Early detection of brain tumors: Harnessing the power of GRU networks and hybrid dwarf mongoose optimization algorithm

•Novel approach combining deep learning and medical imaging for brain tumor diagnosis.•Gated Recurrent Unit networks optimized by an improved political optimizer.•Ability to analyze large and complex datasets.•High accuracy and early-stage diagnosis capabilities.•Improved political optimizer algorit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical signal processing and control Jg. 91; S. 106093
Hauptverfasser: Yang, Yuxia, Chaoluomeng, Razmjooy, Navid
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.05.2024
Schlagworte:
ISSN:1746-8094, 1746-8108
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Novel approach combining deep learning and medical imaging for brain tumor diagnosis.•Gated Recurrent Unit networks optimized by an improved political optimizer.•Ability to analyze large and complex datasets.•High accuracy and early-stage diagnosis capabilities.•Improved political optimizer algorithm enhances GRU network performance. Brain tumor detection is a challenging problem that requires accurate and robust methods to identify and locate the abnormal regions in the brain images. MRI is the most commonly used imaging modality for brain tumor diagnosis, as it can provide high-resolution and contrast images of the brain tissues. However, manual analysis of MRI images by human experts is time-consuming, subjective, and prone to errors. Therefore, there is a need for automated and intelligent methods that can analyze the MRI images and detect brain tumors effectively and efficiently. In this paper, we propose a novel machine learning method that combines the advantages of the Gated Recurrent Unit (GRU) networks and the Enhanced Hybrid Dwarf Mongoose Optimization (EHDMO) algorithm for brain tumor detection. The GRU networks are a type of Recurrent Neural Network (RNN) that can process sequential data, such as natural language or time series. We employ the EHDMO algorithm to fine-tune the parameters of the GRU networks, such as the weight matrices and bias vectors for each gate and the candidate's hidden state, along with the number of hidden units in the network. The proposed method is applied to the brain tumor detection problem using the “Brain-Tumor-Progression” dataset. Results show that the proposed method achieves a sensitivity of 0.98, a specificity of 0.97, a PPV of 0.98, an NPV of 0.98, and an accuracy of 0.95. These results indicate that the proposed method can accurately and robustly detect brain tumors from MRI images. The method also is compared with some of the most recent methods, such as BrainMRNet, VGG19, ASSO, CNN/POA, and YOLOv2. The proposed method outperforms these methods in terms of sensitivity, specificity, PPV, NPV, and accuracy, demonstrating its effectiveness and efficiency.
AbstractList •Novel approach combining deep learning and medical imaging for brain tumor diagnosis.•Gated Recurrent Unit networks optimized by an improved political optimizer.•Ability to analyze large and complex datasets.•High accuracy and early-stage diagnosis capabilities.•Improved political optimizer algorithm enhances GRU network performance. Brain tumor detection is a challenging problem that requires accurate and robust methods to identify and locate the abnormal regions in the brain images. MRI is the most commonly used imaging modality for brain tumor diagnosis, as it can provide high-resolution and contrast images of the brain tissues. However, manual analysis of MRI images by human experts is time-consuming, subjective, and prone to errors. Therefore, there is a need for automated and intelligent methods that can analyze the MRI images and detect brain tumors effectively and efficiently. In this paper, we propose a novel machine learning method that combines the advantages of the Gated Recurrent Unit (GRU) networks and the Enhanced Hybrid Dwarf Mongoose Optimization (EHDMO) algorithm for brain tumor detection. The GRU networks are a type of Recurrent Neural Network (RNN) that can process sequential data, such as natural language or time series. We employ the EHDMO algorithm to fine-tune the parameters of the GRU networks, such as the weight matrices and bias vectors for each gate and the candidate's hidden state, along with the number of hidden units in the network. The proposed method is applied to the brain tumor detection problem using the “Brain-Tumor-Progression” dataset. Results show that the proposed method achieves a sensitivity of 0.98, a specificity of 0.97, a PPV of 0.98, an NPV of 0.98, and an accuracy of 0.95. These results indicate that the proposed method can accurately and robustly detect brain tumors from MRI images. The method also is compared with some of the most recent methods, such as BrainMRNet, VGG19, ASSO, CNN/POA, and YOLOv2. The proposed method outperforms these methods in terms of sensitivity, specificity, PPV, NPV, and accuracy, demonstrating its effectiveness and efficiency.
ArticleNumber 106093
Author Chaoluomeng
Razmjooy, Navid
Yang, Yuxia
Author_xml – sequence: 1
  givenname: Yuxia
  surname: Yang
  fullname: Yang, Yuxia
  organization: College of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
– sequence: 2
  surname: Chaoluomeng
  fullname: Chaoluomeng
  email: chaoluomen@126.com
  organization: College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
– sequence: 3
  givenname: Navid
  surname: Razmjooy
  fullname: Razmjooy, Navid
  organization: Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
BookMark eNp9kM1KAzEURoNUsK2-gKu8wNRk_kfcSKmtUBDErkMmuWlTZ5KSxJb69M60unHR1b1c7vngOyM0MNYAQveUTCih-cN2UvudmMQkTrtDTqrkCg1pkeZRSUk5-NtJld6gkfdbQtKyoOkQ7WfcNUcsIYAI2hpsFa4d1waHr9Y6_4gX3BnwXps1DhvAO3sA13_N31fYQDhY9-kxNxJvjrXTEssDdwq31qyt9YDtLuhWf_NTOG_W1umwaW_RteKNh7vfOUarl9nHdBEt3-av0-dlJBJCQkQllYJkSaoqoSpZ1SURmVKJJHkNKs3qTMYF8KqoOa-UhIQClZzERSlJUcdJMkbxOVc4670DxXZOt9wdGSWsN8e2rDfHenPsbK6Dyn-Q0OFUIHRmmsvo0xmFrtReg2NeaDACpHadYCatvoT_AHdmj0Y
CitedBy_id crossref_primary_10_1038_s41598_024_71893_3
crossref_primary_10_1038_s41598_025_91784_5
crossref_primary_10_1016_j_bspc_2025_107560
crossref_primary_10_1016_j_bspc_2025_108582
crossref_primary_10_1007_s00521_025_11216_3
crossref_primary_10_13005_bpj_3171
crossref_primary_10_1038_s41598_025_14471_5
crossref_primary_10_1038_s41598_024_63955_3
crossref_primary_10_1007_s12144_024_06972_9
crossref_primary_10_3390_jimaging11010002
crossref_primary_10_1038_s41598_024_77523_2
crossref_primary_10_1038_s41598_024_77585_2
crossref_primary_10_1016_j_eij_2025_100619
crossref_primary_10_1038_s41598_024_77120_3
crossref_primary_10_1038_s41598_025_16499_z
crossref_primary_10_1038_s41598_025_98486_y
Cites_doi 10.1016/j.knosys.2023.111035
10.1016/j.inffus.2023.101859
10.1007/s40747-021-00310-3
10.1016/j.ins.2021.04.053
10.14569/IJACSA.2019.0100582
10.1155/2021/5595180
10.1080/15567036.2022.2105453
10.32604/biocell.2023.025905
10.1002/int.22957
10.1007/978-3-030-56689-0_9
10.3390/diagnostics12081850
10.3390/su132212771
10.1007/s11042-020-09810-9
10.1016/j.bspc.2022.104434
10.1109/ACCESS.2022.3153108
10.1007/s11277-020-08045-z
10.1016/j.bspc.2023.105858
10.1016/j.mehy.2019.109531
10.1016/j.advengsoft.2016.01.008
10.3390/medicina58081090
10.3390/app10103429
10.1515/med-2018-0002
10.1016/j.bspc.2023.104614
10.1016/j.bspc.2021.102761
10.3390/app12083773
10.1007/s10489-020-01893-z
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2024.106093
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2024_106093
S1746809424001514
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-1d1dc0534f9cf9d9b80c5ff3d06bef45b5d27ea97baa9fde31e1da0278d07b233
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001181603200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Tue Nov 18 21:49:33 EST 2025
Sat Nov 29 02:51:24 EST 2025
Sat Jul 13 15:31:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Brain tumor
Deep learning
Gated Recurrent Unit Networks
Medical imaging
Diagnosis
Hybrid dwarf mongoose optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-1d1dc0534f9cf9d9b80c5ff3d06bef45b5d27ea97baa9fde31e1da0278d07b233
ParticipantIDs crossref_primary_10_1016_j_bspc_2024_106093
crossref_citationtrail_10_1016_j_bspc_2024_106093
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106093
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References França (b0025) 2020
Zhu (b0095) 2023; 280
Rajinikanth, Razmjooy, Ghadimi (b0015) 2022
Xie (b0040) 2022; 12
Zhang (b0090) 2023
Xiao (b0105) 2021; 571
Deb, Roy (b0165) 2021; 80
T. Nolan
K. Smith, Editor. 2023.
Mirjalili, Lewis (b0135) 2016; 95
Li (b0060) 2024
Elsayed, N., A.S. Maida, M. Bayoumi
Biocell: official journal of the Sociedades Latinoamericanas de Microscopia Electronica... et. al, 2023.
(2): p. 373.
Maqsood, Damaševičius, Maskeliūnas (b0045) 2022; 58
Bo (b0055) 2022; 44
Mahdinia (b0035) 2021; 13
Li (b0150) 2021; 118
Navid Razmjooy, Ghadimi (b0120) 2018; 13
arXiv preprint arXiv:1812.07683, 2018.
Bashkandi (b0070) 2023; 81
X.-S. Yang
Rajinikanth (b0160) 2020; 10
W. Wang, et al.
Hashim (b0140) 2021; 51
Yazdani, Jolai (b0125) 2016; 3
Tian (b0170) 2021; 68
Xing (b0100) 2022; 37
Alsaif (b0065) 2022; 12
Zhang (b0005) 2024; 90
Jiang (b0115) 2022; 55
Sharif (b0175) 2021; 7
Ren (b0050) 2023; 83
N.R.a.R.V.V.E.G. de Oliveira, Skin Color Segmentation Based on Artificial Neural Network Improved by a Modified Grasshopper Optimization Algorithm, in Metaheuristics and Optimization in Computer and Electrical Engineering. 2020, Springer-Verlag. p. 169-185.
Xing (b0110) 2022; 71
Yu (b0030) 2020; 27
Cai (b0020) 2021; 2021
Toğaçar, Ergen, Cömert (b0155) 2020; 134
Rizwan (b0075) 2022; 10
2008.
Mahdinia (10.1016/j.bspc.2024.106093_b0035) 2021; 13
Yu (10.1016/j.bspc.2024.106093_b0030) 2020; 27
Xing (10.1016/j.bspc.2024.106093_b0100) 2022; 37
Deb (10.1016/j.bspc.2024.106093_b0165) 2021; 80
Ren (10.1016/j.bspc.2024.106093_b0050) 2023; 83
Zhang (10.1016/j.bspc.2024.106093_b0005) 2024; 90
Alsaif (10.1016/j.bspc.2024.106093_b0065) 2022; 12
Rizwan (10.1016/j.bspc.2024.106093_b0075) 2022; 10
Navid Razmjooy (10.1016/j.bspc.2024.106093_b0120) 2018; 13
Maqsood (10.1016/j.bspc.2024.106093_b0045) 2022; 58
Bo (10.1016/j.bspc.2024.106093_b0055) 2022; 44
França (10.1016/j.bspc.2024.106093_b0025) 2020
Xie (10.1016/j.bspc.2024.106093_b0040) 2022; 12
Sharif (10.1016/j.bspc.2024.106093_b0175) 2021; 7
Jiang (10.1016/j.bspc.2024.106093_b0115) 2022; 55
10.1016/j.bspc.2024.106093_b0130
10.1016/j.bspc.2024.106093_b0010
Xing (10.1016/j.bspc.2024.106093_b0110) 2022; 71
Toğaçar (10.1016/j.bspc.2024.106093_b0155) 2020; 134
Yazdani (10.1016/j.bspc.2024.106093_b0125) 2016; 3
Rajinikanth (10.1016/j.bspc.2024.106093_b0015) 2022
Li (10.1016/j.bspc.2024.106093_b0060) 2024
Rajinikanth (10.1016/j.bspc.2024.106093_b0160) 2020; 10
Mirjalili (10.1016/j.bspc.2024.106093_b0135) 2016; 95
Li (10.1016/j.bspc.2024.106093_b0150) 2021; 118
10.1016/j.bspc.2024.106093_b0085
Zhu (10.1016/j.bspc.2024.106093_b0095) 2023; 280
Cai (10.1016/j.bspc.2024.106093_b0020) 2021; 2021
Bashkandi (10.1016/j.bspc.2024.106093_b0070) 2023; 81
Xiao (10.1016/j.bspc.2024.106093_b0105) 2021; 571
Hashim (10.1016/j.bspc.2024.106093_b0140) 2021; 51
10.1016/j.bspc.2024.106093_b0080
10.1016/j.bspc.2024.106093_b0145
Tian (10.1016/j.bspc.2024.106093_b0170) 2021; 68
Zhang (10.1016/j.bspc.2024.106093_b0090) 2023
References_xml – reference: T. Nolan,
– volume: 68
  year: 2021
  ident: b0170
  article-title: A new optimized sequential method for lung tumor diagnosis based on deep learning and converged search and rescue algorithm
  publication-title: Biomed. Signal Process. Control
– volume: 571
  start-page: 65
  year: 2021
  end-page: 86
  ident: b0105
  article-title: RTFN: A robust temporal feature network for time series classification
  publication-title: Inf. Sci.
– volume: 83
  year: 2023
  ident: b0050
  article-title: Brain tumor diagnosis using a step-by-step methodology based on courtship learning-based water strider algorithm
  publication-title: Biomed. Signal Process. Control
– volume: 10
  start-page: 29731
  year: 2022
  end-page: 29740
  ident: b0075
  article-title: Brain tumor and glioma grade classification using Gaussian convolutional neural network
  publication-title: IEEE Access
– volume: 3
  start-page: 24
  year: 2016
  end-page: 36
  ident: b0125
  article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm
  publication-title: J. Comput. Des. Eng.
– volume: 51
  start-page: 1531
  year: 2021
  end-page: 1551
  ident: b0140
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
– reference: , K. Smith, Editor. 2023.
– volume: 2021
  year: 2021
  ident: b0020
  article-title: Breast cancer diagnosis by convolutional neural network and advanced thermal exchange optimization algorithm
  publication-title: Comput. Math. Methods Med.
– year: 2024
  ident: b0060
  article-title: Evaluating the efficiency of CCHP systems in Xinjiang Uygur Autonomous Region: an optimal strategy based on improved mother optimization algorithmCase Studies
  publication-title: Therm. Eng.
– start-page: 275
  year: 2020
  end-page: 292
  ident: b0025
  article-title: Using metaheuristics in discrete-event simulation
  publication-title: Metaheuristics and Optimization in Computer and Electrical Engineering
– volume: 13
  start-page: 9
  year: 2018
  end-page: 16
  ident: b0120
  article-title: A hybrid neural network – world cup optimization algorithm for melanoma detection
  publication-title: Open Med.
– reference: arXiv preprint arXiv:1812.07683, 2018.
– volume: 81
  year: 2023
  ident: b0070
  article-title: Combination of political optimizer, particle swarm optimizer, and convolutional neural network for brain tumor detection
  publication-title: Biomed. Signal Process. Control
– volume: 90
  year: 2024
  ident: b0005
  article-title: A deep learning outline aimed at prompt skin cancer detection utilizing gated recurrent unit networks and improved orca predation algorithm
  publication-title: Biomed. Signal Process. Control
– volume: 71
  start-page: 1
  year: 2022
  end-page: 12
  ident: b0110
  article-title: An efficient federated distillation learning system for multitask time series classification
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 10
  start-page: 3429
  year: 2020
  ident: b0160
  article-title: A customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detection
  publication-title: Appl. Sci.
– volume: 12
  start-page: 3773
  year: 2022
  ident: b0065
  article-title: A novel data augmentation-based brain tumor detection using convolutional neural network
  publication-title: Appl. Sci.
– reference: W. Wang, et al.,
– volume: 55
  year: 2022
  ident: b0115
  article-title: Optimal economic scheduling of microgrids considering renewable energy sources based on energy hub model using demand response and improved water wave optimization algorithm
  publication-title: J. Storage Mater.
– volume: 44
  start-page: 7109
  year: 2022
  end-page: 7131
  ident: b0055
  article-title: Optimum structure of a combined wind/photovoltaic/fuel cell-based on amended Dragon Fly optimization algorithm: a case study
  publication-title: Energy Sources Part A
– reference: 2008.
– year: 2023
  ident: b0090
  article-title: Deep learning in food category recognition
  publication-title: Inf. Fus.
– year: 2022
  ident: b0015
  article-title: Design of a system for melanoma diagnosis using image processing and hybrid optimization techniques
  publication-title: Frontiers of Artificial Intelligence in Medical Imaging
– reference: (2): p. 373.
– volume: 37
  start-page: 8583
  year: 2022
  end-page: 8610
  ident: b0100
  article-title: SelfMatch: Robust semisupervised time-series classification with self-distillation
  publication-title: Int. J. Intell. Syst.
– reference: Elsayed, N., A.S. Maida, M. Bayoumi,
– volume: 80
  start-page: 2621
  year: 2021
  end-page: 2645
  ident: b0165
  article-title: Brain tumor detection based on hybrid deep neural network in MRI by adaptive squirrel search optimization
  publication-title: Multimed. Tools Appl.
– reference: X.-S. Yang,
– volume: 12
  start-page: 1850
  year: 2022
  ident: b0040
  article-title: Convolutional neural network techniques for brain tumor classification (from 2015 to 2022): Review, challenges, and future perspectives
  publication-title: Diagnostics
– volume: 7
  start-page: 2023
  year: 2021
  end-page: 2036
  ident: b0175
  article-title: An improved framework for brain tumor analysis using MRI based on YOLOv2 and convolutional neural network
  publication-title: Complex Intelligent Syst.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0135
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 280
  year: 2023
  ident: b0095
  article-title: MEEDNets: medical image classification via ensemble bio-inspired evolutionary densenets
  publication-title: Knowl.-Based Syst.
– volume: 27
  year: 2020
  ident: b0030
  article-title: Energy management of wind-PV-storage-grid based large electricity consumer using robust optimization technique
  publication-title: J. Storage Mater.
– volume: 118
  start-page: 815
  year: 2021
  end-page: 827
  ident: b0150
  article-title: Research on GRU neural network satellite traffic prediction based on transfer learning
  publication-title: Wirel. Pers. Commun.
– volume: 134
  year: 2020
  ident: b0155
  article-title: BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model
  publication-title: Med. Hypotheses
– volume: 13
  start-page: 12771
  year: 2021
  ident: b0035
  article-title: Optimization of PEMFC model parameters using meta-heuristics
  publication-title: Sustainability
– reference: N.R.a.R.V.V.E.G. de Oliveira, Skin Color Segmentation Based on Artificial Neural Network Improved by a Modified Grasshopper Optimization Algorithm, in Metaheuristics and Optimization in Computer and Electrical Engineering. 2020, Springer-Verlag. p. 169-185.
– volume: 58
  start-page: 1090
  year: 2022
  ident: b0045
  article-title: Multi-modal brain tumor detection using deep neural network and multiclass SVM
  publication-title: Medicina
– reference: Biocell: official journal of the Sociedades Latinoamericanas de Microscopia Electronica... et. al, 2023.
– volume: 280
  year: 2023
  ident: 10.1016/j.bspc.2024.106093_b0095
  article-title: MEEDNets: medical image classification via ensemble bio-inspired evolutionary densenets
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.111035
– year: 2023
  ident: 10.1016/j.bspc.2024.106093_b0090
  article-title: Deep learning in food category recognition
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2023.101859
– volume: 7
  start-page: 2023
  year: 2021
  ident: 10.1016/j.bspc.2024.106093_b0175
  article-title: An improved framework for brain tumor analysis using MRI based on YOLOv2 and convolutional neural network
  publication-title: Complex Intelligent Syst.
  doi: 10.1007/s40747-021-00310-3
– volume: 571
  start-page: 65
  year: 2021
  ident: 10.1016/j.bspc.2024.106093_b0105
  article-title: RTFN: A robust temporal feature network for time series classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.04.053
– volume: 55
  year: 2022
  ident: 10.1016/j.bspc.2024.106093_b0115
  article-title: Optimal economic scheduling of microgrids considering renewable energy sources based on energy hub model using demand response and improved water wave optimization algorithm
  publication-title: J. Storage Mater.
– volume: 27
  year: 2020
  ident: 10.1016/j.bspc.2024.106093_b0030
  article-title: Energy management of wind-PV-storage-grid based large electricity consumer using robust optimization technique
  publication-title: J. Storage Mater.
– ident: 10.1016/j.bspc.2024.106093_b0145
  doi: 10.14569/IJACSA.2019.0100582
– volume: 2021
  year: 2021
  ident: 10.1016/j.bspc.2024.106093_b0020
  article-title: Breast cancer diagnosis by convolutional neural network and advanced thermal exchange optimization algorithm
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/5595180
– volume: 44
  start-page: 7109
  issue: 3
  year: 2022
  ident: 10.1016/j.bspc.2024.106093_b0055
  article-title: Optimum structure of a combined wind/photovoltaic/fuel cell-based on amended Dragon Fly optimization algorithm: a case study
  publication-title: Energy Sources Part A
  doi: 10.1080/15567036.2022.2105453
– year: 2022
  ident: 10.1016/j.bspc.2024.106093_b0015
  article-title: Design of a system for melanoma diagnosis using image processing and hybrid optimization techniques
– volume: 3
  start-page: 24
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2024.106093_b0125
  article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm
  publication-title: J. Comput. Des. Eng.
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2024.106093_b0110
  article-title: An efficient federated distillation learning system for multitask time series classification
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 10.1016/j.bspc.2024.106093_b0085
  doi: 10.32604/biocell.2023.025905
– volume: 37
  start-page: 8583
  issue: 11
  year: 2022
  ident: 10.1016/j.bspc.2024.106093_b0100
  article-title: SelfMatch: Robust semisupervised time-series classification with self-distillation
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22957
– ident: 10.1016/j.bspc.2024.106093_b0010
  doi: 10.1007/978-3-030-56689-0_9
– volume: 12
  start-page: 1850
  issue: 8
  year: 2022
  ident: 10.1016/j.bspc.2024.106093_b0040
  article-title: Convolutional neural network techniques for brain tumor classification (from 2015 to 2022): Review, challenges, and future perspectives
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12081850
– volume: 13
  start-page: 12771
  issue: 22
  year: 2021
  ident: 10.1016/j.bspc.2024.106093_b0035
  article-title: Optimization of PEMFC model parameters using meta-heuristics
  publication-title: Sustainability
  doi: 10.3390/su132212771
– volume: 80
  start-page: 2621
  year: 2021
  ident: 10.1016/j.bspc.2024.106093_b0165
  article-title: Brain tumor detection based on hybrid deep neural network in MRI by adaptive squirrel search optimization
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09810-9
– volume: 81
  year: 2023
  ident: 10.1016/j.bspc.2024.106093_b0070
  article-title: Combination of political optimizer, particle swarm optimizer, and convolutional neural network for brain tumor detection
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104434
– ident: 10.1016/j.bspc.2024.106093_b0130
– year: 2024
  ident: 10.1016/j.bspc.2024.106093_b0060
  article-title: Evaluating the efficiency of CCHP systems in Xinjiang Uygur Autonomous Region: an optimal strategy based on improved mother optimization algorithmCase Studies
  publication-title: Therm. Eng.
– volume: 10
  start-page: 29731
  year: 2022
  ident: 10.1016/j.bspc.2024.106093_b0075
  article-title: Brain tumor and glioma grade classification using Gaussian convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3153108
– volume: 118
  start-page: 815
  year: 2021
  ident: 10.1016/j.bspc.2024.106093_b0150
  article-title: Research on GRU neural network satellite traffic prediction based on transfer learning
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-020-08045-z
– volume: 90
  year: 2024
  ident: 10.1016/j.bspc.2024.106093_b0005
  article-title: A deep learning outline aimed at prompt skin cancer detection utilizing gated recurrent unit networks and improved orca predation algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105858
– volume: 134
  year: 2020
  ident: 10.1016/j.bspc.2024.106093_b0155
  article-title: BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2019.109531
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.bspc.2024.106093_b0135
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 10.1016/j.bspc.2024.106093_b0080
– volume: 58
  start-page: 1090
  issue: 8
  year: 2022
  ident: 10.1016/j.bspc.2024.106093_b0045
  article-title: Multi-modal brain tumor detection using deep neural network and multiclass SVM
  publication-title: Medicina
  doi: 10.3390/medicina58081090
– volume: 10
  start-page: 3429
  issue: 10
  year: 2020
  ident: 10.1016/j.bspc.2024.106093_b0160
  article-title: A customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detection
  publication-title: Appl. Sci.
  doi: 10.3390/app10103429
– volume: 13
  start-page: 9
  year: 2018
  ident: 10.1016/j.bspc.2024.106093_b0120
  article-title: A hybrid neural network – world cup optimization algorithm for melanoma detection
  publication-title: Open Med.
  doi: 10.1515/med-2018-0002
– start-page: 275
  year: 2020
  ident: 10.1016/j.bspc.2024.106093_b0025
  article-title: Using metaheuristics in discrete-event simulation
– volume: 83
  year: 2023
  ident: 10.1016/j.bspc.2024.106093_b0050
  article-title: Brain tumor diagnosis using a step-by-step methodology based on courtship learning-based water strider algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.104614
– volume: 68
  year: 2021
  ident: 10.1016/j.bspc.2024.106093_b0170
  article-title: A new optimized sequential method for lung tumor diagnosis based on deep learning and converged search and rescue algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102761
– volume: 12
  start-page: 3773
  issue: 8
  year: 2022
  ident: 10.1016/j.bspc.2024.106093_b0065
  article-title: A novel data augmentation-based brain tumor detection using convolutional neural network
  publication-title: Appl. Sci.
  doi: 10.3390/app12083773
– volume: 51
  start-page: 1531
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2024.106093_b0140
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01893-z
SSID ssj0048714
Score 2.4311693
Snippet •Novel approach combining deep learning and medical imaging for brain tumor diagnosis.•Gated Recurrent Unit networks optimized by an improved political...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106093
SubjectTerms Brain tumor
Deep learning
Diagnosis
Gated Recurrent Unit Networks
Hybrid dwarf mongoose optimization algorithm
Medical imaging
Title Early detection of brain tumors: Harnessing the power of GRU networks and hybrid dwarf mongoose optimization algorithm
URI https://dx.doi.org/10.1016/j.bspc.2024.106093
Volume 91
WOSCitedRecordID wos001181603200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcUHmJFop84BalShynSXqrUKEgVCHUouUU-ZV9aDdZpdnVtr-An804tpNtgYoeuERR5DhW5tN4bM_3DULvEkE5jUXiS0ozn8pU-IzpHTEVH6ogkNTUIvj-JTk7S4fD7Otg8NNxYVazpCzT9Tpb_FdTwzMwtqbO3sPcXafwAO7B6HAFs8P1nwxvJIulapRw0SDXdSC8Zjmv6jYD7pTV2sN1TCldKU23-_jtwitNXriRbh5faUKXpws7F54uS1Tp9PYK3Mzc8jc9NhtV9aQZz28cD7ekfsO4nIx0wLswhARHibQZ8p3PsbvWP5brSZ86NGbwo7RCxKg_jbqeT6vKzgsuG99uWhDapwhaP5tQrYNs6hs7R2zKdllPCkvVwNRO_M3Jm_2G6QG_XGgRSkIP-sY3FbVvzXRd_qFLbZvmuo9c95GbPh6gbZLEGfjH7eNPJ8PPblaHdV2rE98N3BKwTK7g7ZH8OcjZCFzOd9ATu-LAxwYpT9FAlc_Q4w0dyudo1WIGd5jBVYFbzGCDmSPcIwYDYnCLGN0KEIMdYjAYFhvE4BYx2CEGbyIGd4h5gS4-nJy_P_VtQQ5fREHQ-KEMpQCvTYtMFJnMeBqIuCgiGRxyVdCYx5IkimUJZywrpIpCFUqmz7ZlkHASRS_RVlmV6hXCsVKECBGRgnAKS2gWURlGhJGUMM54uotC9wdzYdXqddGUWf532-0ir3tnYbRa7mwdO8PkNto0UWQOOLvjvb17feU1etTj_w3aauql2kcPxaqZXNZvLch-Aa5epyg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+detection+of+brain+tumors%3A+Harnessing+the+power+of+GRU+networks+and+hybrid+dwarf+mongoose+optimization+algorithm&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yang%2C+Yuxia&rft.au=Chaoluomeng&rft.au=Razmjooy%2C+Navid&rft.date=2024-05-01&rft.issn=1746-8094&rft.volume=91&rft.spage=106093&rft_id=info:doi/10.1016%2Fj.bspc.2024.106093&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon