Polynomial splines of non-uniform degree on triangulations: Combinatorial bounds on the dimension

•We study spaces of bivariate polynomial splines on planar triangulations.•The splines are composed of pieces with different polynomial degrees on different triangles.•We provide combinatorial upper and lower bounds on the dimension of such splines.•Stability of the dimension in high degree is shown...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer aided geometric design Ročník 75; s. 101763
Hlavní autoři: Toshniwal, Deepesh, Hughes, Thomas J.R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2019
Témata:
ISSN:0167-8396, 1879-2332
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •We study spaces of bivariate polynomial splines on planar triangulations.•The splines are composed of pieces with different polynomial degrees on different triangles.•We provide combinatorial upper and lower bounds on the dimension of such splines.•Stability of the dimension in high degree is shown.•Example applications are presented; accompanying Macaulay2 package is publicly available. For T a planar triangulation, let Rmr(T) denote the space of bivariate splines on T such that f∈Rmr(T) is Cr(τ) smooth across an interior edge τ and, for triangle σ in T, f|σ is a polynomial of total degree at most m(σ)∈Z≥0. The map m:σ↦Z≥0 is called a non-uniform degree distribution on the triangles in T, and we consider the problem of computing (or estimating) the dimension of Rmr(T) in this paper. Using homological techniques, developed in the context of splines by Billera (1988), we provide combinatorial lower and upper bounds on the dimension of Rmr(T). When all polynomial degrees are sufficiently large, m(σ)≫0, we prove that the number of splines in Rmr(T) can be determined exactly. In the special case of a constant map m, the lower and upper bounds are equal to those provided by Mourrain and Villamizar (2013).
AbstractList •We study spaces of bivariate polynomial splines on planar triangulations.•The splines are composed of pieces with different polynomial degrees on different triangles.•We provide combinatorial upper and lower bounds on the dimension of such splines.•Stability of the dimension in high degree is shown.•Example applications are presented; accompanying Macaulay2 package is publicly available. For T a planar triangulation, let Rmr(T) denote the space of bivariate splines on T such that f∈Rmr(T) is Cr(τ) smooth across an interior edge τ and, for triangle σ in T, f|σ is a polynomial of total degree at most m(σ)∈Z≥0. The map m:σ↦Z≥0 is called a non-uniform degree distribution on the triangles in T, and we consider the problem of computing (or estimating) the dimension of Rmr(T) in this paper. Using homological techniques, developed in the context of splines by Billera (1988), we provide combinatorial lower and upper bounds on the dimension of Rmr(T). When all polynomial degrees are sufficiently large, m(σ)≫0, we prove that the number of splines in Rmr(T) can be determined exactly. In the special case of a constant map m, the lower and upper bounds are equal to those provided by Mourrain and Villamizar (2013).
ArticleNumber 101763
Author Toshniwal, Deepesh
Hughes, Thomas J.R.
Author_xml – sequence: 1
  givenname: Deepesh
  surname: Toshniwal
  fullname: Toshniwal, Deepesh
  email: d.toshniwal@tudelft.nl
  organization: Delft Institute of Applied Mathematics, Delft University of Technology, the Netherlands
– sequence: 2
  givenname: Thomas J.R.
  surname: Hughes
  fullname: Hughes, Thomas J.R.
  organization: Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, USA
BookMark eNp9kMlOwzAQQC1UJNrCD3DyDyR4aZwacUEVm1QJDnC2vEyKq8Su7BSpf0_ScuLQ01zeG828GZqEGAChW0pKSqi425ZWb1zJCJUlqUtC2AWa0mUtC8Y5m6DpANXFkktxhWY5b8lAUCmmSH_E9hBi53WL8671ATKODR7WF_vgm5g67GCTAHAMuE9eh82-1b2PId_jVeyMD7qPadRN3AeXj9w3YOc7CHngrtFlo9sMN39zjr6enz5Xr8X6_eVt9bguLCekL6gjcmkWAupKNJIxyrRoqJOMW10bYqwTxi4cVJJwaxmrGwfCOGY4q82iqvgcLU97bYo5J2iU9f3x0j5p3ypK1JhKbdWYSo2pFKnVEGJQ2T91l3yn0-G89HCSYHjqx0NS2XoIFpxPYHvloj-n_wI4yIcP
CitedBy_id crossref_primary_10_1007_s10444_020_09830_x
crossref_primary_10_1007_s10208_022_09553_z
crossref_primary_10_1007_s10444_020_09829_4
crossref_primary_10_1016_j_cagd_2020_101880
Cites_doi 10.1216/RMJ-1984-14-1-251
10.1016/j.cagd.2012.03.025
10.1007/s00365-017-9367-5
10.1016/j.jsc.2012.10.002
10.1016/j.cma.2004.10.008
10.1016/j.automatica.2009.09.017
10.1016/j.cagd.2015.11.001
10.1006/aama.1997.0534
10.1016/j.cma.2016.11.009
10.1007/s11390-012-1268-2
10.1007/BF01890563
10.1006/jabr.1997.7361
10.1016/S0022-4049(97)00026-1
10.1145/882262.882295
10.1016/S0167-8396(03)00096-7
10.1007/BF02574678
10.1006/aama.1997.0533
10.1007/BF01386434
10.1016/j.cagd.2012.12.005
10.1090/S0002-9947-1988-0965757-9
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cagd.2019.07.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1879-2332
ExternalDocumentID 10_1016_j_cagd_2019_07_002
S0167839619300664
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-1d098b46e756f92212a6f1d923ca7b0bcd6bc4de5903cc227fde6bd2b327b4553
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501657000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8396
IngestDate Sat Nov 29 07:24:37 EST 2025
Tue Nov 18 21:26:08 EST 2025
Fri Feb 23 02:29:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Triangulations
Mixed polynomial degrees
Splines
Mixed smoothness
Dimension formula
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-1d098b46e756f92212a6f1d923ca7b0bcd6bc4de5903cc227fde6bd2b327b4553
ParticipantIDs crossref_citationtrail_10_1016_j_cagd_2019_07_002
crossref_primary_10_1016_j_cagd_2019_07_002
elsevier_sciencedirect_doi_10_1016_j_cagd_2019_07_002
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationTitle Computer aided geometric design
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sederberg, Zheng, Song (br0260) 2003; 20
Billera, Rose (br0040) 1991; 6
Schenck (br0170) 2003
Schenck, Stillman (br0200) 1997; 19
Alfeld, Schumaker (br0020) 1990; 57
Schenck (br0180) 2016; 45
Toshniwal, Speleers, Hiemstra, Hughes (br0280) 2017; 316
Grayson, Stillman (br0100) 2019
Schumaker (br0230) 1984; 14
Billera (br0030) 1988; 310
Piegl, Tiller (br0150) 2012
Toshniwal (br0290) 2019
Sederberg, Zheng, Bakenov, Nasri (br0250) 2003; 22
Alfeld, Schumaker (br0010) 1987; 3
Cox, Little, O'shea (br0050) 2007
Giannelli, Jüttler, Speleers (br0090) 2012; 29
Lai, Schumaker (br0120) 2007
Mourrain, Villamizar (br0140) 2013; 50
Schenck, Stillman (br0210) 1997; 117
Geramita, Schenck (br0080) 1998; 204
Schenck (br0160) 1997; 19
Schenck, Sorokina (br0190) 2018; 47
Schumaker (br0240) 2007
Strang (br0270) 1974
Hughes, Cottrell, Bazilevs (br0110) 2005; 194
de Visser, Chu, Mulder (br0060) 2009; 45
Dokken, Lyche, Pettersen (br0070) 2013; 30
Li, Huang, Liu (br0130) 2012; 27
Schumaker (br0220) 1979
Schenck (10.1016/j.cagd.2019.07.002_br0170) 2003
Alfeld (10.1016/j.cagd.2019.07.002_br0010) 1987; 3
Schenck (10.1016/j.cagd.2019.07.002_br0190) 2018; 47
Sederberg (10.1016/j.cagd.2019.07.002_br0260) 2003; 20
Grayson (10.1016/j.cagd.2019.07.002_br0100)
Cox (10.1016/j.cagd.2019.07.002_br0050) 2007
Toshniwal (10.1016/j.cagd.2019.07.002_br0280) 2017; 316
Strang (10.1016/j.cagd.2019.07.002_br0270) 1974
Schenck (10.1016/j.cagd.2019.07.002_br0160) 1997; 19
Schumaker (10.1016/j.cagd.2019.07.002_br0220) 1979
Dokken (10.1016/j.cagd.2019.07.002_br0070) 2013; 30
Giannelli (10.1016/j.cagd.2019.07.002_br0090) 2012; 29
de Visser (10.1016/j.cagd.2019.07.002_br0060) 2009; 45
Piegl (10.1016/j.cagd.2019.07.002_br0150) 2012
Billera (10.1016/j.cagd.2019.07.002_br0030) 1988; 310
Lai (10.1016/j.cagd.2019.07.002_br0120) 2007
Hughes (10.1016/j.cagd.2019.07.002_br0110) 2005; 194
Schenck (10.1016/j.cagd.2019.07.002_br0200) 1997; 19
Alfeld (10.1016/j.cagd.2019.07.002_br0020) 1990; 57
Schenck (10.1016/j.cagd.2019.07.002_br0210) 1997; 117
Li (10.1016/j.cagd.2019.07.002_br0130) 2012; 27
Schumaker (10.1016/j.cagd.2019.07.002_br0230) 1984; 14
Schumaker (10.1016/j.cagd.2019.07.002_br0240) 2007
Geramita (10.1016/j.cagd.2019.07.002_br0080) 1998; 204
Billera (10.1016/j.cagd.2019.07.002_br0040) 1991; 6
Mourrain (10.1016/j.cagd.2019.07.002_br0140) 2013; 50
Sederberg (10.1016/j.cagd.2019.07.002_br0250) 2003; 22
Toshniwal (10.1016/j.cagd.2019.07.002_br0290)
Schenck (10.1016/j.cagd.2019.07.002_br0180) 2016; 45
References_xml – volume: 204
  start-page: 116
  year: 1998
  end-page: 128
  ident: br0080
  article-title: Fat points, inverse systems, and piecewise polynomial functions
  publication-title: J. Algebra
– start-page: 396
  year: 1979
  end-page: 412
  ident: br0220
  article-title: On the dimension of spaces of piecewise polynomials in two variables
  publication-title: Multivariate Approximation Theory
– volume: 22
  start-page: 477
  year: 2003
  end-page: 484
  ident: br0250
  article-title: T-splines and T-NURCCs
  publication-title: ACM Trans. Graph. (TOG)
– volume: 57
  start-page: 651
  year: 1990
  end-page: 661
  ident: br0020
  article-title: On the dimension of bivariate spline spaces of smoothness
  publication-title: Numer. Math.
– volume: 30
  start-page: 331
  year: 2013
  end-page: 356
  ident: br0070
  article-title: Polynomial splines over locally refined box-partitions
  publication-title: Comput. Aided Geom. Des.
– volume: 14
  start-page: 251
  year: 1984
  end-page: 264
  ident: br0230
  article-title: Bounds on the dimension of spaces of multivariate piecewise polynomials
  publication-title: Rocky Mt. J. Math.
– year: 2003
  ident: br0170
  article-title: Computational Algebraic Geometry, vol. 58
– volume: 20
  start-page: 455
  year: 2003
  end-page: 468
  ident: br0260
  article-title: Knot intervals and multi-degree splines
  publication-title: Comput. Aided Geom. Des.
– volume: 29
  start-page: 485
  year: 2012
  end-page: 498
  ident: br0090
  article-title: THB-splines: the truncated basis for hierarchical splines
  publication-title: Comput. Aided Geom. Des.
– year: 2012
  ident: br0150
  article-title: The NURBS Book
– year: 2007
  ident: br0120
  article-title: Spline Functions on Triangulations, vol. 110
– year: 2007
  ident: br0050
  article-title: Ideals, Varieties, and Algorithms, vol. 3
– year: 2019
  ident: br0290
  article-title: SimplicialMDSplines: splines of mixed degree and smoothness on simplicial complexes
– year: 2019
  ident: br0100
  article-title: Macaulay2, a software system for research in algebraic geometry
– volume: 45
  start-page: 14
  year: 2016
  end-page: 31
  ident: br0180
  article-title: Algebraic methods in approximation theory
  publication-title: Comput. Aided Geom. Des.
– volume: 316
  start-page: 1005
  year: 2017
  end-page: 1061
  ident: br0280
  article-title: Multi-degree smooth polar splines: a framework for geometric modeling and isogeometric analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 6
  start-page: 107
  year: 1991
  end-page: 128
  ident: br0040
  article-title: A dimension series for multivariate splines
  publication-title: Discrete Comput. Geom.
– volume: 310
  start-page: 325
  year: 1988
  end-page: 340
  ident: br0030
  article-title: Homology of smooth splines: generic triangulations and a conjecture of Strang
  publication-title: Trans. Am. Math. Soc.
– volume: 194
  start-page: 4135
  year: 2005
  end-page: 4195
  ident: br0110
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 45
  start-page: 2903
  year: 2009
  end-page: 2909
  ident: br0060
  article-title: A new approach to linear regression with multivariate splines
  publication-title: Automatica
– year: 2007
  ident: br0240
  article-title: Spline Functions: Basic Theory
– volume: 19
  start-page: 183
  year: 1997
  end-page: 199
  ident: br0160
  article-title: A spectral sequence for splines
  publication-title: Adv. Appl. Math.
– volume: 47
  start-page: 237
  year: 2018
  end-page: 247
  ident: br0190
  article-title: Subdivision and spline spaces
  publication-title: Constr. Approx.
– volume: 27
  start-page: 841
  year: 2012
  end-page: 850
  ident: br0130
  article-title: A geometric approach for multi-degree splines
  publication-title: J. Comput. Sci. Technol.
– volume: 3
  start-page: 189
  year: 1987
  end-page: 197
  ident: br0010
  article-title: The dimension of bivariate spline spaces of smoothness
  publication-title: Constr. Approx.
– volume: 50
  start-page: 564
  year: 2013
  end-page: 577
  ident: br0140
  article-title: Homological techniques for the analysis of the dimension of triangular spline spaces
  publication-title: J. Symb. Comput.
– volume: 117
  start-page: 535
  year: 1997
  end-page: 548
  ident: br0210
  article-title: Local cohomology of bivariate splines
  publication-title: J. Pure Appl. Algebra
– start-page: 144
  year: 1974
  end-page: 152
  ident: br0270
  article-title: The dimension of piecewise polynomial spaces, and one-sided approximation
  publication-title: Conference on the Numerical Solution of Differential Equations
– volume: 19
  start-page: 169
  year: 1997
  end-page: 182
  ident: br0200
  article-title: A family of ideals of minimal regularity and the Hilbert series of
  publication-title: Adv. Appl. Math.
– ident: 10.1016/j.cagd.2019.07.002_br0100
– volume: 14
  start-page: 251
  issue: 1
  year: 1984
  ident: 10.1016/j.cagd.2019.07.002_br0230
  article-title: Bounds on the dimension of spaces of multivariate piecewise polynomials
  publication-title: Rocky Mt. J. Math.
  doi: 10.1216/RMJ-1984-14-1-251
– volume: 29
  start-page: 485
  year: 2012
  ident: 10.1016/j.cagd.2019.07.002_br0090
  article-title: THB-splines: the truncated basis for hierarchical splines
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2012.03.025
– volume: 47
  start-page: 237
  issue: 2
  year: 2018
  ident: 10.1016/j.cagd.2019.07.002_br0190
  article-title: Subdivision and spline spaces
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-017-9367-5
– volume: 50
  start-page: 564
  year: 2013
  ident: 10.1016/j.cagd.2019.07.002_br0140
  article-title: Homological techniques for the analysis of the dimension of triangular spline spaces
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2012.10.002
– volume: 194
  start-page: 4135
  year: 2005
  ident: 10.1016/j.cagd.2019.07.002_br0110
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2004.10.008
– volume: 45
  start-page: 2903
  issue: 12
  year: 2009
  ident: 10.1016/j.cagd.2019.07.002_br0060
  article-title: A new approach to linear regression with multivariate splines
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.09.017
– volume: 45
  start-page: 14
  year: 2016
  ident: 10.1016/j.cagd.2019.07.002_br0180
  article-title: Algebraic methods in approximation theory
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2015.11.001
– year: 2012
  ident: 10.1016/j.cagd.2019.07.002_br0150
– year: 2007
  ident: 10.1016/j.cagd.2019.07.002_br0050
– volume: 19
  start-page: 183
  issue: 2
  year: 1997
  ident: 10.1016/j.cagd.2019.07.002_br0160
  article-title: A spectral sequence for splines
  publication-title: Adv. Appl. Math.
  doi: 10.1006/aama.1997.0534
– volume: 316
  start-page: 1005
  year: 2017
  ident: 10.1016/j.cagd.2019.07.002_br0280
  article-title: Multi-degree smooth polar splines: a framework for geometric modeling and isogeometric analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.11.009
– start-page: 144
  year: 1974
  ident: 10.1016/j.cagd.2019.07.002_br0270
  article-title: The dimension of piecewise polynomial spaces, and one-sided approximation
– volume: 27
  start-page: 841
  year: 2012
  ident: 10.1016/j.cagd.2019.07.002_br0130
  article-title: A geometric approach for multi-degree splines
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-012-1268-2
– volume: 3
  start-page: 189
  issue: 1
  year: 1987
  ident: 10.1016/j.cagd.2019.07.002_br0010
  article-title: The dimension of bivariate spline spaces of smoothness r for degree ≥4r+1
  publication-title: Constr. Approx.
  doi: 10.1007/BF01890563
– volume: 204
  start-page: 116
  issue: 1
  year: 1998
  ident: 10.1016/j.cagd.2019.07.002_br0080
  article-title: Fat points, inverse systems, and piecewise polynomial functions
  publication-title: J. Algebra
  doi: 10.1006/jabr.1997.7361
– volume: 117
  start-page: 535
  year: 1997
  ident: 10.1016/j.cagd.2019.07.002_br0210
  article-title: Local cohomology of bivariate splines
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/S0022-4049(97)00026-1
– year: 2007
  ident: 10.1016/j.cagd.2019.07.002_br0240
– volume: 22
  start-page: 477
  year: 2003
  ident: 10.1016/j.cagd.2019.07.002_br0250
  article-title: T-splines and T-NURCCs
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/882262.882295
– volume: 20
  start-page: 455
  year: 2003
  ident: 10.1016/j.cagd.2019.07.002_br0260
  article-title: Knot intervals and multi-degree splines
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/S0167-8396(03)00096-7
– volume: 6
  start-page: 107
  issue: 2
  year: 1991
  ident: 10.1016/j.cagd.2019.07.002_br0040
  article-title: A dimension series for multivariate splines
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02574678
– volume: 19
  start-page: 169
  issue: 2
  year: 1997
  ident: 10.1016/j.cagd.2019.07.002_br0200
  article-title: A family of ideals of minimal regularity and the Hilbert series of Cr(Δ)
  publication-title: Adv. Appl. Math.
  doi: 10.1006/aama.1997.0533
– volume: 57
  start-page: 651
  issue: 1
  year: 1990
  ident: 10.1016/j.cagd.2019.07.002_br0020
  article-title: On the dimension of bivariate spline spaces of smoothness r and degree =3r+1
  publication-title: Numer. Math.
  doi: 10.1007/BF01386434
– year: 2007
  ident: 10.1016/j.cagd.2019.07.002_br0120
– volume: 30
  start-page: 331
  year: 2013
  ident: 10.1016/j.cagd.2019.07.002_br0070
  article-title: Polynomial splines over locally refined box-partitions
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2012.12.005
– ident: 10.1016/j.cagd.2019.07.002_br0290
– year: 2003
  ident: 10.1016/j.cagd.2019.07.002_br0170
– start-page: 396
  year: 1979
  ident: 10.1016/j.cagd.2019.07.002_br0220
  article-title: On the dimension of spaces of piecewise polynomials in two variables
– volume: 310
  start-page: 325
  issue: 1
  year: 1988
  ident: 10.1016/j.cagd.2019.07.002_br0030
  article-title: Homology of smooth splines: generic triangulations and a conjecture of Strang
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1988-0965757-9
SSID ssj0002196
Score 2.270917
Snippet •We study spaces of bivariate polynomial splines on planar triangulations.•The splines are composed of pieces with different polynomial degrees on different...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101763
SubjectTerms Dimension formula
Mixed polynomial degrees
Mixed smoothness
Splines
Triangulations
Title Polynomial splines of non-uniform degree on triangulations: Combinatorial bounds on the dimension
URI https://dx.doi.org/10.1016/j.cagd.2019.07.002
Volume 75
WOSCitedRecordID wos000501657000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2332
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002196
  issn: 0167-8396
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOiKcoj8oHblGqxE7imFuFimilVhUs0t6i-JHdVm2yarZQ_j0zsZPN0qoCJC5RNorjyPPtZGzPfB8h75lOctwuC0VU8TCp8C9ldRWaqFScp6KKrO7EJsTxcT6byRNfQtB2cgKirvPra7n8r6aGa2BsLJ39C3MPD4ULcA5GhyOYHY5_ZPiT5vwn1hpjIQiW2zpWWZjlh1c1lmFdBMbCJNt22wTwPvXcK3h1yXHgH2CujDNxfIBC0aV-QyEwqATQ9obs6Q28LESAXJMmmNvmAkW6NPQyzg2ZNu2iPv3RyQuAk7NL2y7WkJov7ChdKTjc_bI7Xo6Ipa_LG9bIbtTJuGVLcMcQinnSa-dqcyFDxvmGL3YqKjfculthOIMp-xzZXWPZEa5GbP0RG1ILv2Jf2BVEphhPJffJFhOpzCdka-9gf3Y4fKfBV2c98zs28CVVLvvv955uD1tGocj0CXns5xB0z9n-Kbln62fk0YhZEn4dDXS87XNSrjFBPSZoU9ERJqjDBG1quomJD3QDEdQhortvYemAiBfk26f96cfPodfWCDUMyyqMTSRzlWRWpFklGQQwZVbFBsJ9XQoVKW0ypRNjUxlxrRkTlbGZMkxxJlSSpvwlmcBb2leECqmZEjbNFKsSpmWZGA1hsOUJt1pGepvE_dAV2hPPo_7JedFnGJ4VONwFDncRYT4E2ybB0GbpaFfuvDvtLVL4wNEFhAUA6I52r_-x3RvycA39t2Syuryy78gD_X112l7ueJz9AhwslZU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial+splines+of+non-uniform+degree+on+triangulations%3A+Combinatorial+bounds+on+the+dimension&rft.jtitle=Computer+aided+geometric+design&rft.au=Toshniwal%2C+Deepesh&rft.au=Hughes%2C+Thomas+J.R.&rft.date=2019-11-01&rft.pub=Elsevier+B.V&rft.issn=0167-8396&rft.eissn=1879-2332&rft.volume=75&rft_id=info:doi/10.1016%2Fj.cagd.2019.07.002&rft.externalDocID=S0167839619300664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8396&client=summon