capabilities.•Improved political optimizer algorit...
Gespeichert in:
| Veröffentlicht in: | Biomedical signal processing and control Jg. 91; S. 106093 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.05.2024
|
| Schlagworte: | |
| ISSN: | 1746-8094, 1746-8108 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Novel approach combining deep learning and medical imaging for brain tumor diagnosis.•Gated Recurrent Unit networks optimized by an improved political optimizer.•Ability to analyze large and complex datasets.•High accuracy and early-stage diagnosis capabilities.•Improved political optimizer algorithm enhances GRU network performance.
Brain tumor detection is a challenging problem that requires accurate and robust methods to identify and locate the abnormal regions in the brain images. MRI is the most commonly used imaging modality for brain tumor diagnosis, as it can provide high-resolution and contrast images of the brain tissues. However, manual analysis of MRI images by human experts is time-consuming, subjective, and prone to errors. Therefore, there is a need for automated and intelligent methods that can analyze the MRI images and detect brain tumors effectively and efficiently. In this paper, we propose a novel machine learning method that combines the advantages of the Gated Recurrent Unit (GRU) networks and the Enhanced Hybrid Dwarf Mongoose Optimization (EHDMO) algorithm for brain tumor detection. The GRU networks are a type of Recurrent Neural Network (RNN) that can process sequential data, such as natural language or time series. We employ the EHDMO algorithm to fine-tune the parameters of the GRU networks, such as the weight matrices and bias vectors for each gate and the candidate's hidden state, along with the number of hidden units in the network. The proposed method is applied to the brain tumor detection problem using the “Brain-Tumor-Progression” dataset. Results show that the proposed method achieves a sensitivity of 0.98, a specificity of 0.97, a PPV of 0.98, an NPV of 0.98, and an accuracy of 0.95. These results indicate that the proposed method can accurately and robustly detect brain tumors from MRI images. The method also is compared with some of the most recent methods, such as BrainMRNet, VGG19, ASSO, CNN/POA, and YOLOv2. The proposed method outperforms these methods in terms of sensitivity, specificity, PPV, NPV, and accuracy, demonstrating its effectiveness and efficiency. |
|---|---|
| AbstractList | •Novel approach combining deep learning and medical imaging for brain tumor diagnosis.•Gated Recurrent Unit networks optimized by an improved political optimizer.•Ability to analyze large and complex datasets.•High accuracy and early-stage diagnosis capabilities.•Improved political optimizer algorithm enhances GRU network performance.
Brain tumor detection is a challenging problem that requires accurate and robust methods to identify and locate the abnormal regions in the brain images. MRI is the most commonly used imaging modality for brain tumor diagnosis, as it can provide high-resolution and contrast images of the brain tissues. However, manual analysis of MRI images by human experts is time-consuming, subjective, and prone to errors. Therefore, there is a need for automated and intelligent methods that can analyze the MRI images and detect brain tumors effectively and efficiently. In this paper, we propose a novel machine learning method that combines the advantages of the Gated Recurrent Unit (GRU) networks and the Enhanced Hybrid Dwarf Mongoose Optimization (EHDMO) algorithm for brain tumor detection. The GRU networks are a type of Recurrent Neural Network (RNN) that can process sequential data, such as natural language or time series. We employ the EHDMO algorithm to fine-tune the parameters of the GRU networks, such as the weight matrices and bias vectors for each gate and the candidate's hidden state, along with the number of hidden units in the network. The proposed method is applied to the brain tumor detection problem using the “Brain-Tumor-Progression” dataset. Results show that the proposed method achieves a sensitivity of 0.98, a specificity of 0.97, a PPV of 0.98, an NPV of 0.98, and an accuracy of 0.95. These results indicate that the proposed method can accurately and robustly detect brain tumors from MRI images. The method also is compared with some of the most recent methods, such as BrainMRNet, VGG19, ASSO, CNN/POA, and YOLOv2. The proposed method outperforms these methods in terms of sensitivity, specificity, PPV, NPV, and accuracy, demonstrating its effectiveness and efficiency. |
| ArticleNumber | 106093 |
| Author | Chaoluomeng Razmjooy, Navid Yang, Yuxia |
| Author_xml | – sequence: 1 givenname: Yuxia surname: Yang fullname: Yang, Yuxia organization: College of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China – sequence: 2 surname: Chaoluomeng fullname: Chaoluomeng email: chaoluomen@126.com organization: College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China – sequence: 3 givenname: Navid surname: Razmjooy fullname: Razmjooy, Navid organization: Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran |
| BookMark | eNp9kM1KAzEURoNUsK2-gKu8wNRk_kfcSKmtUBDErkMmuWlTZ5KSxJb69M60unHR1b1c7vngOyM0MNYAQveUTCih-cN2UvudmMQkTrtDTqrkCg1pkeZRSUk5-NtJld6gkfdbQtKyoOkQ7WfcNUcsIYAI2hpsFa4d1waHr9Y6_4gX3BnwXps1DhvAO3sA13_N31fYQDhY9-kxNxJvjrXTEssDdwq31qyt9YDtLuhWf_NTOG_W1umwaW_RteKNh7vfOUarl9nHdBEt3-av0-dlJBJCQkQllYJkSaoqoSpZ1SURmVKJJHkNKs3qTMYF8KqoOa-UhIQClZzERSlJUcdJMkbxOVc4670DxXZOt9wdGSWsN8e2rDfHenPsbK6Dyn-Q0OFUIHRmmsvo0xmFrtReg2NeaDACpHadYCatvoT_AHdmj0Y |
| CitedBy_id | crossref_primary_10_1038_s41598_024_71893_3 crossref_primary_10_1038_s41598_025_91784_5 crossref_primary_10_1016_j_bspc_2025_107560 crossref_primary_10_1016_j_bspc_2025_108582 crossref_primary_10_1007_s00521_025_11216_3 crossref_primary_10_13005_bpj_3171 crossref_primary_10_1038_s41598_025_14471_5 crossref_primary_10_1038_s41598_024_63955_3 crossref_primary_10_1007_s12144_024_06972_9 crossref_primary_10_3390_jimaging11010002 crossref_primary_10_1038_s41598_024_77523_2 crossref_primary_10_1038_s41598_024_77585_2 crossref_primary_10_1016_j_eij_2025_100619 crossref_primary_10_1038_s41598_024_77120_3 crossref_primary_10_1038_s41598_025_16499_z crossref_primary_10_1038_s41598_025_98486_y |
| Cites_doi | 10.1016/j.knosys.2023.111035 10.1016/j.inffus.2023.101859 10.1007/s40747-021-00310-3 10.1016/j.ins.2021.04.053 10.14569/IJACSA.2019.0100582 10.1155/2021/5595180 10.1080/15567036.2022.2105453 10.32604/biocell.2023.025905 10.1002/int.22957 10.1007/978-3-030-56689-0_9 10.3390/diagnostics12081850 10.3390/su132212771 10.1007/s11042-020-09810-9 10.1016/j.bspc.2022.104434 10.1109/ACCESS.2022.3153108 10.1007/s11277-020-08045-z 10.1016/j.bspc.2023.105858 10.1016/j.mehy.2019.109531 10.1016/j.advengsoft.2016.01.008 10.3390/medicina58081090 10.3390/app10103429 10.1515/med-2018-0002 10.1016/j.bspc.2023.104614 10.1016/j.bspc.2021.102761 10.3390/app12083773 10.1007/s10489-020-01893-z |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2024.106093 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2024_106093 S1746809424001514 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-1d1dc0534f9cf9d9b80c5ff3d06bef45b5d27ea97baa9fde31e1da0278d07b233 |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001181603200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Tue Nov 18 21:49:33 EST 2025 Sat Nov 29 02:51:24 EST 2025 Sat Jul 13 15:31:27 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Brain tumor Deep learning Gated Recurrent Unit Networks Medical imaging Diagnosis Hybrid dwarf mongoose optimization algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-1d1dc0534f9cf9d9b80c5ff3d06bef45b5d27ea97baa9fde31e1da0278d07b233 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2024_106093 crossref_citationtrail_10_1016_j_bspc_2024_106093 elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106093 |
| PublicationCentury | 2000 |
| PublicationDate | May 2024 2024-05-00 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | França (b0025) 2020 Zhu (b0095) 2023; 280 Rajinikanth, Razmjooy, Ghadimi (b0015) 2022 Xie (b0040) 2022; 12 Zhang (b0090) 2023 Xiao (b0105) 2021; 571 Deb, Roy (b0165) 2021; 80 T. Nolan K. Smith, Editor. 2023. Mirjalili, Lewis (b0135) 2016; 95 Li (b0060) 2024 Elsayed, N., A.S. Maida, M. Bayoumi Biocell: official journal of the Sociedades Latinoamericanas de Microscopia Electronica... et. al, 2023. (2): p. 373. Maqsood, Damaševičius, Maskeliūnas (b0045) 2022; 58 Bo (b0055) 2022; 44 Mahdinia (b0035) 2021; 13 Li (b0150) 2021; 118 Navid Razmjooy, Ghadimi (b0120) 2018; 13 arXiv preprint arXiv:1812.07683, 2018. Bashkandi (b0070) 2023; 81 X.-S. Yang Rajinikanth (b0160) 2020; 10 W. Wang, et al. Hashim (b0140) 2021; 51 Yazdani, Jolai (b0125) 2016; 3 Tian (b0170) 2021; 68 Xing (b0100) 2022; 37 Alsaif (b0065) 2022; 12 Zhang (b0005) 2024; 90 Jiang (b0115) 2022; 55 Sharif (b0175) 2021; 7 Ren (b0050) 2023; 83 N.R.a.R.V.V.E.G. de Oliveira, Skin Color Segmentation Based on Artificial Neural Network Improved by a Modified Grasshopper Optimization Algorithm, in Metaheuristics and Optimization in Computer and Electrical Engineering. 2020, Springer-Verlag. p. 169-185. Xing (b0110) 2022; 71 Yu (b0030) 2020; 27 Cai (b0020) 2021; 2021 Toğaçar, Ergen, Cömert (b0155) 2020; 134 Rizwan (b0075) 2022; 10 2008. Mahdinia (10.1016/j.bspc.2024.106093_b0035) 2021; 13 Yu (10.1016/j.bspc.2024.106093_b0030) 2020; 27 Xing (10.1016/j.bspc.2024.106093_b0100) 2022; 37 Deb (10.1016/j.bspc.2024.106093_b0165) 2021; 80 Ren (10.1016/j.bspc.2024.106093_b0050) 2023; 83 Zhang (10.1016/j.bspc.2024.106093_b0005) 2024; 90 Alsaif (10.1016/j.bspc.2024.106093_b0065) 2022; 12 Rizwan (10.1016/j.bspc.2024.106093_b0075) 2022; 10 Navid Razmjooy (10.1016/j.bspc.2024.106093_b0120) 2018; 13 Maqsood (10.1016/j.bspc.2024.106093_b0045) 2022; 58 Bo (10.1016/j.bspc.2024.106093_b0055) 2022; 44 França (10.1016/j.bspc.2024.106093_b0025) 2020 Xie (10.1016/j.bspc.2024.106093_b0040) 2022; 12 Sharif (10.1016/j.bspc.2024.106093_b0175) 2021; 7 Jiang (10.1016/j.bspc.2024.106093_b0115) 2022; 55 10.1016/j.bspc.2024.106093_b0130 10.1016/j.bspc.2024.106093_b0010 Xing (10.1016/j.bspc.2024.106093_b0110) 2022; 71 Toğaçar (10.1016/j.bspc.2024.106093_b0155) 2020; 134 Yazdani (10.1016/j.bspc.2024.106093_b0125) 2016; 3 Rajinikanth (10.1016/j.bspc.2024.106093_b0015) 2022 Li (10.1016/j.bspc.2024.106093_b0060) 2024 Rajinikanth (10.1016/j.bspc.2024.106093_b0160) 2020; 10 Mirjalili (10.1016/j.bspc.2024.106093_b0135) 2016; 95 Li (10.1016/j.bspc.2024.106093_b0150) 2021; 118 10.1016/j.bspc.2024.106093_b0085 Zhu (10.1016/j.bspc.2024.106093_b0095) 2023; 280 Cai (10.1016/j.bspc.2024.106093_b0020) 2021; 2021 Bashkandi (10.1016/j.bspc.2024.106093_b0070) 2023; 81 Xiao (10.1016/j.bspc.2024.106093_b0105) 2021; 571 Hashim (10.1016/j.bspc.2024.106093_b0140) 2021; 51 10.1016/j.bspc.2024.106093_b0080 10.1016/j.bspc.2024.106093_b0145 Tian (10.1016/j.bspc.2024.106093_b0170) 2021; 68 Zhang (10.1016/j.bspc.2024.106093_b0090) 2023 |
| References_xml | – reference: T. Nolan, – volume: 68 year: 2021 ident: b0170 article-title: A new optimized sequential method for lung tumor diagnosis based on deep learning and converged search and rescue algorithm publication-title: Biomed. Signal Process. Control – volume: 571 start-page: 65 year: 2021 end-page: 86 ident: b0105 article-title: RTFN: A robust temporal feature network for time series classification publication-title: Inf. Sci. – volume: 83 year: 2023 ident: b0050 article-title: Brain tumor diagnosis using a step-by-step methodology based on courtship learning-based water strider algorithm publication-title: Biomed. Signal Process. Control – volume: 10 start-page: 29731 year: 2022 end-page: 29740 ident: b0075 article-title: Brain tumor and glioma grade classification using Gaussian convolutional neural network publication-title: IEEE Access – volume: 3 start-page: 24 year: 2016 end-page: 36 ident: b0125 article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm publication-title: J. Comput. Des. Eng. – volume: 51 start-page: 1531 year: 2021 end-page: 1551 ident: b0140 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. – reference: , K. Smith, Editor. 2023. – volume: 2021 year: 2021 ident: b0020 article-title: Breast cancer diagnosis by convolutional neural network and advanced thermal exchange optimization algorithm publication-title: Comput. Math. Methods Med. – year: 2024 ident: b0060 article-title: Evaluating the efficiency of CCHP systems in Xinjiang Uygur Autonomous Region: an optimal strategy based on improved mother optimization algorithmCase Studies publication-title: Therm. Eng. – start-page: 275 year: 2020 end-page: 292 ident: b0025 article-title: Using metaheuristics in discrete-event simulation publication-title: Metaheuristics and Optimization in Computer and Electrical Engineering – volume: 13 start-page: 9 year: 2018 end-page: 16 ident: b0120 article-title: A hybrid neural network – world cup optimization algorithm for melanoma detection publication-title: Open Med. – reference: arXiv preprint arXiv:1812.07683, 2018. – volume: 81 year: 2023 ident: b0070 article-title: Combination of political optimizer, particle swarm optimizer, and convolutional neural network for brain tumor detection publication-title: Biomed. Signal Process. Control – volume: 90 year: 2024 ident: b0005 article-title: A deep learning outline aimed at prompt skin cancer detection utilizing gated recurrent unit networks and improved orca predation algorithm publication-title: Biomed. Signal Process. Control – volume: 71 start-page: 1 year: 2022 end-page: 12 ident: b0110 article-title: An efficient federated distillation learning system for multitask time series classification publication-title: IEEE Trans. Instrum. Meas. – volume: 10 start-page: 3429 year: 2020 ident: b0160 article-title: A customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detection publication-title: Appl. Sci. – volume: 12 start-page: 3773 year: 2022 ident: b0065 article-title: A novel data augmentation-based brain tumor detection using convolutional neural network publication-title: Appl. Sci. – reference: W. Wang, et al., – volume: 55 year: 2022 ident: b0115 article-title: Optimal economic scheduling of microgrids considering renewable energy sources based on energy hub model using demand response and improved water wave optimization algorithm publication-title: J. Storage Mater. – volume: 44 start-page: 7109 year: 2022 end-page: 7131 ident: b0055 article-title: Optimum structure of a combined wind/photovoltaic/fuel cell-based on amended Dragon Fly optimization algorithm: a case study publication-title: Energy Sources Part A – reference: 2008. – year: 2023 ident: b0090 article-title: Deep learning in food category recognition publication-title: Inf. Fus. – year: 2022 ident: b0015 article-title: Design of a system for melanoma diagnosis using image processing and hybrid optimization techniques publication-title: Frontiers of Artificial Intelligence in Medical Imaging – reference: (2): p. 373. – volume: 37 start-page: 8583 year: 2022 end-page: 8610 ident: b0100 article-title: SelfMatch: Robust semisupervised time-series classification with self-distillation publication-title: Int. J. Intell. Syst. – reference: Elsayed, N., A.S. Maida, M. Bayoumi, – volume: 80 start-page: 2621 year: 2021 end-page: 2645 ident: b0165 article-title: Brain tumor detection based on hybrid deep neural network in MRI by adaptive squirrel search optimization publication-title: Multimed. Tools Appl. – reference: X.-S. Yang, – volume: 12 start-page: 1850 year: 2022 ident: b0040 article-title: Convolutional neural network techniques for brain tumor classification (from 2015 to 2022): Review, challenges, and future perspectives publication-title: Diagnostics – volume: 7 start-page: 2023 year: 2021 end-page: 2036 ident: b0175 article-title: An improved framework for brain tumor analysis using MRI based on YOLOv2 and convolutional neural network publication-title: Complex Intelligent Syst. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0135 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 280 year: 2023 ident: b0095 article-title: MEEDNets: medical image classification via ensemble bio-inspired evolutionary densenets publication-title: Knowl.-Based Syst. – volume: 27 year: 2020 ident: b0030 article-title: Energy management of wind-PV-storage-grid based large electricity consumer using robust optimization technique publication-title: J. Storage Mater. – volume: 118 start-page: 815 year: 2021 end-page: 827 ident: b0150 article-title: Research on GRU neural network satellite traffic prediction based on transfer learning publication-title: Wirel. Pers. Commun. – volume: 134 year: 2020 ident: b0155 article-title: BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model publication-title: Med. Hypotheses – volume: 13 start-page: 12771 year: 2021 ident: b0035 article-title: Optimization of PEMFC model parameters using meta-heuristics publication-title: Sustainability – reference: N.R.a.R.V.V.E.G. de Oliveira, Skin Color Segmentation Based on Artificial Neural Network Improved by a Modified Grasshopper Optimization Algorithm, in Metaheuristics and Optimization in Computer and Electrical Engineering. 2020, Springer-Verlag. p. 169-185. – volume: 58 start-page: 1090 year: 2022 ident: b0045 article-title: Multi-modal brain tumor detection using deep neural network and multiclass SVM publication-title: Medicina – reference: Biocell: official journal of the Sociedades Latinoamericanas de Microscopia Electronica... et. al, 2023. – volume: 280 year: 2023 ident: 10.1016/j.bspc.2024.106093_b0095 article-title: MEEDNets: medical image classification via ensemble bio-inspired evolutionary densenets publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.111035 – year: 2023 ident: 10.1016/j.bspc.2024.106093_b0090 article-title: Deep learning in food category recognition publication-title: Inf. Fus. doi: 10.1016/j.inffus.2023.101859 – volume: 7 start-page: 2023 year: 2021 ident: 10.1016/j.bspc.2024.106093_b0175 article-title: An improved framework for brain tumor analysis using MRI based on YOLOv2 and convolutional neural network publication-title: Complex Intelligent Syst. doi: 10.1007/s40747-021-00310-3 – volume: 571 start-page: 65 year: 2021 ident: 10.1016/j.bspc.2024.106093_b0105 article-title: RTFN: A robust temporal feature network for time series classification publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.04.053 – volume: 55 year: 2022 ident: 10.1016/j.bspc.2024.106093_b0115 article-title: Optimal economic scheduling of microgrids considering renewable energy sources based on energy hub model using demand response and improved water wave optimization algorithm publication-title: J. Storage Mater. – volume: 27 year: 2020 ident: 10.1016/j.bspc.2024.106093_b0030 article-title: Energy management of wind-PV-storage-grid based large electricity consumer using robust optimization technique publication-title: J. Storage Mater. – ident: 10.1016/j.bspc.2024.106093_b0145 doi: 10.14569/IJACSA.2019.0100582 – volume: 2021 year: 2021 ident: 10.1016/j.bspc.2024.106093_b0020 article-title: Breast cancer diagnosis by convolutional neural network and advanced thermal exchange optimization algorithm publication-title: Comput. Math. Methods Med. doi: 10.1155/2021/5595180 – volume: 44 start-page: 7109 issue: 3 year: 2022 ident: 10.1016/j.bspc.2024.106093_b0055 article-title: Optimum structure of a combined wind/photovoltaic/fuel cell-based on amended Dragon Fly optimization algorithm: a case study publication-title: Energy Sources Part A doi: 10.1080/15567036.2022.2105453 – year: 2022 ident: 10.1016/j.bspc.2024.106093_b0015 article-title: Design of a system for melanoma diagnosis using image processing and hybrid optimization techniques – volume: 3 start-page: 24 issue: 1 year: 2016 ident: 10.1016/j.bspc.2024.106093_b0125 article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm publication-title: J. Comput. Des. Eng. – volume: 71 start-page: 1 year: 2022 ident: 10.1016/j.bspc.2024.106093_b0110 article-title: An efficient federated distillation learning system for multitask time series classification publication-title: IEEE Trans. Instrum. Meas. – ident: 10.1016/j.bspc.2024.106093_b0085 doi: 10.32604/biocell.2023.025905 – volume: 37 start-page: 8583 issue: 11 year: 2022 ident: 10.1016/j.bspc.2024.106093_b0100 article-title: SelfMatch: Robust semisupervised time-series classification with self-distillation publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22957 – ident: 10.1016/j.bspc.2024.106093_b0010 doi: 10.1007/978-3-030-56689-0_9 – volume: 12 start-page: 1850 issue: 8 year: 2022 ident: 10.1016/j.bspc.2024.106093_b0040 article-title: Convolutional neural network techniques for brain tumor classification (from 2015 to 2022): Review, challenges, and future perspectives publication-title: Diagnostics doi: 10.3390/diagnostics12081850 – volume: 13 start-page: 12771 issue: 22 year: 2021 ident: 10.1016/j.bspc.2024.106093_b0035 article-title: Optimization of PEMFC model parameters using meta-heuristics publication-title: Sustainability doi: 10.3390/su132212771 – volume: 80 start-page: 2621 year: 2021 ident: 10.1016/j.bspc.2024.106093_b0165 article-title: Brain tumor detection based on hybrid deep neural network in MRI by adaptive squirrel search optimization publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09810-9 – volume: 81 year: 2023 ident: 10.1016/j.bspc.2024.106093_b0070 article-title: Combination of political optimizer, particle swarm optimizer, and convolutional neural network for brain tumor detection publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104434 – ident: 10.1016/j.bspc.2024.106093_b0130 – year: 2024 ident: 10.1016/j.bspc.2024.106093_b0060 article-title: Evaluating the efficiency of CCHP systems in Xinjiang Uygur Autonomous Region: an optimal strategy based on improved mother optimization algorithmCase Studies publication-title: Therm. Eng. – volume: 10 start-page: 29731 year: 2022 ident: 10.1016/j.bspc.2024.106093_b0075 article-title: Brain tumor and glioma grade classification using Gaussian convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3153108 – volume: 118 start-page: 815 year: 2021 ident: 10.1016/j.bspc.2024.106093_b0150 article-title: Research on GRU neural network satellite traffic prediction based on transfer learning publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-020-08045-z – volume: 90 year: 2024 ident: 10.1016/j.bspc.2024.106093_b0005 article-title: A deep learning outline aimed at prompt skin cancer detection utilizing gated recurrent unit networks and improved orca predation algorithm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105858 – volume: 134 year: 2020 ident: 10.1016/j.bspc.2024.106093_b0155 article-title: BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2019.109531 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.bspc.2024.106093_b0135 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: 10.1016/j.bspc.2024.106093_b0080 – volume: 58 start-page: 1090 issue: 8 year: 2022 ident: 10.1016/j.bspc.2024.106093_b0045 article-title: Multi-modal brain tumor detection using deep neural network and multiclass SVM publication-title: Medicina doi: 10.3390/medicina58081090 – volume: 10 start-page: 3429 issue: 10 year: 2020 ident: 10.1016/j.bspc.2024.106093_b0160 article-title: A customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detection publication-title: Appl. Sci. doi: 10.3390/app10103429 – volume: 13 start-page: 9 year: 2018 ident: 10.1016/j.bspc.2024.106093_b0120 article-title: A hybrid neural network – world cup optimization algorithm for melanoma detection publication-title: Open Med. doi: 10.1515/med-2018-0002 – start-page: 275 year: 2020 ident: 10.1016/j.bspc.2024.106093_b0025 article-title: Using metaheuristics in discrete-event simulation – volume: 83 year: 2023 ident: 10.1016/j.bspc.2024.106093_b0050 article-title: Brain tumor diagnosis using a step-by-step methodology based on courtship learning-based water strider algorithm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.104614 – volume: 68 year: 2021 ident: 10.1016/j.bspc.2024.106093_b0170 article-title: A new optimized sequential method for lung tumor diagnosis based on deep learning and converged search and rescue algorithm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102761 – volume: 12 start-page: 3773 issue: 8 year: 2022 ident: 10.1016/j.bspc.2024.106093_b0065 article-title: A novel data augmentation-based brain tumor detection using convolutional neural network publication-title: Appl. Sci. doi: 10.3390/app12083773 – volume: 51 start-page: 1531 issue: 3 year: 2021 ident: 10.1016/j.bspc.2024.106093_b0140 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. doi: 10.1007/s10489-020-01893-z |
| SSID | ssj0048714 |
| Score | 2.4311693 |
| Snippet | •Novel approach combining deep learning and medical imaging for brain tumor diagnosis.•Gated Recurrent Unit networks optimized by an improved political... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106093 |
| SubjectTerms | Brain tumor Deep learning Diagnosis Gated Recurrent Unit Networks Hybrid dwarf mongoose optimization algorithm Medical imaging |
| Title | Early detection of brain tumors: Harnessing the power of GRU networks and hybrid dwarf mongoose optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.bspc.2024.106093 |
| Volume | 91 |
| WOSCitedRecordID | wos001181603200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcUHmJFop84BalShynSXqrUKEgVCHUouUU-ZV9aDdZpdnVtr-An804tpNtgYoeuERR5DhW5tN4bM_3DULvEkE5jUXiS0ozn8pU-IzpHTEVH6ogkNTUIvj-JTk7S4fD7Otg8NNxYVazpCzT9Tpb_FdTwzMwtqbO3sPcXafwAO7B6HAFs8P1nwxvJIulapRw0SDXdSC8Zjmv6jYD7pTV2sN1TCldKU23-_jtwitNXriRbh5faUKXpws7F54uS1Tp9PYK3Mzc8jc9NhtV9aQZz28cD7ekfsO4nIx0wLswhARHibQZ8p3PsbvWP5brSZ86NGbwo7RCxKg_jbqeT6vKzgsuG99uWhDapwhaP5tQrYNs6hs7R2zKdllPCkvVwNRO_M3Jm_2G6QG_XGgRSkIP-sY3FbVvzXRd_qFLbZvmuo9c95GbPh6gbZLEGfjH7eNPJ8PPblaHdV2rE98N3BKwTK7g7ZH8OcjZCFzOd9ATu-LAxwYpT9FAlc_Q4w0dyudo1WIGd5jBVYFbzGCDmSPcIwYDYnCLGN0KEIMdYjAYFhvE4BYx2CEGbyIGd4h5gS4-nJy_P_VtQQ5fREHQ-KEMpQCvTYtMFJnMeBqIuCgiGRxyVdCYx5IkimUJZywrpIpCFUqmz7ZlkHASRS_RVlmV6hXCsVKECBGRgnAKS2gWURlGhJGUMM54uotC9wdzYdXqddGUWf532-0ir3tnYbRa7mwdO8PkNto0UWQOOLvjvb17feU1etTj_w3aauql2kcPxaqZXNZvLch-Aa5epyg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+detection+of+brain+tumors%3A+Harnessing+the+power+of+GRU+networks+and+hybrid+dwarf+mongoose+optimization+algorithm&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yang%2C+Yuxia&rft.au=Chaoluomeng&rft.au=Razmjooy%2C+Navid&rft.date=2024-05-01&rft.issn=1746-8094&rft.volume=91&rft.spage=106093&rft_id=info:doi/10.1016%2Fj.bspc.2024.106093&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106093 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |