A privacy-preserving federated graph learning framework for threat detection in IoT trigger-action programming

Trigger-Action Programming (TAP) is a common user-programming paradigm in Internet of Things (IoT) smart home platforms, allowing users to create customized automation rules to match IoT devices and network services. However, the potential security threats associated with TAP rules are often overloo...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 255; p. 124724
Main Authors: Xing, Yongheng, Hu, Liang, Du, Xinqi, Shen, Zhiqi, Hu, Juncheng, Wang, Feng
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2024
Subjects:
ISSN:0957-4174
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Trigger-Action Programming (TAP) is a common user-programming paradigm in Internet of Things (IoT) smart home platforms, allowing users to create customized automation rules to match IoT devices and network services. However, the potential security threats associated with TAP rules are often overlooked or underestimated by users. To address this issue, we propose PFTAP, a novel federated graph learning framework for threat detection of TAP rules while simultaneously protecting user data and privacy. First, we propose a hierarchical graph attention network. This network comprises intra-rule attention and inter-rule attention modules, which enable the learning of comprehensive feature representations for triggers and actions. By capturing the intricate relationships between different rules, the network enhances the detection accuracy of risky TAP rules. Moreover, our framework is based on federated learning and integrates symmetric encryption and local differential privacy techniques, aiming to safeguard user privacy from unauthorized access or tampering. To evaluate the effectiveness of our framework, we conduct experiments using an extensive dataset of IFTTT rules. The experimental results convincingly demonstrate that PFTAP outperforms state-of-the-art methods in terms of threat detection performance. •Propose PFTAP framework to detect the threats in TAP rules in IoT.•Propose HieGAN to learn the feature representation of triggers and actions.•Propose to use symmetric encryption and LDP to protect user privacy.•Achieve superior performance in TAP rule threat detection.
AbstractList Trigger-Action Programming (TAP) is a common user-programming paradigm in Internet of Things (IoT) smart home platforms, allowing users to create customized automation rules to match IoT devices and network services. However, the potential security threats associated with TAP rules are often overlooked or underestimated by users. To address this issue, we propose PFTAP, a novel federated graph learning framework for threat detection of TAP rules while simultaneously protecting user data and privacy. First, we propose a hierarchical graph attention network. This network comprises intra-rule attention and inter-rule attention modules, which enable the learning of comprehensive feature representations for triggers and actions. By capturing the intricate relationships between different rules, the network enhances the detection accuracy of risky TAP rules. Moreover, our framework is based on federated learning and integrates symmetric encryption and local differential privacy techniques, aiming to safeguard user privacy from unauthorized access or tampering. To evaluate the effectiveness of our framework, we conduct experiments using an extensive dataset of IFTTT rules. The experimental results convincingly demonstrate that PFTAP outperforms state-of-the-art methods in terms of threat detection performance. •Propose PFTAP framework to detect the threats in TAP rules in IoT.•Propose HieGAN to learn the feature representation of triggers and actions.•Propose to use symmetric encryption and LDP to protect user privacy.•Achieve superior performance in TAP rule threat detection.
ArticleNumber 124724
Author Hu, Liang
Hu, Juncheng
Xing, Yongheng
Du, Xinqi
Shen, Zhiqi
Wang, Feng
Author_xml – sequence: 1
  givenname: Yongheng
  orcidid: 0000-0003-4980-1813
  surname: Xing
  fullname: Xing, Yongheng
  email: xingyh18@mails.jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China
– sequence: 2
  givenname: Liang
  surname: Hu
  fullname: Hu, Liang
  email: hul@jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China
– sequence: 3
  givenname: Xinqi
  surname: Du
  fullname: Du, Xinqi
  email: duxq18@mails.jlu.edu.cn
  organization: School of Control Science and Engineering, Dalian University of Technology, Dalian 116081, China
– sequence: 4
  givenname: Zhiqi
  surname: Shen
  fullname: Shen, Zhiqi
  email: zqshen@ntu.edu.sg
  organization: Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY) & School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore
– sequence: 5
  givenname: Juncheng
  surname: Hu
  fullname: Hu, Juncheng
  email: jchu@jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China
– sequence: 6
  givenname: Feng
  orcidid: 0000-0002-0732-7343
  surname: Wang
  fullname: Wang, Feng
  email: wangfeng12@mails.jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China
BookMark eNp9kMtqwzAQRbVIoUnaH-hKP2BXVmTLhm5C6CMQ6CZdi7E8dpTGD8YiIX9fu-6qi6wG7nAuM2fBZk3bIGNPkQgjESXPxxD7C4RSSBVGUmmpZmwuslgHKtLqni36_ihEpIXQc9aseUfuDPYadIQ90tk1FS-xQAKPBa8IugM_IVDzuyCo8dLSNy9b4v5ACJ4X6NF61zbcNXzb7rknV1VIAUxpR-1QU9dDwQO7K-HU4-PfXLKvt9f95iPYfb5vN-tdYFdC-CACSHUaJ6CzTMk4z-NSJbnMUao8EQrSspAWtLY2lgqlQCtlqhJbQpzlSSFWS5ZOvZbavicsjXUexms8gTuZSJjRlTma0ZUZXZnJ1YDKf-ggqAa63oZeJgiHp84OyfTWYWOxcDS4MUXrbuE_0_iJ5g
CitedBy_id crossref_primary_10_1109_JIOT_2025_3579920
crossref_primary_10_1016_j_neucom_2025_131529
crossref_primary_10_1109_TCE_2025_3573033
crossref_primary_10_1016_j_eswa_2025_126642
Cites_doi 10.1016/j.eswa.2023.121065
10.1109/TIFS.2020.2988575
10.1109/TIFS.2019.2899758
10.1145/3576842.3582328
10.1109/JIOT.2022.3222615
10.6028/jres.106.023
10.1109/TII.2021.3092774
10.1016/j.cose.2022.102812
10.1145/3038912.3052709
10.1145/3319535.3345662
10.1145/3131365.3131369
10.1109/TIFS.2022.3174394
10.1109/TIFS.2022.3214084
10.1109/MIS.2020.3014880
10.1109/JIOT.2020.3019812
10.1145/3543507.3583293
10.1145/3298981
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.124724
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_124724
S0957417424015914
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-1aa87856a799425bb5f46b2be24b604a8fd2ca77cc524e20ec22846cfa59b6d03
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001271628200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 03:07:40 EST 2025
Tue Nov 18 21:00:47 EST 2025
Sat Aug 31 16:00:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Privacy protection
Trigger-action programming
Federated learning
Rule threat detection
Graph attention network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-1aa87856a799425bb5f46b2be24b604a8fd2ca77cc524e20ec22846cfa59b6d03
ORCID 0000-0003-4980-1813
0000-0002-0732-7343
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2024_124724
crossref_primary_10_1016_j_eswa_2024_124724
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_124724
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Wu, Lyu, Qi, Huang, Xie (b25) 2022; 13
Yao, Y., Kamani, M. M., Cheng, Z., Chen, L., Joe-Wong, C., & Liu, T. (2023). FedRule: Federated Rule Recommendation System with Graph Neural Networks. In
Surbatovich, M., Aljuraidan, J., Bauer, L., Das, A., & Jia, L. (2017). Some recipes can do more than spoil your appetite: Analyzing the security and privacy risks of IFTTT recipes. In
(pp. 1501–1510).
(pp. 505–529).
(pp. 2916–2926).
Chen, Chowdhury, Wang, Sabelfeld, Chatterjee, Fernandes (b5) 2021
Zhou, Yang, Dai, Liu (b30) 2022; 17
Hsu, Chiang, Hsiao (b12) 2019; 14
Wei, Li, Ding, Ma, Yang, Farokhi (b23) 2020; 15
Li, Wen, Wu, Hu, Wang, Li (b14) 2021
(pp. 2899–2916).
Yang, Liu, Chen, Tong (b27) 2019; 10
Dwork (b9) 2008
Mi, X., Qian, F., Zhang, Y., & Wang, X. (2017). An empirical characterization of IFTTT: ecosystem, usage, and performance. In
Wu, Hu, Mao, Xing, Wang (b24) 2024; 235
He, C., Balasubramanian, K., Ceyani, E., Yang, C., Xie, H., Sun, L., et al. (2021). FedGraphNN: A Federated Learning Benchmark System for Graph Neural Networks. In
Cobb, C., Surbatovich, M., Kawakami, A., Sharif, M., Bauer, L., Das, A., et al. (2020). How Risky Are Real Users’IFTTT Applets?. In
Xing, Hu, Zhang, Wu, Wang (b26) 2021; 18
Luo, Cheng, Hu, Peng, Yao (b15) 2020; 8
(pp. 197–208).
Chen, Zhang, Elliot, Wang, Wang (b6) 2022
Abdi, Williams (b1) 2010; 3
D’Arco, Wang, Zheng (b8) 2022
(pp. 398–404).
Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b21) 2017
Ahmadpanah, M. M., Hedin, D., Balliu, M., Olsson, L. E., & Sabelfeld, A. (2021). SandTrap: Securing JavaScript-driven Trigger-Action Platforms. In
.
McMahan, Moore, Ramage, Hampson, y Arcas (b16) 2017
(pp. 1439–1453).
Yu, Liu (b29) 2022; 17
Kipf, Welling (b13) 2016
Hamilton, Ying, Leskovec (b10) 2017; 30
Sun, B., Shen, L., Peng, X., & Wang, Z. (2023). SCTAP: Supporting Scenario-Centric Trigger-Action Programming based on Software-Defined Physical Environments. In
Chai, Wang, Chen, Yang (b4) 2020; 36
Wang, Q., Datta, P., Yang, W., Liu, S., Bates, A., & Gunter, C. A. (2019). Charting the attack surface of trigger-action IoT platforms. In
Breve, Cimino, Deufemia (b3) 2022; 10
Nechvatal, Barker, Bassham, Burr, Dworkin, Foti (b18) 2001; 106
10.1016/j.eswa.2024.124724_b20
Veličković (10.1016/j.eswa.2024.124724_b21) 2017
Yang (10.1016/j.eswa.2024.124724_b27) 2019; 10
D’Arco (10.1016/j.eswa.2024.124724_b8) 2022
Xing (10.1016/j.eswa.2024.124724_b26) 2021; 18
Kipf (10.1016/j.eswa.2024.124724_b13) 2016
10.1016/j.eswa.2024.124724_b19
Wei (10.1016/j.eswa.2024.124724_b23) 2020; 15
Chen (10.1016/j.eswa.2024.124724_b5) 2021
McMahan (10.1016/j.eswa.2024.124724_b16) 2017
10.1016/j.eswa.2024.124724_b17
Chai (10.1016/j.eswa.2024.124724_b4) 2020; 36
10.1016/j.eswa.2024.124724_b11
Hsu (10.1016/j.eswa.2024.124724_b12) 2019; 14
Chen (10.1016/j.eswa.2024.124724_b6) 2022
Hamilton (10.1016/j.eswa.2024.124724_b10) 2017; 30
Breve (10.1016/j.eswa.2024.124724_b3) 2022; 10
10.1016/j.eswa.2024.124724_b7
Yu (10.1016/j.eswa.2024.124724_b29) 2022; 17
Dwork (10.1016/j.eswa.2024.124724_b9) 2008
Zhou (10.1016/j.eswa.2024.124724_b30) 2022; 17
10.1016/j.eswa.2024.124724_b2
Luo (10.1016/j.eswa.2024.124724_b15) 2020; 8
Abdi (10.1016/j.eswa.2024.124724_b1) 2010; 3
Li (10.1016/j.eswa.2024.124724_b14) 2021
Nechvatal (10.1016/j.eswa.2024.124724_b18) 2001; 106
10.1016/j.eswa.2024.124724_b28
10.1016/j.eswa.2024.124724_b22
Wu (10.1016/j.eswa.2024.124724_b24) 2024; 235
Wu (10.1016/j.eswa.2024.124724_b25) 2022; 13
References_xml – volume: 10
  start-page: 5607
  year: 2022
  end-page: 5622
  ident: b3
  article-title: Identifying security and privacy violation rules in trigger-action IoT platforms with NLP models
  publication-title: IEEE Internet of Things Journal
– volume: 10
  start-page: 1
  year: 2019
  end-page: 19
  ident: b27
  article-title: Federated machine learning: Concept and applications
  publication-title: ACM Transactions on Intelligent Systems and Technology
– volume: 8
  start-page: 2736
  year: 2020
  end-page: 2750
  ident: b15
  article-title: Context-rich privacy leakage analysis through inferring apps in smart home iot
  publication-title: IEEE Internet of Things Journal
– reference: (pp. 1501–1510).
– start-page: 501
  year: 2021
  end-page: 518
  ident: b5
  article-title: Data privacy in trigger-action systems
  publication-title: 2021 IEEE symposium on security and privacy
– reference: Surbatovich, M., Aljuraidan, J., Bauer, L., Das, A., & Jia, L. (2017). Some recipes can do more than spoil your appetite: Analyzing the security and privacy risks of IFTTT recipes. In
– volume: 235
  year: 2024
  ident: b24
  article-title: A data fusion framework based on heterogeneous information network embedding for trigger-action programming in IoT
  publication-title: Expert Systems with Applications
– reference: (pp. 2899–2916).
– volume: 36
  start-page: 11
  year: 2020
  end-page: 20
  ident: b4
  article-title: Secure federated matrix factorization
  publication-title: IEEE Intelligent Systems
– reference: Wang, Q., Datta, P., Yang, W., Liu, S., Bates, A., & Gunter, C. A. (2019). Charting the attack surface of trigger-action IoT platforms. In
– year: 2017
  ident: b21
  article-title: Graph attention networks
– volume: 17
  start-page: 3773
  year: 2022
  end-page: 3788
  ident: b29
  article-title: TAPInspector: Safety and liveness verification of concurrent trigger-action IoT systems
  publication-title: IEEE Transactions on Information Forensics and Security
– reference: (pp. 1439–1453).
– volume: 30
  year: 2017
  ident: b10
  article-title: Inductive representation learning on large graphs
  publication-title: Advances in Neural Information Processing Systems
– reference: (pp. 398–404).
– year: 2021
  ident: b14
  article-title: A survey on federated learning systems: vision, hype and reality for data privacy and protection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Ahmadpanah, M. M., Hedin, D., Balliu, M., Olsson, L. E., & Sabelfeld, A. (2021). SandTrap: Securing JavaScript-driven Trigger-Action Platforms. In
– reference: (pp. 197–208).
– volume: 14
  start-page: 2607
  year: 2019
  end-page: 2622
  ident: b12
  article-title: Safechain: Securing trigger-action programming from attack chains
  publication-title: IEEE Transactions on Information Forensics and Security
– year: 2016
  ident: b13
  article-title: Semi-supervised classification with graph convolutional networks
– reference: Sun, B., Shen, L., Peng, X., & Wang, Z. (2023). SCTAP: Supporting Scenario-Centric Trigger-Action Programming based on Software-Defined Physical Environments. In
– reference: Cobb, C., Surbatovich, M., Kawakami, A., Sharif, M., Bauer, L., Das, A., et al. (2020). How Risky Are Real Users’IFTTT Applets?. In
– volume: 15
  start-page: 3454
  year: 2020
  end-page: 3469
  ident: b23
  article-title: Federated learning with differential privacy: Algorithms and performance analysis
  publication-title: IEEE Transactions on Information Forensics and Security
– start-page: 1273
  year: 2017
  end-page: 1282
  ident: b16
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Artificial intelligence and statistics
– volume: 106
  start-page: 511
  year: 2001
  ident: b18
  article-title: Report on the development of the advanced encryption standard (AES)
  publication-title: Journal of research of the National Institute of Standards and Technology
– volume: 3
  start-page: 1
  year: 2010
  end-page: 5
  ident: b1
  article-title: Tukey’s honestly significant difference (HSD) test
  publication-title: Encyclopedia of Research Design
– reference: Mi, X., Qian, F., Zhang, Y., & Wang, X. (2017). An empirical characterization of IFTTT: ecosystem, usage, and performance. In
– volume: 17
  start-page: 1905
  year: 2022
  end-page: 1918
  ident: b30
  article-title: PFLF: Privacy-preserving federated learning framework for edge computing
  publication-title: IEEE Transactions on Information Forensics and Security
– reference: .
– volume: 13
  start-page: 1
  year: 2022
  end-page: 10
  ident: b25
  article-title: A federated graph neural network framework for privacy-preserving personalization
  publication-title: Nature Communications
– start-page: 1
  year: 2008
  end-page: 19
  ident: b9
  article-title: Differential privacy: A survey of results
  publication-title: International conference on theory and applications of models of computation
– reference: Yao, Y., Kamani, M. M., Cheng, Z., Chen, L., Joe-Wong, C., & Liu, T. (2023). FedRule: Federated Rule Recommendation System with Graph Neural Networks. In
– reference: (pp. 505–529).
– start-page: 2985
  year: 2022
  end-page: 2992
  ident: b8
  article-title: A rapid detection of Parkinson’s disease using smart insoles: A statistical and machine learning approach
  publication-title: 2022 IEEE international conference on bioinformatics and biomedicine
– volume: 18
  start-page: 1231
  year: 2021
  end-page: 1239
  ident: b26
  article-title: Nonnegative matrix factorization based heterogeneous graph embedding method for trigger-action programming in IoT
  publication-title: IEEE Transactions on Industrial Informatics
– year: 2022
  ident: b6
  article-title: Fix the leaking tap: A survey of trigger-action programming (TAP) security issues, detection techniques and solutions
  publication-title: Computers & Security
– reference: (pp. 2916–2926).
– reference: He, C., Balasubramanian, K., Ceyani, E., Yang, C., Xie, H., Sun, L., et al. (2021). FedGraphNN: A Federated Learning Benchmark System for Graph Neural Networks. In
– year: 2017
  ident: 10.1016/j.eswa.2024.124724_b21
– volume: 235
  year: 2024
  ident: 10.1016/j.eswa.2024.124724_b24
  article-title: A data fusion framework based on heterogeneous information network embedding for trigger-action programming in IoT
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121065
– volume: 3
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2024.124724_b1
  article-title: Tukey’s honestly significant difference (HSD) test
  publication-title: Encyclopedia of Research Design
– volume: 15
  start-page: 3454
  year: 2020
  ident: 10.1016/j.eswa.2024.124724_b23
  article-title: Federated learning with differential privacy: Algorithms and performance analysis
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2020.2988575
– volume: 14
  start-page: 2607
  issue: 10
  year: 2019
  ident: 10.1016/j.eswa.2024.124724_b12
  article-title: Safechain: Securing trigger-action programming from attack chains
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2019.2899758
– start-page: 1273
  year: 2017
  ident: 10.1016/j.eswa.2024.124724_b16
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: 10.1016/j.eswa.2024.124724_b28
  doi: 10.1145/3576842.3582328
– volume: 10
  start-page: 5607
  issue: 6
  year: 2022
  ident: 10.1016/j.eswa.2024.124724_b3
  article-title: Identifying security and privacy violation rules in trigger-action IoT platforms with NLP models
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2022.3222615
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2024.124724_b25
  article-title: A federated graph neural network framework for privacy-preserving personalization
  publication-title: Nature Communications
– start-page: 2985
  year: 2022
  ident: 10.1016/j.eswa.2024.124724_b8
  article-title: A rapid detection of Parkinson’s disease using smart insoles: A statistical and machine learning approach
– volume: 106
  start-page: 511
  issue: 3
  year: 2001
  ident: 10.1016/j.eswa.2024.124724_b18
  article-title: Report on the development of the advanced encryption standard (AES)
  publication-title: Journal of research of the National Institute of Standards and Technology
  doi: 10.6028/jres.106.023
– volume: 30
  year: 2017
  ident: 10.1016/j.eswa.2024.124724_b10
  article-title: Inductive representation learning on large graphs
  publication-title: Advances in Neural Information Processing Systems
– volume: 18
  start-page: 1231
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2024.124724_b26
  article-title: Nonnegative matrix factorization based heterogeneous graph embedding method for trigger-action programming in IoT
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2021.3092774
– year: 2021
  ident: 10.1016/j.eswa.2024.124724_b14
  article-title: A survey on federated learning systems: vision, hype and reality for data privacy and protection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– ident: 10.1016/j.eswa.2024.124724_b7
– year: 2022
  ident: 10.1016/j.eswa.2024.124724_b6
  article-title: Fix the leaking tap: A survey of trigger-action programming (TAP) security issues, detection techniques and solutions
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2022.102812
– ident: 10.1016/j.eswa.2024.124724_b20
  doi: 10.1145/3038912.3052709
– ident: 10.1016/j.eswa.2024.124724_b22
  doi: 10.1145/3319535.3345662
– start-page: 1
  year: 2008
  ident: 10.1016/j.eswa.2024.124724_b9
  article-title: Differential privacy: A survey of results
– ident: 10.1016/j.eswa.2024.124724_b17
  doi: 10.1145/3131365.3131369
– volume: 17
  start-page: 1905
  year: 2022
  ident: 10.1016/j.eswa.2024.124724_b30
  article-title: PFLF: Privacy-preserving federated learning framework for edge computing
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2022.3174394
– volume: 17
  start-page: 3773
  year: 2022
  ident: 10.1016/j.eswa.2024.124724_b29
  article-title: TAPInspector: Safety and liveness verification of concurrent trigger-action IoT systems
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2022.3214084
– volume: 36
  start-page: 11
  issue: 5
  year: 2020
  ident: 10.1016/j.eswa.2024.124724_b4
  article-title: Secure federated matrix factorization
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2020.3014880
– year: 2016
  ident: 10.1016/j.eswa.2024.124724_b13
– volume: 8
  start-page: 2736
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2024.124724_b15
  article-title: Context-rich privacy leakage analysis through inferring apps in smart home iot
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2020.3019812
– ident: 10.1016/j.eswa.2024.124724_b11
– ident: 10.1016/j.eswa.2024.124724_b19
  doi: 10.1145/3543507.3583293
– volume: 10
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2024.124724_b27
  article-title: Federated machine learning: Concept and applications
  publication-title: ACM Transactions on Intelligent Systems and Technology
  doi: 10.1145/3298981
– ident: 10.1016/j.eswa.2024.124724_b2
– start-page: 501
  year: 2021
  ident: 10.1016/j.eswa.2024.124724_b5
  article-title: Data privacy in trigger-action systems
SSID ssj0017007
Score 2.4772768
Snippet Trigger-Action Programming (TAP) is a common user-programming paradigm in Internet of Things (IoT) smart home platforms, allowing users to create customized...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124724
SubjectTerms Federated learning
Graph attention network
Privacy protection
Rule threat detection
Trigger-action programming
Title A privacy-preserving federated graph learning framework for threat detection in IoT trigger-action programming
URI https://dx.doi.org/10.1016/j.eswa.2024.124724
Volume 255
WOSCitedRecordID wos001271628200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKxwMvGz_FNkB-4K3KlLh2bD9WMMQQmngoUuElchyHpRpp12Vl_An815xjO802mNgDL1F0ja9R7tPlfPnuDqHXVOlcQBwQCSpUREueRrANkhE1yhghyzJXbRPXj_z4WMxm8tNg8CvUwqxPeV2Ly0u5_K-mBhkY25bO3sHcnVIQwDkYHY5gdjj-k-Eno-WqWiv9M7IcV-sKLFfS9oxQNrpsO1SHYRHwQyBneb5hmzEoTGN0YEEeLaajBvbwNvvnB4t7Utf38Nqbd3w-s2p8c-hQNtf7QB6MO_NzVL4s6m8nxutooeWyBGojetuKYMFZ1eWCfD3J15PKC33SgtAeASRkH3lEEzegJzhiwljPlULgwV159Q0v7xIO8wNz_sO2jiL0YHPx1Zba1151HQExcNvmmdWRWR2Z03EPbRHOpBiircnR4exD90mKx672Pty5r8ByZMHrd_LnKKcXuUwfom2_5cATB5VHaGDqx2gnjPPA3rs_QfUE30QO7pCDW-TggBzcIQcDcrBDDu6Qg6saA3LwVeTgHnKeos_vDqdv3kd-HEekx3HcRIlSgguWKi4lePo8ZyVNc5IbQvM0pkqUBdGKc60ZoYbERhOIfVJdKibztIjHz9CwXtTmOcIJyZUiqVBaFlSTsWIiLpMilppyVpZmFyXh8WXa96q3I1NOs78bbheNujVL16nl1qtZsErmY00XQ2YAslvW7d3pX_bRgw36X6Bhs7owL9F9vW6q89Urj7DfoqylQQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+privacy-preserving+federated+graph+learning+framework+for+threat+detection+in+IoT+trigger-action+programming&rft.jtitle=Expert+systems+with+applications&rft.au=Xing%2C+Yongheng&rft.au=Hu%2C+Liang&rft.au=Du%2C+Xinqi&rft.au=Shen%2C+Zhiqi&rft.date=2024-12-01&rft.issn=0957-4174&rft.volume=255&rft.spage=124724&rft_id=info:doi/10.1016%2Fj.eswa.2024.124724&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_124724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon