Application of improved multi-objective particle swarm optimization algorithm to solve disruption for the two-stage vehicle routing problem with time windows
Nowadays, the complexity of the global supply chain is increasing. Thus, the vehicle routing problem (VRP) has become a very important problem because of its practicality in real-world applications. In addition, most customers prefer to have their goods delivered in a specific time interval, and sus...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 225; S. 120009 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.09.2023
|
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Nowadays, the complexity of the global supply chain is increasing. Thus, the vehicle routing problem (VRP) has become a very important problem because of its practicality in real-world applications. In addition, most customers prefer to have their goods delivered in a specific time interval, and sustainability has become a very important issue for most companies. Therefore, this study proposes a mathematical model for a multi-objective VRP with time windows (VRPTW) as well as an algorithm to solve it. The model consists of two objectives: minimizing the total supply chain cost, and carbon emission. Besides the objectives, the proposed model and algorithm also consider the disruption that commonly happens in the supply chain. This study designs a two-stage VRPTW to solve the disruption. The first stage is the supply chain in ideal condition, while the second one is the supply chain in disrupted condition since the increase in the supply chain complexity also leads to more vulnerability to disruptions. This study improves a multi-objective particle swarm optimization algorithm (MOPSO) to solve the problem. As fitness cannot decide which algorithm is better, this study uses quality indicators to compare all of the algorithms. Based on the computational result, the improved MOPSO has the highest hypervolume and lowest spacing. Thus, it can be concluded that the improved MOPSO is the best algorithm to solve disruption in the two-stage VRPTW. |
|---|---|
| AbstractList | Nowadays, the complexity of the global supply chain is increasing. Thus, the vehicle routing problem (VRP) has become a very important problem because of its practicality in real-world applications. In addition, most customers prefer to have their goods delivered in a specific time interval, and sustainability has become a very important issue for most companies. Therefore, this study proposes a mathematical model for a multi-objective VRP with time windows (VRPTW) as well as an algorithm to solve it. The model consists of two objectives: minimizing the total supply chain cost, and carbon emission. Besides the objectives, the proposed model and algorithm also consider the disruption that commonly happens in the supply chain. This study designs a two-stage VRPTW to solve the disruption. The first stage is the supply chain in ideal condition, while the second one is the supply chain in disrupted condition since the increase in the supply chain complexity also leads to more vulnerability to disruptions. This study improves a multi-objective particle swarm optimization algorithm (MOPSO) to solve the problem. As fitness cannot decide which algorithm is better, this study uses quality indicators to compare all of the algorithms. Based on the computational result, the improved MOPSO has the highest hypervolume and lowest spacing. Thus, it can be concluded that the improved MOPSO is the best algorithm to solve disruption in the two-stage VRPTW. |
| ArticleNumber | 120009 |
| Author | Aini Masruroh, Nur Eva Zulvia, Ferani Fernanda Luthfiansyah, Muhammad Kuo, R.J. |
| Author_xml | – sequence: 1 givenname: R.J. orcidid: 0000-0002-7553-8070 surname: Kuo fullname: Kuo, R.J. email: rjkuo@mail.ntust.edu.tw organization: Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Section 4, Kee-Lung Road, Taipei 106, Taiwan – sequence: 2 givenname: Muhammad surname: Fernanda Luthfiansyah fullname: Fernanda Luthfiansyah, Muhammad email: muhammad.fernanda@mail.ugm.ac.id organization: Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Section 4, Kee-Lung Road, Taipei 106, Taiwan – sequence: 3 givenname: Nur surname: Aini Masruroh fullname: Aini Masruroh, Nur email: aini@ugm.ac.id organization: Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia – sequence: 4 givenname: Ferani surname: Eva Zulvia fullname: Eva Zulvia, Ferani email: fezulvia@mail.ntust.edu.tw organization: Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Section 4, Kee-Lung Road, Taipei 106, Taiwan |
| BookMark | eNp9kMtOwzAQRS0EEuXxA6z8AynjxI0biQ1CvCQkNrC2HGfSTpXEke22gn_hX3FbViy6suWZc698Ltjp4AZk7EbAVIAob1dTDFszzSEvpiIHgOqETcRcFVmpquKUTaCaqUwKJc_ZRQgrAKEA1IT93I9jR9ZEcgN3Lad-9G6DDe_XXaTM1Su0kTbIR-Mj2Q556vE9d2Oknr4PnOkWzlNc9jw6HlyX1hsKfj3up63zPC6Rx63LQjQL5Btc7qO8W0caFjxV1h32fJsyeMrFdBsatw1X7Kw1XcDrv_OSfT49fjy8ZG_vz68P92-ZLQBiJqwsSqNkXc2bvJJYWDur0mMJokacNZAbZQpZ1lZhVVuobSvnDaBQFbZSyOKS5Ydc610IHls9euqN_9IC9E6wXumdYL0TrA-CEzT_B1mKeyHRG-qOo3cHFNOnNoReB0s4WGzIJ9-6cXQM_wVFD56o |
| CitedBy_id | crossref_primary_10_1016_j_suscom_2025_101096 crossref_primary_10_3390_math12071059 crossref_primary_10_1016_j_eswa_2024_124989 crossref_primary_10_3390_biomimetics9060331 crossref_primary_10_1016_j_heliyon_2024_e26516 crossref_primary_10_1109_ACCESS_2024_3401487 crossref_primary_10_1109_JIOT_2025_3577254 crossref_primary_10_3390_biomimetics9040242 crossref_primary_10_1007_s11831_024_10202_7 crossref_primary_10_1016_j_cja_2024_09_005 crossref_primary_10_3390_su17062700 crossref_primary_10_1016_j_asoc_2024_111983 crossref_primary_10_1016_j_asoc_2025_113705 crossref_primary_10_1016_j_cie_2025_111242 crossref_primary_10_4018_IJAMC_387961 crossref_primary_10_3390_a18090536 crossref_primary_10_1016_j_cie_2025_111346 crossref_primary_10_1016_j_knosys_2024_112347 crossref_primary_10_1109_JSEN_2024_3458899 crossref_primary_10_1016_j_buildenv_2024_111185 crossref_primary_10_1080_08839514_2024_2325302 crossref_primary_10_1016_j_engappai_2025_111117 crossref_primary_10_1016_j_eswa_2023_121572 crossref_primary_10_1016_j_eswa_2025_128660 crossref_primary_10_1108_K_06_2024_1447 crossref_primary_10_1109_ACCESS_2024_3455550 crossref_primary_10_1109_ACCESS_2024_3369474 crossref_primary_10_1016_j_cie_2024_110588 crossref_primary_10_32604_cmc_2024_052401 crossref_primary_10_1016_j_ress_2024_110630 crossref_primary_10_1109_JIOT_2024_3521977 crossref_primary_10_1016_j_jclepro_2025_144874 crossref_primary_10_1108_K_10_2024_2935 crossref_primary_10_1016_j_cor_2024_106868 crossref_primary_10_3390_sym17050734 crossref_primary_10_1109_TSMC_2025_3571717 crossref_primary_10_1109_ACCESS_2024_3446653 crossref_primary_10_1016_j_eswa_2023_120813 crossref_primary_10_1007_s11831_024_10217_0 crossref_primary_10_1016_j_cie_2025_111253 crossref_primary_10_1177_18724981251331781 crossref_primary_10_1016_j_asoc_2025_112989 crossref_primary_10_1007_s40747_025_01825_9 crossref_primary_10_1007_s41660_025_00516_9 crossref_primary_10_1109_ACCESS_2023_3332145 crossref_primary_10_1109_ACCESS_2024_3389749 crossref_primary_10_1007_s11831_025_10252_5 crossref_primary_10_3390_app14156594 |
| Cites_doi | 10.1016/j.renene.2014.05.006 10.1016/j.cie.2020.106653 10.1287/trsc.1100.0328 10.1016/j.measurement.2020.108347 10.1016/j.eswa.2022.116690 10.1016/j.cor.2010.03.019 10.1016/j.ijpe.2021.108139 10.1287/trsc.1070.0190 10.1109/ICSMC.1997.637339 10.1016/j.cie.2021.107887 10.1016/j.ijpe.2020.107852 10.1016/j.swevo.2022.101201 10.1016/j.cie.2020.107010 10.1007/978-3-030-96311-8_47 10.1016/j.ejor.2006.02.019 10.1111/j.1540-5915.2007.00151.x 10.1016/j.eswa.2021.114779 10.1016/j.asoc.2018.11.010 10.1016/j.ijpe.2005.12.006 10.1016/j.cie.2019.106011 10.1016/j.endm.2018.03.019 10.1162/evco.1994.2.3.221 10.1016/j.cie.2018.07.042 10.1016/j.cie.2021.107823 10.1016/j.cie.2015.12.029 10.1007/s00521-022-06967-2 10.1016/j.omega.2015.03.008 10.1109/TEVC.2004.826067 10.1016/j.engappai.2021.104606 10.1016/j.cie.2011.10.003 10.1016/j.cie.2021.107868 10.1016/j.jclepro.2019.118428 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2023.120009 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2023_120009 S0957417423005110 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-1c436a74b98d294e3cc591c4601bee5d02a7a346bc7e9bc0bcf48d0e179ef4143 |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000983938900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 07:10:04 EST 2025 Tue Nov 18 21:07:07 EST 2025 Fri Feb 23 02:35:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Supply chain disruption Vehicle routing problem with time windows Multi-objective particle swarm optimization algorithm Green supply chain |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-1c436a74b98d294e3cc591c4601bee5d02a7a346bc7e9bc0bcf48d0e179ef4143 |
| ORCID | 0000-0002-7553-8070 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2023_120009 crossref_citationtrail_10_1016_j_eswa_2023_120009 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_120009 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 2023-09-00 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Coello, Pulido, Lechuga (b0045) 2004; 8 Toth, Vigo (b0165) 2002 Baniamerian, Bashiri, Zabihi (b0010) 2018; 66 Jafarian, Rabiee, Tavana (b0100) 2020; 228 Benjamin, Beasley (b0015) 2010; 37 Dixit, Seshadrinath, Tiwari (b0060) 2016; 93 Srivastava, Singh, Mallipeddi (b0155) 2021; 176 Khanduzi, Sangaiah (b0115) 2019; 75 Jie, Liu, Sun (b0105) 2022; 109 Xu, Elomri, Pokharel, Mutlu (b0175) 2019; 137 Hemici, M., Zouache, D., Boualem, B., & Hemici, K. (2022). An External Archive Guided NSGA-II Algorithm for Multi-depot Green Vehicle Routing Problem. Artificial Intelligence and Its Applications: Proceeding of the 2nd International Conference on Artificial Intelligence and Its Applications (2021). Chen, Zhang, Zhou (b0035) 2022; 163 Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation. Christopher, Peck (b0040) 2004; 15 Gholizadeh, Fazlollahtabar (b0075) 2020; 147 Prescott-Gagnon, Desaulniers, Drexl, Rousseau (b0140) 2010; 44 Srinivas, Deb (b0150) 1994; 2 Mandal, Mondal (b0125) 2021; 169 Zhou, Zhao (b0185) 2022; 34 Carvalho, Barroso, Machado, Azevedo, Cruz-Machado (b0030) 2012; 62 Salehi Sarbijan, Behnamian (b0145) 2022; 75 Yin (b0180) 2022; 1–10 Paul, Sarker, Essam (b0135) 2016 Wang, Ran, Guan, Fan, Sun, Wang (b0170) 2022; 197 Azi, Gendreau, Potvin (b0005) 2007; 178 Fathi, Khakifirooz, Diabat, Chen (b0065) 2021; 237 Olgun, Koç, Altıparmak (b0130) 2021; 153 Gutierrez, Dieulle, Labadie, Velasco (b0085) 2018; 125 Kyriakakis, Sevastopoulos, Marinaki, Marinakis (b0120) 2022; 164 Heidari, Imani, Khalilzadeh, Sarbazvatan (b0090) 2022 Zulvia, Kuo, Nugroho (b0190) 2020; 242 Cardoso, Barbosa-Póvoa, Relvas, Novais (b0025) 2015; 56 Gutiérrez-Sánchez, Rocha-Medina (b0080) 2022; 164 Borhanazad, Mekhilef, Ganapathy, Modiri-Delshad, Mirtaheri (b0020) 2014; 71 Craighead, Blackhurst, Rungtusanatham, Handfield (b0050) 2007; 38 Dell'Amico, Monaci, Pagani, Vigo (b0055) 2007; 41 Foroutan, Rezaeian, Mahdavi (b0070) 2020; 94 Tang (b0160) 2006; 103 Yin (10.1016/j.eswa.2023.120009_b0180) 2022; 1–10 Kyriakakis (10.1016/j.eswa.2023.120009_b0120) 2022; 164 Mandal (10.1016/j.eswa.2023.120009_b0125) 2021; 169 Benjamin (10.1016/j.eswa.2023.120009_b0015) 2010; 37 Salehi Sarbijan (10.1016/j.eswa.2023.120009_b0145) 2022; 75 Christopher (10.1016/j.eswa.2023.120009_b0040) 2004; 15 Gutierrez (10.1016/j.eswa.2023.120009_b0085) 2018; 125 Tang (10.1016/j.eswa.2023.120009_b0160) 2006; 103 Wang (10.1016/j.eswa.2023.120009_b0170) 2022; 197 Xu (10.1016/j.eswa.2023.120009_b0175) 2019; 137 Baniamerian (10.1016/j.eswa.2023.120009_b0010) 2018; 66 Craighead (10.1016/j.eswa.2023.120009_b0050) 2007; 38 Gutiérrez-Sánchez (10.1016/j.eswa.2023.120009_b0080) 2022; 164 Jafarian (10.1016/j.eswa.2023.120009_b0100) 2020; 228 Srivastava (10.1016/j.eswa.2023.120009_b0155) 2021; 176 Gholizadeh (10.1016/j.eswa.2023.120009_b0075) 2020; 147 Paul (10.1016/j.eswa.2023.120009_b0135) 2016 Prescott-Gagnon (10.1016/j.eswa.2023.120009_b0140) 2010; 44 Zulvia (10.1016/j.eswa.2023.120009_b0190) 2020; 242 Chen (10.1016/j.eswa.2023.120009_b0035) 2022; 163 Dixit (10.1016/j.eswa.2023.120009_b0060) 2016; 93 Zhou (10.1016/j.eswa.2023.120009_b0185) 2022; 34 Olgun (10.1016/j.eswa.2023.120009_b0130) 2021; 153 Coello (10.1016/j.eswa.2023.120009_b0045) 2004; 8 Carvalho (10.1016/j.eswa.2023.120009_b0030) 2012; 62 Fathi (10.1016/j.eswa.2023.120009_b0065) 2021; 237 Srinivas (10.1016/j.eswa.2023.120009_b0150) 1994; 2 Heidari (10.1016/j.eswa.2023.120009_b0090) 2022 Foroutan (10.1016/j.eswa.2023.120009_b0070) 2020; 94 Azi (10.1016/j.eswa.2023.120009_b0005) 2007; 178 Cardoso (10.1016/j.eswa.2023.120009_b0025) 2015; 56 10.1016/j.eswa.2023.120009_b0095 Khanduzi (10.1016/j.eswa.2023.120009_b0115) 2019; 75 Jie (10.1016/j.eswa.2023.120009_b0105) 2022; 109 Toth (10.1016/j.eswa.2023.120009_b0165) 2002 10.1016/j.eswa.2023.120009_b0110 Dell'Amico (10.1016/j.eswa.2023.120009_b0055) 2007; 41 Borhanazad (10.1016/j.eswa.2023.120009_b0020) 2014; 71 |
| References_xml | – volume: 197 year: 2022 ident: b0170 article-title: Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups publication-title: Expert Systems with Applications – year: 2022 ident: b0090 article-title: Green two-echelon closed and open location-routing problem: Application of NSGA-II and MOGWO metaheuristic approaches publication-title: Environment, Development and Sustainability. – volume: 75 start-page: 162 year: 2019 end-page: 179 ident: b0115 article-title: A fast genetic algorithm for a critical protection problem in biomedical supply chain networks publication-title: Applied Soft Computing – volume: 163 year: 2022 ident: b0035 article-title: Integrated scheduling of zone picking and vehicle routing problem with time windows in the front warehouse mode publication-title: Computers & Industrial Engineering – volume: 125 start-page: 144 year: 2018 end-page: 156 ident: b0085 article-title: A multi-population algorithm to solve the VRP with stochastic service and travel times publication-title: Computers & Industrial Engineering – year: 2016 ident: b0135 article-title: Managing risk and disruption in production-inventory and supply chain systems: A review publication-title: Journal of Industrial and Management Optimization. – volume: 15 start-page: 1 year: 2004 end-page: 13 ident: b0040 article-title: Building the resilient supply chain publication-title: International Journal of Logistics Management – volume: 38 start-page: 131 year: 2007 end-page: 156 ident: b0050 article-title: The severity of supply chain disruptions: Design characteristics and mitigation capabilities publication-title: Decision Sciences – volume: 164 year: 2022 ident: b0120 article-title: A hybrid Tabu search–Variable neighborhood descent algorithm for the cumulative capacitated vehicle routing problem with time windows in humanitarian applications publication-title: Computers & Industrial Engineering – year: 2002 ident: b0165 article-title: The vehicle routing problem – reference: Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation. – volume: 71 start-page: 295 year: 2014 end-page: 306 ident: b0020 article-title: Optimization of micro-grid system using MOPSO publication-title: Renewable Energy – volume: 37 start-page: 2270 year: 2010 end-page: 2280 ident: b0015 article-title: Metaheuristics for the waste collection vehicle routing problem with time windows, driver rest period and multiple disposal facilities publication-title: Computers & Operations Research – volume: 41 start-page: 516 year: 2007 end-page: 526 ident: b0055 article-title: Heuristic approaches for the fleet size and mix vehicle routing problem with time windows publication-title: Transportation Science – volume: 176 year: 2021 ident: b0155 article-title: NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows publication-title: Expert Systems with Applications – volume: 109 year: 2022 ident: b0105 article-title: A hybrid algorithm for time-dependent vehicle routing problem with soft time windows and stochastic factors publication-title: Engineering Applications of Artificial Intelligence – volume: 1–10 year: 2022 ident: b0180 article-title: Multiobjective Optimization for Vehicle Routing Optimization Problem in Low-Carbon Intelligent Transportation publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 93 start-page: 205 year: 2016 end-page: 214 ident: b0060 article-title: Performance measures based optimization of supply chain network resilience: A NSGA-II+ Co-Kriging approach publication-title: Computers & Industrial Engineering – volume: 44 start-page: 455 year: 2010 end-page: 473 ident: b0140 article-title: European driver rules in vehicle routing with time windows publication-title: Transportation science – volume: 2 start-page: 221 year: 1994 end-page: 248 ident: b0150 article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation – volume: 178 start-page: 755 year: 2007 end-page: 766 ident: b0005 article-title: An exact algorithm for a single-vehicle routing problem with time windows and multiple routes publication-title: European Journal of Operational Research – volume: 62 start-page: 329 year: 2012 end-page: 341 ident: b0030 article-title: Supply chain redesign for resilience using simulation publication-title: Computers & Industrial Engineering – volume: 8 start-page: 256 year: 2004 end-page: 279 ident: b0045 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 147 year: 2020 ident: b0075 article-title: Robust optimization and modified genetic algorithm for a closed loop green supply chain under uncertainty: Case study in melting industry publication-title: Computers & Industrial Engineering – volume: 169 year: 2021 ident: b0125 article-title: Multi-objective optimization of Cu-MWCNT composite electrode in electro discharge machining using MOPSO-TOPSIS publication-title: Measurement – volume: 137 year: 2019 ident: b0175 article-title: A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows publication-title: Computers & Industrial Engineering – volume: 34 start-page: 7325 year: 2022 end-page: 7348 ident: b0185 article-title: Multi-objective optimization of electric vehicle routing problem with battery swap and mixed time windows publication-title: Neural Computing and Applications – volume: 153 year: 2021 ident: b0130 article-title: A hyper heuristic for the green vehicle routing problem with simultaneous pickup and delivery publication-title: Computers & Industrial Engineering – volume: 242 year: 2020 ident: b0190 article-title: A many-objective gradient evolution algorithm for solving a green vehicle routing problem with time windows and time dependency for perishable products publication-title: Journal of Cleaner Production – volume: 237 year: 2021 ident: b0065 article-title: An integrated queuing-stochastic optimization hybrid Genetic Algorithm for a location-inventory supply chain network publication-title: International Journal of Production Economics – volume: 164 year: 2022 ident: b0080 article-title: VRP variants applicable to collecting donations and similar problems: A taxonomic review publication-title: Computers & Industrial Engineering – volume: 66 start-page: 143 year: 2018 end-page: 150 ident: b0010 article-title: A modified variable neighborhood search hybridized with genetic algorithm for vehicle routing problems with cross-docking publication-title: Electronic Notes in Discrete Mathematics – volume: 228 year: 2020 ident: b0100 article-title: A novel multi-objective co-evolutionary approach for supply chain gap analysis with consideration of uncertainties publication-title: International Journal of Production Economics – volume: 56 start-page: 53 year: 2015 end-page: 73 ident: b0025 article-title: Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty publication-title: Omega – volume: 75 year: 2022 ident: b0145 article-title: Real-time collaborative feeder vehicle routing problem with flexible time windows publication-title: Swarm and Evolutionary Computation – reference: Hemici, M., Zouache, D., Boualem, B., & Hemici, K. (2022). An External Archive Guided NSGA-II Algorithm for Multi-depot Green Vehicle Routing Problem. Artificial Intelligence and Its Applications: Proceeding of the 2nd International Conference on Artificial Intelligence and Its Applications (2021). – volume: 94 year: 2020 ident: b0070 article-title: Green vehicle routing and scheduling problem with heterogeneous fleet including reverse logistics in the form of collecting returned goods publication-title: Applied Soft Computing – volume: 103 start-page: 451 year: 2006 end-page: 488 ident: b0160 article-title: Perspectives in supply chain risk management publication-title: International Journal of Production Economics – volume: 71 start-page: 295 year: 2014 ident: 10.1016/j.eswa.2023.120009_b0020 article-title: Optimization of micro-grid system using MOPSO publication-title: Renewable Energy doi: 10.1016/j.renene.2014.05.006 – volume: 147 year: 2020 ident: 10.1016/j.eswa.2023.120009_b0075 article-title: Robust optimization and modified genetic algorithm for a closed loop green supply chain under uncertainty: Case study in melting industry publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106653 – volume: 44 start-page: 455 issue: 4 year: 2010 ident: 10.1016/j.eswa.2023.120009_b0140 article-title: European driver rules in vehicle routing with time windows publication-title: Transportation science doi: 10.1287/trsc.1100.0328 – volume: 169 year: 2021 ident: 10.1016/j.eswa.2023.120009_b0125 article-title: Multi-objective optimization of Cu-MWCNT composite electrode in electro discharge machining using MOPSO-TOPSIS publication-title: Measurement doi: 10.1016/j.measurement.2020.108347 – volume: 197 year: 2022 ident: 10.1016/j.eswa.2023.120009_b0170 article-title: Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.116690 – volume: 37 start-page: 2270 issue: 12 year: 2010 ident: 10.1016/j.eswa.2023.120009_b0015 article-title: Metaheuristics for the waste collection vehicle routing problem with time windows, driver rest period and multiple disposal facilities publication-title: Computers & Operations Research doi: 10.1016/j.cor.2010.03.019 – volume: 237 year: 2021 ident: 10.1016/j.eswa.2023.120009_b0065 article-title: An integrated queuing-stochastic optimization hybrid Genetic Algorithm for a location-inventory supply chain network publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2021.108139 – volume: 41 start-page: 516 issue: 4 year: 2007 ident: 10.1016/j.eswa.2023.120009_b0055 article-title: Heuristic approaches for the fleet size and mix vehicle routing problem with time windows publication-title: Transportation Science doi: 10.1287/trsc.1070.0190 – ident: 10.1016/j.eswa.2023.120009_b0110 doi: 10.1109/ICSMC.1997.637339 – volume: 164 year: 2022 ident: 10.1016/j.eswa.2023.120009_b0080 article-title: VRP variants applicable to collecting donations and similar problems: A taxonomic review publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107887 – volume: 228 year: 2020 ident: 10.1016/j.eswa.2023.120009_b0100 article-title: A novel multi-objective co-evolutionary approach for supply chain gap analysis with consideration of uncertainties publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2020.107852 – volume: 75 year: 2022 ident: 10.1016/j.eswa.2023.120009_b0145 article-title: Real-time collaborative feeder vehicle routing problem with flexible time windows publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2022.101201 – year: 2022 ident: 10.1016/j.eswa.2023.120009_b0090 article-title: Green two-echelon closed and open location-routing problem: Application of NSGA-II and MOGWO metaheuristic approaches publication-title: Environment, Development and Sustainability. – volume: 153 year: 2021 ident: 10.1016/j.eswa.2023.120009_b0130 article-title: A hyper heuristic for the green vehicle routing problem with simultaneous pickup and delivery publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.107010 – ident: 10.1016/j.eswa.2023.120009_b0095 doi: 10.1007/978-3-030-96311-8_47 – volume: 94 year: 2020 ident: 10.1016/j.eswa.2023.120009_b0070 article-title: Green vehicle routing and scheduling problem with heterogeneous fleet including reverse logistics in the form of collecting returned goods publication-title: Applied Soft Computing – volume: 1–10 year: 2022 ident: 10.1016/j.eswa.2023.120009_b0180 article-title: Multiobjective Optimization for Vehicle Routing Optimization Problem in Low-Carbon Intelligent Transportation publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 178 start-page: 755 issue: 3 year: 2007 ident: 10.1016/j.eswa.2023.120009_b0005 article-title: An exact algorithm for a single-vehicle routing problem with time windows and multiple routes publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.02.019 – year: 2016 ident: 10.1016/j.eswa.2023.120009_b0135 article-title: Managing risk and disruption in production-inventory and supply chain systems: A review publication-title: Journal of Industrial and Management Optimization. – volume: 38 start-page: 131 issue: 1 year: 2007 ident: 10.1016/j.eswa.2023.120009_b0050 article-title: The severity of supply chain disruptions: Design characteristics and mitigation capabilities publication-title: Decision Sciences doi: 10.1111/j.1540-5915.2007.00151.x – volume: 176 year: 2021 ident: 10.1016/j.eswa.2023.120009_b0155 article-title: NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.114779 – volume: 75 start-page: 162 year: 2019 ident: 10.1016/j.eswa.2023.120009_b0115 article-title: A fast genetic algorithm for a critical protection problem in biomedical supply chain networks publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.11.010 – volume: 103 start-page: 451 issue: 2 year: 2006 ident: 10.1016/j.eswa.2023.120009_b0160 article-title: Perspectives in supply chain risk management publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2005.12.006 – volume: 137 year: 2019 ident: 10.1016/j.eswa.2023.120009_b0175 article-title: A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2019.106011 – volume: 66 start-page: 143 year: 2018 ident: 10.1016/j.eswa.2023.120009_b0010 article-title: A modified variable neighborhood search hybridized with genetic algorithm for vehicle routing problems with cross-docking publication-title: Electronic Notes in Discrete Mathematics doi: 10.1016/j.endm.2018.03.019 – volume: 2 start-page: 221 issue: 3 year: 1994 ident: 10.1016/j.eswa.2023.120009_b0150 article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation doi: 10.1162/evco.1994.2.3.221 – volume: 125 start-page: 144 year: 2018 ident: 10.1016/j.eswa.2023.120009_b0085 article-title: A multi-population algorithm to solve the VRP with stochastic service and travel times publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.07.042 – volume: 163 year: 2022 ident: 10.1016/j.eswa.2023.120009_b0035 article-title: Integrated scheduling of zone picking and vehicle routing problem with time windows in the front warehouse mode publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107823 – volume: 93 start-page: 205 year: 2016 ident: 10.1016/j.eswa.2023.120009_b0060 article-title: Performance measures based optimization of supply chain network resilience: A NSGA-II+ Co-Kriging approach publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2015.12.029 – volume: 34 start-page: 7325 issue: 10 year: 2022 ident: 10.1016/j.eswa.2023.120009_b0185 article-title: Multi-objective optimization of electric vehicle routing problem with battery swap and mixed time windows publication-title: Neural Computing and Applications doi: 10.1007/s00521-022-06967-2 – volume: 56 start-page: 53 year: 2015 ident: 10.1016/j.eswa.2023.120009_b0025 article-title: Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty publication-title: Omega doi: 10.1016/j.omega.2015.03.008 – year: 2002 ident: 10.1016/j.eswa.2023.120009_b0165 – volume: 8 start-page: 256 issue: 3 year: 2004 ident: 10.1016/j.eswa.2023.120009_b0045 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.826067 – volume: 109 year: 2022 ident: 10.1016/j.eswa.2023.120009_b0105 article-title: A hybrid algorithm for time-dependent vehicle routing problem with soft time windows and stochastic factors publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2021.104606 – volume: 62 start-page: 329 issue: 1 year: 2012 ident: 10.1016/j.eswa.2023.120009_b0030 article-title: Supply chain redesign for resilience using simulation publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2011.10.003 – volume: 164 year: 2022 ident: 10.1016/j.eswa.2023.120009_b0120 article-title: A hybrid Tabu search–Variable neighborhood descent algorithm for the cumulative capacitated vehicle routing problem with time windows in humanitarian applications publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107868 – volume: 15 start-page: 1 issue: 2 year: 2004 ident: 10.1016/j.eswa.2023.120009_b0040 article-title: Building the resilient supply chain publication-title: International Journal of Logistics Management – volume: 242 year: 2020 ident: 10.1016/j.eswa.2023.120009_b0190 article-title: A many-objective gradient evolution algorithm for solving a green vehicle routing problem with time windows and time dependency for perishable products publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2019.118428 |
| SSID | ssj0017007 |
| Score | 2.601956 |
| Snippet | Nowadays, the complexity of the global supply chain is increasing. Thus, the vehicle routing problem (VRP) has become a very important problem because of its... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 120009 |
| SubjectTerms | Green supply chain Multi-objective particle swarm optimization algorithm Supply chain disruption Vehicle routing problem with time windows |
| Title | Application of improved multi-objective particle swarm optimization algorithm to solve disruption for the two-stage vehicle routing problem with time windows |
| URI | https://dx.doi.org/10.1016/j.eswa.2023.120009 |
| Volume | 225 |
| WOSCitedRecordID | wos000983938900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEICtpeXAhTeivOQDtyirvB0fV6gIKlohVKQVl8h2vN2sNskqm2zLj-GH8W8Yx86jq1LRA5dVFDmzVuaLPR7PjBF6H3PmuxEVtiO4VEW1pR0zIezUJZGgIQfKnPawCXJ2Fs_n9Otk8rvLhdmtSVHEV1d0819VDfdA2Sp19g7q7oXCDbgGpcMvqB1-_0nxs2FLuq0H0XoNwKxsQwftkq_0EGdtzLPW9pJVuVXC2JGbpEyLrS_KKquXuTJNobvQPM22VbO5FplYX5Y2GJcX0trJZSuqKptap7e3x9QYL2-WS7gq0tIY8Ks-_E9Wtakl3WXZjfbTh12m1p37bXoy3fN-M-tLUy8XQPj2J2v9Q6fNkuU5S3uOsyKzThl0vSrbBmdNH40MiwjrR7Pe6XBhEMmKbOwE8fw-ymvwZhI7cPWBP93A7nnhaGh2VVISvXHW0A6M1VTCC58q8dOh8fUS3XtTZx_Q2MXKrRIlI1EyEi3jHjr0SEhhwD2cfT6en_RbXPAREF0IUvfcZHTp4MP9ntxsNY0sofPH6KFZwuCZxucJmsjiKXrUHQ-CzWzxDP0akYjLBe5IxHsk4o5E3JKIxyTinkRcl7glEQ8kYiARA4m4JxEbErEhERsSsaILKxKxIfE5-v7x-PzDJ9ucBmIL33Fq2xWBHzEScBqnHg2kL0RI4WbkuFzKMHU8RpgfRFwQSblwuFgEcepImHHkIoBlwQt0UJSFfImwH3NYB8nUY1wGJOSUqzqMIYO1t0PJIjpCbve2E2FK5asTW9bJ3_V8hKz-mY0uFHNr67BTYmJMXW3CJsDkLc-9utO_vEYPho_lDTqoq0a-RffFrgZFvTNA_gFk1NZ- |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+improved+multi-objective+particle+swarm+optimization+algorithm+to+solve+disruption+for+the+two-stage+vehicle+routing+problem+with+time+windows&rft.jtitle=Expert+systems+with+applications&rft.au=Kuo%2C+R.J.&rft.au=Fernanda+Luthfiansyah%2C+Muhammad&rft.au=Aini+Masruroh%2C+Nur&rft.au=Eva+Zulvia%2C+Ferani&rft.date=2023-09-01&rft.issn=0957-4174&rft.volume=225&rft.spage=120009&rft_id=info:doi/10.1016%2Fj.eswa.2023.120009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_120009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |