Application of improved multi-objective particle swarm optimization algorithm to solve disruption for the two-stage vehicle routing problem with time windows

Nowadays, the complexity of the global supply chain is increasing. Thus, the vehicle routing problem (VRP) has become a very important problem because of its practicality in real-world applications. In addition, most customers prefer to have their goods delivered in a specific time interval, and sus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 225; S. 120009
Hauptverfasser: Kuo, R.J., Fernanda Luthfiansyah, Muhammad, Aini Masruroh, Nur, Eva Zulvia, Ferani
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.09.2023
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Nowadays, the complexity of the global supply chain is increasing. Thus, the vehicle routing problem (VRP) has become a very important problem because of its practicality in real-world applications. In addition, most customers prefer to have their goods delivered in a specific time interval, and sustainability has become a very important issue for most companies. Therefore, this study proposes a mathematical model for a multi-objective VRP with time windows (VRPTW) as well as an algorithm to solve it. The model consists of two objectives: minimizing the total supply chain cost, and carbon emission. Besides the objectives, the proposed model and algorithm also consider the disruption that commonly happens in the supply chain. This study designs a two-stage VRPTW to solve the disruption. The first stage is the supply chain in ideal condition, while the second one is the supply chain in disrupted condition since the increase in the supply chain complexity also leads to more vulnerability to disruptions. This study improves a multi-objective particle swarm optimization algorithm (MOPSO) to solve the problem. As fitness cannot decide which algorithm is better, this study uses quality indicators to compare all of the algorithms. Based on the computational result, the improved MOPSO has the highest hypervolume and lowest spacing. Thus, it can be concluded that the improved MOPSO is the best algorithm to solve disruption in the two-stage VRPTW.
AbstractList Nowadays, the complexity of the global supply chain is increasing. Thus, the vehicle routing problem (VRP) has become a very important problem because of its practicality in real-world applications. In addition, most customers prefer to have their goods delivered in a specific time interval, and sustainability has become a very important issue for most companies. Therefore, this study proposes a mathematical model for a multi-objective VRP with time windows (VRPTW) as well as an algorithm to solve it. The model consists of two objectives: minimizing the total supply chain cost, and carbon emission. Besides the objectives, the proposed model and algorithm also consider the disruption that commonly happens in the supply chain. This study designs a two-stage VRPTW to solve the disruption. The first stage is the supply chain in ideal condition, while the second one is the supply chain in disrupted condition since the increase in the supply chain complexity also leads to more vulnerability to disruptions. This study improves a multi-objective particle swarm optimization algorithm (MOPSO) to solve the problem. As fitness cannot decide which algorithm is better, this study uses quality indicators to compare all of the algorithms. Based on the computational result, the improved MOPSO has the highest hypervolume and lowest spacing. Thus, it can be concluded that the improved MOPSO is the best algorithm to solve disruption in the two-stage VRPTW.
ArticleNumber 120009
Author Aini Masruroh, Nur
Eva Zulvia, Ferani
Fernanda Luthfiansyah, Muhammad
Kuo, R.J.
Author_xml – sequence: 1
  givenname: R.J.
  orcidid: 0000-0002-7553-8070
  surname: Kuo
  fullname: Kuo, R.J.
  email: rjkuo@mail.ntust.edu.tw
  organization: Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Section 4, Kee-Lung Road, Taipei 106, Taiwan
– sequence: 2
  givenname: Muhammad
  surname: Fernanda Luthfiansyah
  fullname: Fernanda Luthfiansyah, Muhammad
  email: muhammad.fernanda@mail.ugm.ac.id
  organization: Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Section 4, Kee-Lung Road, Taipei 106, Taiwan
– sequence: 3
  givenname: Nur
  surname: Aini Masruroh
  fullname: Aini Masruroh, Nur
  email: aini@ugm.ac.id
  organization: Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia
– sequence: 4
  givenname: Ferani
  surname: Eva Zulvia
  fullname: Eva Zulvia, Ferani
  email: fezulvia@mail.ntust.edu.tw
  organization: Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Section 4, Kee-Lung Road, Taipei 106, Taiwan
BookMark eNp9kMtOwzAQRS0EEuXxA6z8AynjxI0biQ1CvCQkNrC2HGfSTpXEke22gn_hX3FbViy6suWZc698Ltjp4AZk7EbAVIAob1dTDFszzSEvpiIHgOqETcRcFVmpquKUTaCaqUwKJc_ZRQgrAKEA1IT93I9jR9ZEcgN3Lad-9G6DDe_XXaTM1Su0kTbIR-Mj2Q556vE9d2Oknr4PnOkWzlNc9jw6HlyX1hsKfj3up63zPC6Rx63LQjQL5Btc7qO8W0caFjxV1h32fJsyeMrFdBsatw1X7Kw1XcDrv_OSfT49fjy8ZG_vz68P92-ZLQBiJqwsSqNkXc2bvJJYWDur0mMJokacNZAbZQpZ1lZhVVuobSvnDaBQFbZSyOKS5Ydc610IHls9euqN_9IC9E6wXumdYL0TrA-CEzT_B1mKeyHRG-qOo3cHFNOnNoReB0s4WGzIJ9-6cXQM_wVFD56o
CitedBy_id crossref_primary_10_1016_j_suscom_2025_101096
crossref_primary_10_3390_math12071059
crossref_primary_10_1016_j_eswa_2024_124989
crossref_primary_10_3390_biomimetics9060331
crossref_primary_10_1016_j_heliyon_2024_e26516
crossref_primary_10_1109_ACCESS_2024_3401487
crossref_primary_10_1109_JIOT_2025_3577254
crossref_primary_10_3390_biomimetics9040242
crossref_primary_10_1007_s11831_024_10202_7
crossref_primary_10_1016_j_cja_2024_09_005
crossref_primary_10_3390_su17062700
crossref_primary_10_1016_j_asoc_2024_111983
crossref_primary_10_1016_j_asoc_2025_113705
crossref_primary_10_1016_j_cie_2025_111242
crossref_primary_10_4018_IJAMC_387961
crossref_primary_10_3390_a18090536
crossref_primary_10_1016_j_cie_2025_111346
crossref_primary_10_1016_j_knosys_2024_112347
crossref_primary_10_1109_JSEN_2024_3458899
crossref_primary_10_1016_j_buildenv_2024_111185
crossref_primary_10_1080_08839514_2024_2325302
crossref_primary_10_1016_j_engappai_2025_111117
crossref_primary_10_1016_j_eswa_2023_121572
crossref_primary_10_1016_j_eswa_2025_128660
crossref_primary_10_1108_K_06_2024_1447
crossref_primary_10_1109_ACCESS_2024_3455550
crossref_primary_10_1109_ACCESS_2024_3369474
crossref_primary_10_1016_j_cie_2024_110588
crossref_primary_10_32604_cmc_2024_052401
crossref_primary_10_1016_j_ress_2024_110630
crossref_primary_10_1109_JIOT_2024_3521977
crossref_primary_10_1016_j_jclepro_2025_144874
crossref_primary_10_1108_K_10_2024_2935
crossref_primary_10_1016_j_cor_2024_106868
crossref_primary_10_3390_sym17050734
crossref_primary_10_1109_TSMC_2025_3571717
crossref_primary_10_1109_ACCESS_2024_3446653
crossref_primary_10_1016_j_eswa_2023_120813
crossref_primary_10_1007_s11831_024_10217_0
crossref_primary_10_1016_j_cie_2025_111253
crossref_primary_10_1177_18724981251331781
crossref_primary_10_1016_j_asoc_2025_112989
crossref_primary_10_1007_s40747_025_01825_9
crossref_primary_10_1007_s41660_025_00516_9
crossref_primary_10_1109_ACCESS_2023_3332145
crossref_primary_10_1109_ACCESS_2024_3389749
crossref_primary_10_1007_s11831_025_10252_5
crossref_primary_10_3390_app14156594
Cites_doi 10.1016/j.renene.2014.05.006
10.1016/j.cie.2020.106653
10.1287/trsc.1100.0328
10.1016/j.measurement.2020.108347
10.1016/j.eswa.2022.116690
10.1016/j.cor.2010.03.019
10.1016/j.ijpe.2021.108139
10.1287/trsc.1070.0190
10.1109/ICSMC.1997.637339
10.1016/j.cie.2021.107887
10.1016/j.ijpe.2020.107852
10.1016/j.swevo.2022.101201
10.1016/j.cie.2020.107010
10.1007/978-3-030-96311-8_47
10.1016/j.ejor.2006.02.019
10.1111/j.1540-5915.2007.00151.x
10.1016/j.eswa.2021.114779
10.1016/j.asoc.2018.11.010
10.1016/j.ijpe.2005.12.006
10.1016/j.cie.2019.106011
10.1016/j.endm.2018.03.019
10.1162/evco.1994.2.3.221
10.1016/j.cie.2018.07.042
10.1016/j.cie.2021.107823
10.1016/j.cie.2015.12.029
10.1007/s00521-022-06967-2
10.1016/j.omega.2015.03.008
10.1109/TEVC.2004.826067
10.1016/j.engappai.2021.104606
10.1016/j.cie.2011.10.003
10.1016/j.cie.2021.107868
10.1016/j.jclepro.2019.118428
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.120009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_120009
S0957417423005110
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-1c436a74b98d294e3cc591c4601bee5d02a7a346bc7e9bc0bcf48d0e179ef4143
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000983938900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:10:04 EST 2025
Tue Nov 18 21:07:07 EST 2025
Fri Feb 23 02:35:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Supply chain disruption
Vehicle routing problem with time windows
Multi-objective particle swarm optimization algorithm
Green supply chain
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-1c436a74b98d294e3cc591c4601bee5d02a7a346bc7e9bc0bcf48d0e179ef4143
ORCID 0000-0002-7553-8070
ParticipantIDs crossref_primary_10_1016_j_eswa_2023_120009
crossref_citationtrail_10_1016_j_eswa_2023_120009
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_120009
PublicationCentury 2000
PublicationDate 2023-09-01
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Coello, Pulido, Lechuga (b0045) 2004; 8
Toth, Vigo (b0165) 2002
Baniamerian, Bashiri, Zabihi (b0010) 2018; 66
Jafarian, Rabiee, Tavana (b0100) 2020; 228
Benjamin, Beasley (b0015) 2010; 37
Dixit, Seshadrinath, Tiwari (b0060) 2016; 93
Srivastava, Singh, Mallipeddi (b0155) 2021; 176
Khanduzi, Sangaiah (b0115) 2019; 75
Jie, Liu, Sun (b0105) 2022; 109
Xu, Elomri, Pokharel, Mutlu (b0175) 2019; 137
Hemici, M., Zouache, D., Boualem, B., & Hemici, K. (2022). An External Archive Guided NSGA-II Algorithm for Multi-depot Green Vehicle Routing Problem. Artificial Intelligence and Its Applications: Proceeding of the 2nd International Conference on Artificial Intelligence and Its Applications (2021).
Chen, Zhang, Zhou (b0035) 2022; 163
Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation.
Christopher, Peck (b0040) 2004; 15
Gholizadeh, Fazlollahtabar (b0075) 2020; 147
Prescott-Gagnon, Desaulniers, Drexl, Rousseau (b0140) 2010; 44
Srinivas, Deb (b0150) 1994; 2
Mandal, Mondal (b0125) 2021; 169
Zhou, Zhao (b0185) 2022; 34
Carvalho, Barroso, Machado, Azevedo, Cruz-Machado (b0030) 2012; 62
Salehi Sarbijan, Behnamian (b0145) 2022; 75
Yin (b0180) 2022; 1–10
Paul, Sarker, Essam (b0135) 2016
Wang, Ran, Guan, Fan, Sun, Wang (b0170) 2022; 197
Azi, Gendreau, Potvin (b0005) 2007; 178
Fathi, Khakifirooz, Diabat, Chen (b0065) 2021; 237
Olgun, Koç, Altıparmak (b0130) 2021; 153
Gutierrez, Dieulle, Labadie, Velasco (b0085) 2018; 125
Kyriakakis, Sevastopoulos, Marinaki, Marinakis (b0120) 2022; 164
Heidari, Imani, Khalilzadeh, Sarbazvatan (b0090) 2022
Zulvia, Kuo, Nugroho (b0190) 2020; 242
Cardoso, Barbosa-Póvoa, Relvas, Novais (b0025) 2015; 56
Gutiérrez-Sánchez, Rocha-Medina (b0080) 2022; 164
Borhanazad, Mekhilef, Ganapathy, Modiri-Delshad, Mirtaheri (b0020) 2014; 71
Craighead, Blackhurst, Rungtusanatham, Handfield (b0050) 2007; 38
Dell'Amico, Monaci, Pagani, Vigo (b0055) 2007; 41
Foroutan, Rezaeian, Mahdavi (b0070) 2020; 94
Tang (b0160) 2006; 103
Yin (10.1016/j.eswa.2023.120009_b0180) 2022; 1–10
Kyriakakis (10.1016/j.eswa.2023.120009_b0120) 2022; 164
Mandal (10.1016/j.eswa.2023.120009_b0125) 2021; 169
Benjamin (10.1016/j.eswa.2023.120009_b0015) 2010; 37
Salehi Sarbijan (10.1016/j.eswa.2023.120009_b0145) 2022; 75
Christopher (10.1016/j.eswa.2023.120009_b0040) 2004; 15
Gutierrez (10.1016/j.eswa.2023.120009_b0085) 2018; 125
Tang (10.1016/j.eswa.2023.120009_b0160) 2006; 103
Wang (10.1016/j.eswa.2023.120009_b0170) 2022; 197
Xu (10.1016/j.eswa.2023.120009_b0175) 2019; 137
Baniamerian (10.1016/j.eswa.2023.120009_b0010) 2018; 66
Craighead (10.1016/j.eswa.2023.120009_b0050) 2007; 38
Gutiérrez-Sánchez (10.1016/j.eswa.2023.120009_b0080) 2022; 164
Jafarian (10.1016/j.eswa.2023.120009_b0100) 2020; 228
Srivastava (10.1016/j.eswa.2023.120009_b0155) 2021; 176
Gholizadeh (10.1016/j.eswa.2023.120009_b0075) 2020; 147
Paul (10.1016/j.eswa.2023.120009_b0135) 2016
Prescott-Gagnon (10.1016/j.eswa.2023.120009_b0140) 2010; 44
Zulvia (10.1016/j.eswa.2023.120009_b0190) 2020; 242
Chen (10.1016/j.eswa.2023.120009_b0035) 2022; 163
Dixit (10.1016/j.eswa.2023.120009_b0060) 2016; 93
Zhou (10.1016/j.eswa.2023.120009_b0185) 2022; 34
Olgun (10.1016/j.eswa.2023.120009_b0130) 2021; 153
Coello (10.1016/j.eswa.2023.120009_b0045) 2004; 8
Carvalho (10.1016/j.eswa.2023.120009_b0030) 2012; 62
Fathi (10.1016/j.eswa.2023.120009_b0065) 2021; 237
Srinivas (10.1016/j.eswa.2023.120009_b0150) 1994; 2
Heidari (10.1016/j.eswa.2023.120009_b0090) 2022
Foroutan (10.1016/j.eswa.2023.120009_b0070) 2020; 94
Azi (10.1016/j.eswa.2023.120009_b0005) 2007; 178
Cardoso (10.1016/j.eswa.2023.120009_b0025) 2015; 56
10.1016/j.eswa.2023.120009_b0095
Khanduzi (10.1016/j.eswa.2023.120009_b0115) 2019; 75
Jie (10.1016/j.eswa.2023.120009_b0105) 2022; 109
Toth (10.1016/j.eswa.2023.120009_b0165) 2002
10.1016/j.eswa.2023.120009_b0110
Dell'Amico (10.1016/j.eswa.2023.120009_b0055) 2007; 41
Borhanazad (10.1016/j.eswa.2023.120009_b0020) 2014; 71
References_xml – volume: 197
  year: 2022
  ident: b0170
  article-title: Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups
  publication-title: Expert Systems with Applications
– year: 2022
  ident: b0090
  article-title: Green two-echelon closed and open location-routing problem: Application of NSGA-II and MOGWO metaheuristic approaches
  publication-title: Environment, Development and Sustainability.
– volume: 75
  start-page: 162
  year: 2019
  end-page: 179
  ident: b0115
  article-title: A fast genetic algorithm for a critical protection problem in biomedical supply chain networks
  publication-title: Applied Soft Computing
– volume: 163
  year: 2022
  ident: b0035
  article-title: Integrated scheduling of zone picking and vehicle routing problem with time windows in the front warehouse mode
  publication-title: Computers & Industrial Engineering
– volume: 125
  start-page: 144
  year: 2018
  end-page: 156
  ident: b0085
  article-title: A multi-population algorithm to solve the VRP with stochastic service and travel times
  publication-title: Computers & Industrial Engineering
– year: 2016
  ident: b0135
  article-title: Managing risk and disruption in production-inventory and supply chain systems: A review
  publication-title: Journal of Industrial and Management Optimization.
– volume: 15
  start-page: 1
  year: 2004
  end-page: 13
  ident: b0040
  article-title: Building the resilient supply chain
  publication-title: International Journal of Logistics Management
– volume: 38
  start-page: 131
  year: 2007
  end-page: 156
  ident: b0050
  article-title: The severity of supply chain disruptions: Design characteristics and mitigation capabilities
  publication-title: Decision Sciences
– volume: 164
  year: 2022
  ident: b0120
  article-title: A hybrid Tabu search–Variable neighborhood descent algorithm for the cumulative capacitated vehicle routing problem with time windows in humanitarian applications
  publication-title: Computers & Industrial Engineering
– year: 2002
  ident: b0165
  article-title: The vehicle routing problem
– reference: Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation.
– volume: 71
  start-page: 295
  year: 2014
  end-page: 306
  ident: b0020
  article-title: Optimization of micro-grid system using MOPSO
  publication-title: Renewable Energy
– volume: 37
  start-page: 2270
  year: 2010
  end-page: 2280
  ident: b0015
  article-title: Metaheuristics for the waste collection vehicle routing problem with time windows, driver rest period and multiple disposal facilities
  publication-title: Computers & Operations Research
– volume: 41
  start-page: 516
  year: 2007
  end-page: 526
  ident: b0055
  article-title: Heuristic approaches for the fleet size and mix vehicle routing problem with time windows
  publication-title: Transportation Science
– volume: 176
  year: 2021
  ident: b0155
  article-title: NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows
  publication-title: Expert Systems with Applications
– volume: 109
  year: 2022
  ident: b0105
  article-title: A hybrid algorithm for time-dependent vehicle routing problem with soft time windows and stochastic factors
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 1–10
  year: 2022
  ident: b0180
  article-title: Multiobjective Optimization for Vehicle Routing Optimization Problem in Low-Carbon Intelligent Transportation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 93
  start-page: 205
  year: 2016
  end-page: 214
  ident: b0060
  article-title: Performance measures based optimization of supply chain network resilience: A NSGA-II+ Co-Kriging approach
  publication-title: Computers & Industrial Engineering
– volume: 44
  start-page: 455
  year: 2010
  end-page: 473
  ident: b0140
  article-title: European driver rules in vehicle routing with time windows
  publication-title: Transportation science
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: b0150
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
– volume: 178
  start-page: 755
  year: 2007
  end-page: 766
  ident: b0005
  article-title: An exact algorithm for a single-vehicle routing problem with time windows and multiple routes
  publication-title: European Journal of Operational Research
– volume: 62
  start-page: 329
  year: 2012
  end-page: 341
  ident: b0030
  article-title: Supply chain redesign for resilience using simulation
  publication-title: Computers & Industrial Engineering
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: b0045
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 147
  year: 2020
  ident: b0075
  article-title: Robust optimization and modified genetic algorithm for a closed loop green supply chain under uncertainty: Case study in melting industry
  publication-title: Computers & Industrial Engineering
– volume: 169
  year: 2021
  ident: b0125
  article-title: Multi-objective optimization of Cu-MWCNT composite electrode in electro discharge machining using MOPSO-TOPSIS
  publication-title: Measurement
– volume: 137
  year: 2019
  ident: b0175
  article-title: A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows
  publication-title: Computers & Industrial Engineering
– volume: 34
  start-page: 7325
  year: 2022
  end-page: 7348
  ident: b0185
  article-title: Multi-objective optimization of electric vehicle routing problem with battery swap and mixed time windows
  publication-title: Neural Computing and Applications
– volume: 153
  year: 2021
  ident: b0130
  article-title: A hyper heuristic for the green vehicle routing problem with simultaneous pickup and delivery
  publication-title: Computers & Industrial Engineering
– volume: 242
  year: 2020
  ident: b0190
  article-title: A many-objective gradient evolution algorithm for solving a green vehicle routing problem with time windows and time dependency for perishable products
  publication-title: Journal of Cleaner Production
– volume: 237
  year: 2021
  ident: b0065
  article-title: An integrated queuing-stochastic optimization hybrid Genetic Algorithm for a location-inventory supply chain network
  publication-title: International Journal of Production Economics
– volume: 164
  year: 2022
  ident: b0080
  article-title: VRP variants applicable to collecting donations and similar problems: A taxonomic review
  publication-title: Computers & Industrial Engineering
– volume: 66
  start-page: 143
  year: 2018
  end-page: 150
  ident: b0010
  article-title: A modified variable neighborhood search hybridized with genetic algorithm for vehicle routing problems with cross-docking
  publication-title: Electronic Notes in Discrete Mathematics
– volume: 228
  year: 2020
  ident: b0100
  article-title: A novel multi-objective co-evolutionary approach for supply chain gap analysis with consideration of uncertainties
  publication-title: International Journal of Production Economics
– volume: 56
  start-page: 53
  year: 2015
  end-page: 73
  ident: b0025
  article-title: Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty
  publication-title: Omega
– volume: 75
  year: 2022
  ident: b0145
  article-title: Real-time collaborative feeder vehicle routing problem with flexible time windows
  publication-title: Swarm and Evolutionary Computation
– reference: Hemici, M., Zouache, D., Boualem, B., & Hemici, K. (2022). An External Archive Guided NSGA-II Algorithm for Multi-depot Green Vehicle Routing Problem. Artificial Intelligence and Its Applications: Proceeding of the 2nd International Conference on Artificial Intelligence and Its Applications (2021).
– volume: 94
  year: 2020
  ident: b0070
  article-title: Green vehicle routing and scheduling problem with heterogeneous fleet including reverse logistics in the form of collecting returned goods
  publication-title: Applied Soft Computing
– volume: 103
  start-page: 451
  year: 2006
  end-page: 488
  ident: b0160
  article-title: Perspectives in supply chain risk management
  publication-title: International Journal of Production Economics
– volume: 71
  start-page: 295
  year: 2014
  ident: 10.1016/j.eswa.2023.120009_b0020
  article-title: Optimization of micro-grid system using MOPSO
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2014.05.006
– volume: 147
  year: 2020
  ident: 10.1016/j.eswa.2023.120009_b0075
  article-title: Robust optimization and modified genetic algorithm for a closed loop green supply chain under uncertainty: Case study in melting industry
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106653
– volume: 44
  start-page: 455
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2023.120009_b0140
  article-title: European driver rules in vehicle routing with time windows
  publication-title: Transportation science
  doi: 10.1287/trsc.1100.0328
– volume: 169
  year: 2021
  ident: 10.1016/j.eswa.2023.120009_b0125
  article-title: Multi-objective optimization of Cu-MWCNT composite electrode in electro discharge machining using MOPSO-TOPSIS
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108347
– volume: 197
  year: 2022
  ident: 10.1016/j.eswa.2023.120009_b0170
  article-title: Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116690
– volume: 37
  start-page: 2270
  issue: 12
  year: 2010
  ident: 10.1016/j.eswa.2023.120009_b0015
  article-title: Metaheuristics for the waste collection vehicle routing problem with time windows, driver rest period and multiple disposal facilities
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2010.03.019
– volume: 237
  year: 2021
  ident: 10.1016/j.eswa.2023.120009_b0065
  article-title: An integrated queuing-stochastic optimization hybrid Genetic Algorithm for a location-inventory supply chain network
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2021.108139
– volume: 41
  start-page: 516
  issue: 4
  year: 2007
  ident: 10.1016/j.eswa.2023.120009_b0055
  article-title: Heuristic approaches for the fleet size and mix vehicle routing problem with time windows
  publication-title: Transportation Science
  doi: 10.1287/trsc.1070.0190
– ident: 10.1016/j.eswa.2023.120009_b0110
  doi: 10.1109/ICSMC.1997.637339
– volume: 164
  year: 2022
  ident: 10.1016/j.eswa.2023.120009_b0080
  article-title: VRP variants applicable to collecting donations and similar problems: A taxonomic review
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107887
– volume: 228
  year: 2020
  ident: 10.1016/j.eswa.2023.120009_b0100
  article-title: A novel multi-objective co-evolutionary approach for supply chain gap analysis with consideration of uncertainties
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2020.107852
– volume: 75
  year: 2022
  ident: 10.1016/j.eswa.2023.120009_b0145
  article-title: Real-time collaborative feeder vehicle routing problem with flexible time windows
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2022.101201
– year: 2022
  ident: 10.1016/j.eswa.2023.120009_b0090
  article-title: Green two-echelon closed and open location-routing problem: Application of NSGA-II and MOGWO metaheuristic approaches
  publication-title: Environment, Development and Sustainability.
– volume: 153
  year: 2021
  ident: 10.1016/j.eswa.2023.120009_b0130
  article-title: A hyper heuristic for the green vehicle routing problem with simultaneous pickup and delivery
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.107010
– ident: 10.1016/j.eswa.2023.120009_b0095
  doi: 10.1007/978-3-030-96311-8_47
– volume: 94
  year: 2020
  ident: 10.1016/j.eswa.2023.120009_b0070
  article-title: Green vehicle routing and scheduling problem with heterogeneous fleet including reverse logistics in the form of collecting returned goods
  publication-title: Applied Soft Computing
– volume: 1–10
  year: 2022
  ident: 10.1016/j.eswa.2023.120009_b0180
  article-title: Multiobjective Optimization for Vehicle Routing Optimization Problem in Low-Carbon Intelligent Transportation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 178
  start-page: 755
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2023.120009_b0005
  article-title: An exact algorithm for a single-vehicle routing problem with time windows and multiple routes
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.02.019
– year: 2016
  ident: 10.1016/j.eswa.2023.120009_b0135
  article-title: Managing risk and disruption in production-inventory and supply chain systems: A review
  publication-title: Journal of Industrial and Management Optimization.
– volume: 38
  start-page: 131
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2023.120009_b0050
  article-title: The severity of supply chain disruptions: Design characteristics and mitigation capabilities
  publication-title: Decision Sciences
  doi: 10.1111/j.1540-5915.2007.00151.x
– volume: 176
  year: 2021
  ident: 10.1016/j.eswa.2023.120009_b0155
  article-title: NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114779
– volume: 75
  start-page: 162
  year: 2019
  ident: 10.1016/j.eswa.2023.120009_b0115
  article-title: A fast genetic algorithm for a critical protection problem in biomedical supply chain networks
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.11.010
– volume: 103
  start-page: 451
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2023.120009_b0160
  article-title: Perspectives in supply chain risk management
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2005.12.006
– volume: 137
  year: 2019
  ident: 10.1016/j.eswa.2023.120009_b0175
  article-title: A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.106011
– volume: 66
  start-page: 143
  year: 2018
  ident: 10.1016/j.eswa.2023.120009_b0010
  article-title: A modified variable neighborhood search hybridized with genetic algorithm for vehicle routing problems with cross-docking
  publication-title: Electronic Notes in Discrete Mathematics
  doi: 10.1016/j.endm.2018.03.019
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 10.1016/j.eswa.2023.120009_b0150
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1994.2.3.221
– volume: 125
  start-page: 144
  year: 2018
  ident: 10.1016/j.eswa.2023.120009_b0085
  article-title: A multi-population algorithm to solve the VRP with stochastic service and travel times
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.07.042
– volume: 163
  year: 2022
  ident: 10.1016/j.eswa.2023.120009_b0035
  article-title: Integrated scheduling of zone picking and vehicle routing problem with time windows in the front warehouse mode
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107823
– volume: 93
  start-page: 205
  year: 2016
  ident: 10.1016/j.eswa.2023.120009_b0060
  article-title: Performance measures based optimization of supply chain network resilience: A NSGA-II+ Co-Kriging approach
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2015.12.029
– volume: 34
  start-page: 7325
  issue: 10
  year: 2022
  ident: 10.1016/j.eswa.2023.120009_b0185
  article-title: Multi-objective optimization of electric vehicle routing problem with battery swap and mixed time windows
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-06967-2
– volume: 56
  start-page: 53
  year: 2015
  ident: 10.1016/j.eswa.2023.120009_b0025
  article-title: Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty
  publication-title: Omega
  doi: 10.1016/j.omega.2015.03.008
– year: 2002
  ident: 10.1016/j.eswa.2023.120009_b0165
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2023.120009_b0045
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826067
– volume: 109
  year: 2022
  ident: 10.1016/j.eswa.2023.120009_b0105
  article-title: A hybrid algorithm for time-dependent vehicle routing problem with soft time windows and stochastic factors
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2021.104606
– volume: 62
  start-page: 329
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2023.120009_b0030
  article-title: Supply chain redesign for resilience using simulation
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2011.10.003
– volume: 164
  year: 2022
  ident: 10.1016/j.eswa.2023.120009_b0120
  article-title: A hybrid Tabu search–Variable neighborhood descent algorithm for the cumulative capacitated vehicle routing problem with time windows in humanitarian applications
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107868
– volume: 15
  start-page: 1
  issue: 2
  year: 2004
  ident: 10.1016/j.eswa.2023.120009_b0040
  article-title: Building the resilient supply chain
  publication-title: International Journal of Logistics Management
– volume: 242
  year: 2020
  ident: 10.1016/j.eswa.2023.120009_b0190
  article-title: A many-objective gradient evolution algorithm for solving a green vehicle routing problem with time windows and time dependency for perishable products
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.118428
SSID ssj0017007
Score 2.601956
Snippet Nowadays, the complexity of the global supply chain is increasing. Thus, the vehicle routing problem (VRP) has become a very important problem because of its...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120009
SubjectTerms Green supply chain
Multi-objective particle swarm optimization algorithm
Supply chain disruption
Vehicle routing problem with time windows
Title Application of improved multi-objective particle swarm optimization algorithm to solve disruption for the two-stage vehicle routing problem with time windows
URI https://dx.doi.org/10.1016/j.eswa.2023.120009
Volume 225
WOSCitedRecordID wos000983938900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEICtpeXAhTeivOQDtyirvB0fV6gIKlohVKQVl8h2vN2sNskqm2zLj-GH8W8Yx86jq1LRA5dVFDmzVuaLPR7PjBF6H3PmuxEVtiO4VEW1pR0zIezUJZGgIQfKnPawCXJ2Fs_n9Otk8rvLhdmtSVHEV1d0819VDfdA2Sp19g7q7oXCDbgGpcMvqB1-_0nxs2FLuq0H0XoNwKxsQwftkq_0EGdtzLPW9pJVuVXC2JGbpEyLrS_KKquXuTJNobvQPM22VbO5FplYX5Y2GJcX0trJZSuqKptap7e3x9QYL2-WS7gq0tIY8Ks-_E9Wtakl3WXZjfbTh12m1p37bXoy3fN-M-tLUy8XQPj2J2v9Q6fNkuU5S3uOsyKzThl0vSrbBmdNH40MiwjrR7Pe6XBhEMmKbOwE8fw-ymvwZhI7cPWBP93A7nnhaGh2VVISvXHW0A6M1VTCC58q8dOh8fUS3XtTZx_Q2MXKrRIlI1EyEi3jHjr0SEhhwD2cfT6en_RbXPAREF0IUvfcZHTp4MP9ntxsNY0sofPH6KFZwuCZxucJmsjiKXrUHQ-CzWzxDP0akYjLBe5IxHsk4o5E3JKIxyTinkRcl7glEQ8kYiARA4m4JxEbErEhERsSsaILKxKxIfE5-v7x-PzDJ9ucBmIL33Fq2xWBHzEScBqnHg2kL0RI4WbkuFzKMHU8RpgfRFwQSblwuFgEcepImHHkIoBlwQt0UJSFfImwH3NYB8nUY1wGJOSUqzqMIYO1t0PJIjpCbve2E2FK5asTW9bJ3_V8hKz-mY0uFHNr67BTYmJMXW3CJsDkLc-9utO_vEYPho_lDTqoq0a-RffFrgZFvTNA_gFk1NZ-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+improved+multi-objective+particle+swarm+optimization+algorithm+to+solve+disruption+for+the+two-stage+vehicle+routing+problem+with+time+windows&rft.jtitle=Expert+systems+with+applications&rft.au=Kuo%2C+R.J.&rft.au=Fernanda+Luthfiansyah%2C+Muhammad&rft.au=Aini+Masruroh%2C+Nur&rft.au=Eva+Zulvia%2C+Ferani&rft.date=2023-09-01&rft.issn=0957-4174&rft.volume=225&rft.spage=120009&rft_id=info:doi/10.1016%2Fj.eswa.2023.120009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_120009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon