Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis
Prognostics and health management (PHM) are developed to accurately estimate the state of health (SOH) of lithium-ion batteries, which are crucial parts for planning the employment strategy in energy storage systems. Numerous studies about the data-driven batteries prognostics mostly assume complete...
Uloženo v:
| Vydáno v: | Reliability engineering & system safety Ročník 236; s. 109288 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2023
|
| Témata: | |
| ISSN: | 0951-8320, 1879-0836 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Prognostics and health management (PHM) are developed to accurately estimate the state of health (SOH) of lithium-ion batteries, which are crucial parts for planning the employment strategy in energy storage systems. Numerous studies about the data-driven batteries prognostics mostly assume complete and stable charging/discharging data. The on-board prognostics with random charging/discharging behaviors remains a challenging problem. This paper proposes a novel batteries prognostics method using random segments of charging curves, aiming at improving the flexibility and applicability in practical usage. Firstly, partial incremental capacity analysis is conducted within specific voltage range. And the extracted partial incremental capacity curves are used as features for SOH estimation and prognostics. Second, a long short-term memory network guided by Bayesian optimization is proposed to automatically tune the hyper-parameters and achieve accurate SOH estimation results. The effectiveness and robustness of the partial incremental capacity features acquired from different voltage ranges are investigated to provide guidelines for users. The superiority of the proposed method is validated on lithium-ion battery aging datasets from NASA and CALCE Prognostics Data Repository. The experimental results show that it can accurately predict aging patterns and estimate SOH by solely using small segments of charging curves, showing a promising prospect.
•Propose a novel battery prognostic method with LSTM and partial IC features.•Presented partial IC features avoid the identification of specified IC curve peaks.•Bayesian optimization is adapted into LSTM to automatically tune hyper-parameters.•The effectiveness is comprehensively investigated in two battery aging datasets. |
|---|---|
| AbstractList | Prognostics and health management (PHM) are developed to accurately estimate the state of health (SOH) of lithium-ion batteries, which are crucial parts for planning the employment strategy in energy storage systems. Numerous studies about the data-driven batteries prognostics mostly assume complete and stable charging/discharging data. The on-board prognostics with random charging/discharging behaviors remains a challenging problem. This paper proposes a novel batteries prognostics method using random segments of charging curves, aiming at improving the flexibility and applicability in practical usage. Firstly, partial incremental capacity analysis is conducted within specific voltage range. And the extracted partial incremental capacity curves are used as features for SOH estimation and prognostics. Second, a long short-term memory network guided by Bayesian optimization is proposed to automatically tune the hyper-parameters and achieve accurate SOH estimation results. The effectiveness and robustness of the partial incremental capacity features acquired from different voltage ranges are investigated to provide guidelines for users. The superiority of the proposed method is validated on lithium-ion battery aging datasets from NASA and CALCE Prognostics Data Repository. The experimental results show that it can accurately predict aging patterns and estimate SOH by solely using small segments of charging curves, showing a promising prospect.
•Propose a novel battery prognostic method with LSTM and partial IC features.•Presented partial IC features avoid the identification of specified IC curve peaks.•Bayesian optimization is adapted into LSTM to automatically tune hyper-parameters.•The effectiveness is comprehensively investigated in two battery aging datasets. |
| ArticleNumber | 109288 |
| Author | Geng, Mengyao Meng, Huixing Han, Te |
| Author_xml | – sequence: 1 givenname: Huixing orcidid: 0000-0002-6487-890X surname: Meng fullname: Meng, Huixing organization: State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China – sequence: 2 givenname: Mengyao surname: Geng fullname: Geng, Mengyao organization: State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China – sequence: 3 givenname: Te orcidid: 0000-0002-6559-1986 surname: Han fullname: Han, Te email: hante@bit.edu.cn organization: Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China |
| BookMark | eNp9kE1OHDEQha0IJAbIBVj5Aj2x-9eW2ABKSKSR2MDaqvZUMzXptlu2AXVOwnHjYbLKglU9ld73VPXO2YnzDhm7kmIthWy_7dcBY1yXoqzyQpdKfWErqTpdCFW1J2wldCMLVZXijJ3HuBdC1LrpVux9490zjzsfUpEwTHzCyYeFO0xvPvzmb5R2_BYWjASO-znRRH8gkXd88IHvEMZsmIN_dj4mspH7gY8ZopepOLh6SDmXMGYVccvzaoaQCEZOzgac0KWsLcxgKS0cHIxLpHjJTgcYI379Ny_Y04_vj3c_i83D_a-7m01hKyFSIXXb61pJ24ihHrq6LAdrlaplj7rCDrTuO9uqSljctm2DFYLCpmyGvheAVlUXTB1zbfAxBhxMPuPjwRSARiOFOTRs9ubQsDk0bI4NZ7T8D50DTRCWz6HrI4T5qVfCYKIldPk8CmiT2Xr6DP8LqCqc-w |
| CitedBy_id | crossref_primary_10_1016_j_aei_2025_103290 crossref_primary_10_1016_j_jechem_2024_06_017 crossref_primary_10_1016_j_ress_2024_110002 crossref_primary_10_1007_s41939_024_00608_y crossref_primary_10_1016_j_engappai_2023_107698 crossref_primary_10_1016_j_jpowsour_2024_235197 crossref_primary_10_1016_j_ress_2023_109808 crossref_primary_10_1007_s11760_024_03442_4 crossref_primary_10_1007_s11581_025_06063_0 crossref_primary_10_1016_j_est_2025_115714 crossref_primary_10_1016_j_etran_2025_100469 crossref_primary_10_1109_JIOT_2024_3387741 crossref_primary_10_1016_j_est_2024_111860 crossref_primary_10_1016_j_est_2025_115716 crossref_primary_10_1016_j_aei_2023_102075 crossref_primary_10_1016_j_ress_2024_110400 crossref_primary_10_1002_ente_202400488 crossref_primary_10_1016_j_ymssp_2025_113175 crossref_primary_10_1109_TIM_2024_3376018 crossref_primary_10_1016_j_ress_2024_110374 crossref_primary_10_1088_2631_8695_adf957 crossref_primary_10_1109_TTE_2024_3386212 crossref_primary_10_1016_j_aei_2024_102807 crossref_primary_10_1088_1361_6501_adfb97 crossref_primary_10_1109_JIOT_2024_3376715 crossref_primary_10_1142_S0218539325500111 crossref_primary_10_1016_j_energy_2025_138229 crossref_primary_10_1016_j_jechem_2024_08_037 crossref_primary_10_1149_1945_7111_ad24c1 crossref_primary_10_1016_j_ijfatigue_2023_107722 crossref_primary_10_1016_j_ress_2023_109812 crossref_primary_10_1016_j_asoc_2024_111631 crossref_primary_10_1016_j_energy_2025_138078 crossref_primary_10_1016_j_compag_2025_110490 crossref_primary_10_1016_j_ress_2025_110919 crossref_primary_10_1049_cim2_12108 crossref_primary_10_1016_j_engappai_2024_108146 crossref_primary_10_1109_TCE_2025_3563993 crossref_primary_10_3389_fenvs_2024_1437644 crossref_primary_10_1016_j_ress_2025_110995 crossref_primary_10_1016_j_jpowsour_2024_234808 crossref_primary_10_1016_j_apacoust_2024_109940 crossref_primary_10_1016_j_knosys_2023_110891 crossref_primary_10_1016_j_eswa_2025_126452 crossref_primary_10_1016_j_ress_2023_109890 crossref_primary_10_3390_batteries9060329 crossref_primary_10_1002_qre_3674 crossref_primary_10_1016_j_measurement_2023_113677 crossref_primary_10_1109_TIM_2023_3300451 crossref_primary_10_1016_j_energy_2025_135685 crossref_primary_10_1016_j_jpowsour_2025_236785 crossref_primary_10_1016_j_ress_2024_110464 crossref_primary_10_1016_j_est_2024_110678 crossref_primary_10_1016_j_est_2025_117598 crossref_primary_10_1109_JIOT_2024_3463718 crossref_primary_10_1016_j_aei_2023_102217 crossref_primary_10_1016_j_rser_2025_116125 crossref_primary_10_1109_TIM_2025_3556835 crossref_primary_10_1016_j_engappai_2025_110246 crossref_primary_10_1016_j_engappai_2025_112146 crossref_primary_10_1016_j_jpowsour_2024_235601 crossref_primary_10_1016_j_ress_2023_109744 crossref_primary_10_1088_1361_6501_adec0c crossref_primary_10_1016_j_ress_2024_110468 crossref_primary_10_1038_s41467_024_53431_x crossref_primary_10_1016_j_jechem_2025_03_092 crossref_primary_10_1016_j_ress_2024_110471 crossref_primary_10_1016_j_ress_2025_111064 crossref_primary_10_1016_j_ress_2025_110893 crossref_primary_10_1016_j_cie_2024_110581 crossref_primary_10_1007_s11581_025_06439_2 crossref_primary_10_1016_j_engappai_2024_109375 crossref_primary_10_1109_TEC_2023_3282017 crossref_primary_10_1016_j_jpowsour_2024_235713 crossref_primary_10_1016_j_ress_2023_109913 crossref_primary_10_1016_j_est_2024_111494 crossref_primary_10_1016_j_ress_2023_109873 crossref_primary_10_1016_j_energy_2024_131085 crossref_primary_10_3390_wevj16030127 crossref_primary_10_1016_j_heliyon_2024_e25808 crossref_primary_10_1016_j_ress_2024_110284 crossref_primary_10_1016_j_engappai_2025_111916 crossref_primary_10_1016_j_ress_2024_110563 crossref_primary_10_1016_j_energy_2025_137962 crossref_primary_10_1016_j_est_2025_116562 crossref_primary_10_1016_j_jechem_2023_12_043 crossref_primary_10_1007_s13391_024_00518_8 crossref_primary_10_1149_1945_7111_ad5d1e crossref_primary_10_1016_j_energy_2024_130776 crossref_primary_10_1109_TII_2024_3441645 crossref_primary_10_1016_j_rser_2025_116269 crossref_primary_10_1016_j_ress_2023_109603 crossref_primary_10_1109_TPEL_2024_3512516 crossref_primary_10_1109_JIOT_2024_3403711 crossref_primary_10_1016_j_est_2024_114134 crossref_primary_10_3390_electronics12183883 crossref_primary_10_1016_j_energy_2025_138027 crossref_primary_10_1016_j_ress_2024_109963 crossref_primary_10_1016_j_ress_2025_111019 crossref_primary_10_1109_TIE_2024_3387115 crossref_primary_10_1016_j_ress_2024_110324 crossref_primary_10_1016_j_ress_2024_110566 crossref_primary_10_1016_j_ress_2024_110325 crossref_primary_10_3390_w15223940 crossref_primary_10_1016_j_ress_2024_110328 crossref_primary_10_1109_JSEN_2024_3472648 crossref_primary_10_1016_j_rser_2025_115867 crossref_primary_10_3390_en18133248 crossref_primary_10_1016_j_engappai_2023_106974 crossref_primary_10_1016_j_ress_2024_110450 crossref_primary_10_1063_5_0243760 crossref_primary_10_1016_j_ress_2025_111125 crossref_primary_10_1016_j_energy_2024_130882 crossref_primary_10_1016_j_cjche_2024_06_026 crossref_primary_10_1016_j_est_2024_111392 crossref_primary_10_1016_j_ress_2024_109954 crossref_primary_10_1016_j_rser_2023_113728 crossref_primary_10_1016_j_jechem_2024_03_013 crossref_primary_10_1109_LSP_2023_3336564 crossref_primary_10_1109_TTE_2025_3534146 crossref_primary_10_1016_j_engappai_2023_107031 crossref_primary_10_1016_j_ress_2024_110613 crossref_primary_10_1007_s40722_024_00369_3 crossref_primary_10_1016_j_energy_2025_135922 crossref_primary_10_3390_wevj15060248 crossref_primary_10_1016_j_ress_2024_110382 crossref_primary_10_1109_TTE_2025_3556447 crossref_primary_10_1016_j_energy_2024_131285 crossref_primary_10_1016_j_est_2025_116460 crossref_primary_10_1016_j_ejrh_2025_102206 crossref_primary_10_1016_j_ress_2025_110980 crossref_primary_10_1016_j_est_2025_115891 crossref_primary_10_1016_j_compeleceng_2024_109930 crossref_primary_10_1016_j_ress_2025_110906 crossref_primary_10_3390_en17122883 crossref_primary_10_1109_JSEN_2023_3326810 crossref_primary_10_1016_j_ress_2023_109788 crossref_primary_10_1016_j_engappai_2025_110724 crossref_primary_10_3390_batteries10090324 crossref_primary_10_3390_machines13090799 crossref_primary_10_1016_j_ress_2024_109980 crossref_primary_10_1016_j_ress_2024_110668 crossref_primary_10_1016_j_rineng_2025_106373 crossref_primary_10_1016_j_ress_2024_110395 crossref_primary_10_1109_TIM_2025_3573358 crossref_primary_10_1016_j_energy_2024_130743 crossref_primary_10_1016_j_est_2025_116994 crossref_primary_10_1109_TR_2024_3415117 crossref_primary_10_1109_ACCESS_2024_3370847 crossref_primary_10_1016_j_est_2025_116637 crossref_primary_10_1016_j_est_2023_109230 crossref_primary_10_1109_TTE_2024_3493939 crossref_primary_10_1016_j_ress_2023_109798 crossref_primary_10_1007_s11581_025_06589_3 crossref_primary_10_3390_electronics14122383 crossref_primary_10_1088_1361_6501_ad8e78 crossref_primary_10_1016_j_knosys_2024_112598 crossref_primary_10_1016_j_ress_2024_110712 |
| Cites_doi | 10.1016/j.est.2021.102570 10.1016/j.est.2021.103857 10.1016/j.apenergy.2019.114296 10.1016/j.jpowsour.2018.03.015 10.1016/j.jechem.2022.06.049 10.1109/TR.2022.3190639 10.1016/j.ress.2021.107675 10.1109/TR.2022.3159273 10.1016/j.est.2022.104901 10.1109/TR.2019.2957965 10.1016/j.jpowsour.2022.231961 10.1109/TPEL.2022.3144504 10.1016/j.ress.2022.108481 10.1016/j.jpowsour.2018.10.069 10.1016/j.ress.2020.107257 10.1109/TII.2019.2951843 10.1109/JIOT.2022.3228869 10.1016/j.jpowsour.2021.230774 10.1162/neco.1997.9.8.1735 10.1016/j.jpowsour.2014.03.058 10.1016/j.apenergy.2021.117511 10.1016/j.energy.2022.125278 10.1016/j.est.2021.102372 10.1109/TR.2022.3192526 10.1016/j.energy.2020.119233 10.1016/j.energy.2019.03.177 10.1109/TIE.2021.3109527 10.1016/j.est.2019.100817 10.1016/j.energy.2022.125501 10.1016/j.energy.2021.120333 10.1109/TPEL.2021.3134701 10.1109/TR.2020.3011500 10.1016/j.jpowsour.2018.11.072 10.1016/j.apenergy.2020.115895 10.1016/j.jpowsour.2021.230823 10.1016/j.jpowsour.2018.10.019 10.1016/j.rser.2019.109405 10.1016/j.jclepro.2020.120813 10.1109/TIE.2021.3111585 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ress.2023.109288 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0836 |
| ExternalDocumentID | 10_1016_j_ress_2023_109288 S095183202300203X |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-196b9481c50f4f7422fcc8841be93e7a99b7c6830ced665e3ea8e525fbb0aec83 |
| ISICitedReferencesCount | 184 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000983499500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8320 |
| IngestDate | Sat Nov 29 07:10:04 EST 2025 Tue Nov 18 22:53:35 EST 2025 Fri Feb 23 02:36:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lithium-ion batteries Long short-term memory network Incremental capacity analysis Bayesian optimization Capacity estimation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-196b9481c50f4f7422fcc8841be93e7a99b7c6830ced665e3ea8e525fbb0aec83 |
| ORCID | 0000-0002-6559-1986 0000-0002-6487-890X |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ress_2023_109288 crossref_primary_10_1016_j_ress_2023_109288 elsevier_sciencedirect_doi_10_1016_j_ress_2023_109288 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Yang, Zhang, Pan, Wang, Chen (b22) 2018; 384 Mi, Liu, Zhuang, Bai, Li (b34) 2023; 72 Tian, Yang, Gao, Li, Wang, Chang, Jiang (b43) 2022 Yang, Song, Hofmann, Sun (b7) 2022; 48 Han, Wang, Wei (b40) 2021; 302 Bergstra, Bardenet, Bengio, Kégl (b37) 2011 Shi, Chehade (b33) 2021; 205 Chang, Wang, Jiang, Wu (b27) 2021; 38 Wang, Du, Zhao, Tang, Shi (b20) 2021; 70 Deng, Ying, Jiaqiang, Zhu, Wei, Chen, Zhang, Liao (b4) 2019; 176 Tang, Liu, Lu, Liu, Wang, Gao (b24) 2020; 280 Ardeshiri, Liu, Ma (b18) 2022; 224 Shen, Sadoughi, Chen, Hong, Hu (b30) 2019; 25 Pecht (b39) 2017 Tian, Qin, Li, Zhao (b9) 2020; 261 Lai, Yi, Cui, Qin, Han, Sun, Zhou, Zheng (b12) 2021; 216 Li, Li, Cui, Chen, Wang, Zhou, Hong (b28) 2022; 545 Niu, Wang, Liu, Zhang (b16) 2022; 69 Shen, Sadoughi, Li, Wang, Hu (b17) 2020; 260 Lu, Tao, Fan (b21) 2014; 261 Qian, Xu, Chang, Sun, Feng, Yang, Ren, Wang (b29) 2021; 227 Remadna, Terrissa, Al Masry, Zerhouni (b36) 2023; 72 Zhao, Zhang, Wang (b15) 2022; 52 Guo, Cheng, Yang (b23) 2019; 412 Zhang, Kang, Duan, Zhou, Zhang, Shang, Chen (b44) 2022; 69 Meng, Geng, Xing, Zio (b8) 2022; 261 Zhang, Zhai, Shi, Liu (b6) 2023; 72 Guo, Huang, Hu (b19) 2021; 36 Li, Wang, Zhang, Zou, Dorrell (b25) 2019; 410 Saha, Goebel (b38) 2007 Lu, Lu, An, Wang, He (b41) 2023 Meng, Li (b3) 2019; 116 Han, Wang, Meng (b5) 2022; 520 Gu, See, Li, Shan, Wang, Zhao, Lim, Zhang (b11) 2023; 262 Lin, Wu, Meng, Wu, Wu (b10) 2022; 518 Deng, Hu, Li, Lin, Bian (b31) 2022; 37 Xiong, Li, Tian (b13) 2018; 405 She, Wang, Sun, Liu, Zhang (b26) 2019; 16 Zhu, Lu, Wang, Wang, Lu, de Silva, Xia (b42) 2023; 10 Guo, Li, Li (b14) 2020; 69 Wei, Ruan, Li, Li, Zhang, He (b32) 2022; 37 Luo, Chen, Zheng, Shi (b1) 2022; 74 Hochreiter, Schmidhuber (b35) 1997; 9 Xu, Tang, Yu, Xie, Han, Ouyang (b2) 2021; 214 Chang, Wang, Jiang, Wu (b45) 2021; 38 Zhang (10.1016/j.ress.2023.109288_b6) 2023; 72 Chang (10.1016/j.ress.2023.109288_b45) 2021; 38 Deng (10.1016/j.ress.2023.109288_b31) 2022; 37 Han (10.1016/j.ress.2023.109288_b5) 2022; 520 Guo (10.1016/j.ress.2023.109288_b23) 2019; 412 Shi (10.1016/j.ress.2023.109288_b33) 2021; 205 Xiong (10.1016/j.ress.2023.109288_b13) 2018; 405 Yang (10.1016/j.ress.2023.109288_b22) 2018; 384 Lai (10.1016/j.ress.2023.109288_b12) 2021; 216 Tang (10.1016/j.ress.2023.109288_b24) 2020; 280 Li (10.1016/j.ress.2023.109288_b28) 2022; 545 Mi (10.1016/j.ress.2023.109288_b34) 2023; 72 Luo (10.1016/j.ress.2023.109288_b1) 2022; 74 Xu (10.1016/j.ress.2023.109288_b2) 2021; 214 Guo (10.1016/j.ress.2023.109288_b14) 2020; 69 Shen (10.1016/j.ress.2023.109288_b17) 2020; 260 Pecht (10.1016/j.ress.2023.109288_b39) 2017 Lin (10.1016/j.ress.2023.109288_b10) 2022; 518 Ardeshiri (10.1016/j.ress.2023.109288_b18) 2022; 224 Meng (10.1016/j.ress.2023.109288_b3) 2019; 116 Deng (10.1016/j.ress.2023.109288_b4) 2019; 176 Yang (10.1016/j.ress.2023.109288_b7) 2022; 48 Bergstra (10.1016/j.ress.2023.109288_b37) 2011 Lu (10.1016/j.ress.2023.109288_b21) 2014; 261 Zhao (10.1016/j.ress.2023.109288_b15) 2022; 52 Li (10.1016/j.ress.2023.109288_b25) 2019; 410 Chang (10.1016/j.ress.2023.109288_b27) 2021; 38 Shen (10.1016/j.ress.2023.109288_b30) 2019; 25 Zhu (10.1016/j.ress.2023.109288_b42) 2023; 10 Hochreiter (10.1016/j.ress.2023.109288_b35) 1997; 9 Saha (10.1016/j.ress.2023.109288_b38) 2007 Lu (10.1016/j.ress.2023.109288_b41) 2023 Han (10.1016/j.ress.2023.109288_b40) 2021; 302 Wang (10.1016/j.ress.2023.109288_b20) 2021; 70 Zhang (10.1016/j.ress.2023.109288_b44) 2022; 69 Meng (10.1016/j.ress.2023.109288_b8) 2022; 261 Guo (10.1016/j.ress.2023.109288_b19) 2021; 36 Tian (10.1016/j.ress.2023.109288_b9) 2020; 261 Tian (10.1016/j.ress.2023.109288_b43) 2022 Niu (10.1016/j.ress.2023.109288_b16) 2022; 69 Wei (10.1016/j.ress.2023.109288_b32) 2022; 37 She (10.1016/j.ress.2023.109288_b26) 2019; 16 Gu (10.1016/j.ress.2023.109288_b11) 2023; 262 Qian (10.1016/j.ress.2023.109288_b29) 2021; 227 Remadna (10.1016/j.ress.2023.109288_b36) 2023; 72 |
| References_xml | – volume: 260 year: 2020 ident: b17 article-title: Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries publication-title: Appl Energy – volume: 384 start-page: 387 year: 2018 end-page: 395 ident: b22 article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve publication-title: J Power Sources – volume: 410 start-page: 106 year: 2019 end-page: 114 ident: b25 article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis publication-title: J Power Sources – volume: 520 year: 2022 ident: b5 article-title: End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation publication-title: J Power Sources – volume: 224 year: 2022 ident: b18 article-title: Multivariate stacked bidirectional long short term memory for lithium-ion battery health management publication-title: Reliab Eng Syst Saf – volume: 261 start-page: 141 year: 2014 end-page: 147 ident: b21 article-title: Li-ion battery capacity estimation: A geometrical approach publication-title: J Power Sources – volume: 74 start-page: 159 year: 2022 end-page: 173 ident: b1 article-title: A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries publication-title: J Energy Chem – volume: 69 start-page: 8481 year: 2022 end-page: 8490 ident: b16 article-title: Lebesgue sampling based deep belief network for lithium-ion battery diagnosis and prognosis publication-title: IEEE Trans Ind Electron – volume: 262 year: 2023 ident: b11 article-title: A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model publication-title: Energy – volume: 69 start-page: 1110 year: 2020 end-page: 1129 ident: b14 article-title: A review on prognostics methods for engineering systems publication-title: IEEE Trans Reliab – volume: 412 start-page: 442 year: 2019 end-page: 450 ident: b23 article-title: A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction publication-title: J Power Sources – volume: 280 year: 2020 ident: b24 article-title: Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter publication-title: Appl Energy – volume: 52 year: 2022 ident: b15 article-title: Lithium-ion battery capacity and remaining useful life prediction using board learning system and long short-term memory neural network publication-title: J Energy Storage – volume: 25 year: 2019 ident: b30 article-title: A deep learning method for online capacity estimation of lithium-ion batteries publication-title: J Energy Storage – volume: 214 year: 2021 ident: b2 article-title: Remaining useful life prediction of lithium-ion batteries based on Wiener process under time-varying temperature condition publication-title: Reliab Eng Syst Saf – volume: 176 start-page: 91 year: 2019 end-page: 102 ident: b4 article-title: Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries publication-title: Energy – start-page: 2546 year: 2011 end-page: 2554 ident: b37 article-title: Algorithms for hyper-parameter optimization publication-title: Proceedings of the 24th international conference on neural information processing systems – volume: 216 year: 2021 ident: b12 article-title: Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter publication-title: Energy – volume: 16 start-page: 3345 year: 2019 end-page: 3354 ident: b26 article-title: Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network publication-title: IEEE Trans Ind Inf – volume: 37 start-page: 5021 year: 2022 end-page: 5031 ident: b31 article-title: Data-driven battery state of health estimation based on random partial charging data publication-title: IEEE Trans Power Electron – volume: 227 year: 2021 ident: b29 article-title: Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries publication-title: Energy – volume: 518 year: 2022 ident: b10 article-title: A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries publication-title: J Power Sources – volume: 405 start-page: 18 year: 2018 end-page: 29 ident: b13 article-title: Towards a smarter battery management system: A critical review on battery state of health monitoring methods publication-title: J Power Sources – volume: 38 year: 2021 ident: b45 article-title: Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm publication-title: J Energy Storage – year: 2007 ident: b38 article-title: Battery data set – volume: 70 start-page: 775 year: 2021 end-page: 789 ident: b20 article-title: A deep learning based data fusion method for degradation modeling and prognostics publication-title: IEEE Trans Reliab – volume: 37 start-page: 7432 year: 2022 end-page: 7442 ident: b32 article-title: Multistage state of health estimation of lithium-ion battery with high tolerance to heavily partial charging publication-title: IEEE Trans Power Electron – volume: 69 start-page: 9121 year: 2022 end-page: 9132 ident: b44 article-title: An adaptive battery capacity estimation method suitable for random charging voltage range in electric vehicles publication-title: IEEE Trans Ind Electron – volume: 116 year: 2019 ident: b3 article-title: A review on prognostics and health management (PHM) methods of lithium-ion batteries publication-title: Renew Sustain Energy Rev – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b35 article-title: Long short-term memory publication-title: Neural Comput – volume: 302 year: 2021 ident: b40 article-title: A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion publication-title: Appl Energy – volume: 72 start-page: 106 year: 2023 end-page: 124 ident: b36 article-title: RUL prediction using a fusion of attention-based convolutional variational autoencoder and ensemble learning classifier publication-title: IEEE Trans Reliab – volume: 205 year: 2021 ident: b33 article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction publication-title: Reliab Eng Syst Saf – volume: 72 start-page: 214 year: 2023 end-page: 223 ident: b6 article-title: A Wiener process model with dynamic covariate for degradation modeling and remaining useful life prediction publication-title: IEEE Trans Reliab – start-page: 1 year: 2022 end-page: 15 ident: b43 article-title: A state of health estimation method of lithium-ion batteries based on DT-IC-V health features extracted from partial charging segment publication-title: Int J Green Energy – volume: 545 year: 2022 ident: b28 article-title: A novel health indicator for online health estimation of lithium-ion batteries using partial incremental capacity and dynamic voltage warping publication-title: J Power Sources – volume: 261 year: 2022 ident: b8 article-title: A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena publication-title: Energy – volume: 48 year: 2022 ident: b7 article-title: Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest publication-title: J Energy Storage – year: 2017 ident: b39 article-title: Battery data set – start-page: 1 year: 2023 ident: b41 article-title: Edge computing on IoT for machine signal processing and fault diagnosis: A review publication-title: IEEE Internet Things J – volume: 261 year: 2020 ident: b9 article-title: A review of the state of health for lithium-ion batteries: Research status and suggestions publication-title: J Clean Prod – volume: 36 year: 2021 ident: b19 article-title: A state-of-health estimation method of lithium-ion batteries based on multi-feature extracted from constant current charging curve publication-title: J Energy Storage – volume: 38 year: 2021 ident: b27 article-title: Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm publication-title: J Energy Storage – volume: 72 start-page: 125 year: 2023 end-page: 136 ident: b34 article-title: A synthetic feature processing method for remaining useful life prediction of rolling bearings publication-title: IEEE Trans Reliab – volume: 10 start-page: 7393 year: 2023 end-page: 7407 ident: b42 article-title: Real-time quality inspection of motor rotor using cost-effective intelligent edge system publication-title: IEEE Internet Things J – volume: 38 year: 2021 ident: 10.1016/j.ress.2023.109288_b45 article-title: Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm publication-title: J Energy Storage doi: 10.1016/j.est.2021.102570 – volume: 48 year: 2022 ident: 10.1016/j.ress.2023.109288_b7 article-title: Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest publication-title: J Energy Storage doi: 10.1016/j.est.2021.103857 – volume: 260 year: 2020 ident: 10.1016/j.ress.2023.109288_b17 article-title: Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114296 – volume: 384 start-page: 387 year: 2018 ident: 10.1016/j.ress.2023.109288_b22 article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.03.015 – start-page: 1 year: 2023 ident: 10.1016/j.ress.2023.109288_b41 article-title: Edge computing on IoT for machine signal processing and fault diagnosis: A review publication-title: IEEE Internet Things J – volume: 74 start-page: 159 year: 2022 ident: 10.1016/j.ress.2023.109288_b1 article-title: A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries publication-title: J Energy Chem doi: 10.1016/j.jechem.2022.06.049 – volume: 72 start-page: 106 issue: 1 year: 2023 ident: 10.1016/j.ress.2023.109288_b36 article-title: RUL prediction using a fusion of attention-based convolutional variational autoencoder and ensemble learning classifier publication-title: IEEE Trans Reliab doi: 10.1109/TR.2022.3190639 – volume: 214 year: 2021 ident: 10.1016/j.ress.2023.109288_b2 article-title: Remaining useful life prediction of lithium-ion batteries based on Wiener process under time-varying temperature condition publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107675 – year: 2007 ident: 10.1016/j.ress.2023.109288_b38 – volume: 72 start-page: 214 issue: 1 year: 2023 ident: 10.1016/j.ress.2023.109288_b6 article-title: A Wiener process model with dynamic covariate for degradation modeling and remaining useful life prediction publication-title: IEEE Trans Reliab doi: 10.1109/TR.2022.3159273 – volume: 52 year: 2022 ident: 10.1016/j.ress.2023.109288_b15 article-title: Lithium-ion battery capacity and remaining useful life prediction using board learning system and long short-term memory neural network publication-title: J Energy Storage doi: 10.1016/j.est.2022.104901 – volume: 69 start-page: 1110 issue: 3 year: 2020 ident: 10.1016/j.ress.2023.109288_b14 article-title: A review on prognostics methods for engineering systems publication-title: IEEE Trans Reliab doi: 10.1109/TR.2019.2957965 – volume: 545 year: 2022 ident: 10.1016/j.ress.2023.109288_b28 article-title: A novel health indicator for online health estimation of lithium-ion batteries using partial incremental capacity and dynamic voltage warping publication-title: J Power Sources doi: 10.1016/j.jpowsour.2022.231961 – volume: 37 start-page: 7432 issue: 6 year: 2022 ident: 10.1016/j.ress.2023.109288_b32 article-title: Multistage state of health estimation of lithium-ion battery with high tolerance to heavily partial charging publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2022.3144504 – volume: 224 year: 2022 ident: 10.1016/j.ress.2023.109288_b18 article-title: Multivariate stacked bidirectional long short term memory for lithium-ion battery health management publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.108481 – volume: 410 start-page: 106 year: 2019 ident: 10.1016/j.ress.2023.109288_b25 article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.10.069 – volume: 205 year: 2021 ident: 10.1016/j.ress.2023.109288_b33 article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107257 – volume: 16 start-page: 3345 issue: 5 year: 2019 ident: 10.1016/j.ress.2023.109288_b26 article-title: Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2019.2951843 – volume: 10 start-page: 7393 issue: 8 year: 2023 ident: 10.1016/j.ress.2023.109288_b42 article-title: Real-time quality inspection of motor rotor using cost-effective intelligent edge system publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2022.3228869 – volume: 518 year: 2022 ident: 10.1016/j.ress.2023.109288_b10 article-title: A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2021.230774 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.ress.2023.109288_b35 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – start-page: 1 year: 2022 ident: 10.1016/j.ress.2023.109288_b43 article-title: A state of health estimation method of lithium-ion batteries based on DT-IC-V health features extracted from partial charging segment publication-title: Int J Green Energy – volume: 261 start-page: 141 year: 2014 ident: 10.1016/j.ress.2023.109288_b21 article-title: Li-ion battery capacity estimation: A geometrical approach publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.03.058 – volume: 302 year: 2021 ident: 10.1016/j.ress.2023.109288_b40 article-title: A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117511 – volume: 261 year: 2022 ident: 10.1016/j.ress.2023.109288_b8 article-title: A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena publication-title: Energy doi: 10.1016/j.energy.2022.125278 – volume: 36 year: 2021 ident: 10.1016/j.ress.2023.109288_b19 article-title: A state-of-health estimation method of lithium-ion batteries based on multi-feature extracted from constant current charging curve publication-title: J Energy Storage doi: 10.1016/j.est.2021.102372 – volume: 72 start-page: 125 issue: 1 year: 2023 ident: 10.1016/j.ress.2023.109288_b34 article-title: A synthetic feature processing method for remaining useful life prediction of rolling bearings publication-title: IEEE Trans Reliab doi: 10.1109/TR.2022.3192526 – volume: 216 year: 2021 ident: 10.1016/j.ress.2023.109288_b12 article-title: Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter publication-title: Energy doi: 10.1016/j.energy.2020.119233 – year: 2017 ident: 10.1016/j.ress.2023.109288_b39 – volume: 176 start-page: 91 year: 2019 ident: 10.1016/j.ress.2023.109288_b4 article-title: Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2019.03.177 – volume: 69 start-page: 8481 issue: 8 year: 2022 ident: 10.1016/j.ress.2023.109288_b16 article-title: Lebesgue sampling based deep belief network for lithium-ion battery diagnosis and prognosis publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2021.3109527 – volume: 38 year: 2021 ident: 10.1016/j.ress.2023.109288_b27 article-title: Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm publication-title: J Energy Storage doi: 10.1016/j.est.2021.102570 – volume: 25 year: 2019 ident: 10.1016/j.ress.2023.109288_b30 article-title: A deep learning method for online capacity estimation of lithium-ion batteries publication-title: J Energy Storage doi: 10.1016/j.est.2019.100817 – volume: 262 year: 2023 ident: 10.1016/j.ress.2023.109288_b11 article-title: A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model publication-title: Energy doi: 10.1016/j.energy.2022.125501 – volume: 227 year: 2021 ident: 10.1016/j.ress.2023.109288_b29 article-title: Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2021.120333 – volume: 37 start-page: 5021 issue: 5 year: 2022 ident: 10.1016/j.ress.2023.109288_b31 article-title: Data-driven battery state of health estimation based on random partial charging data publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2021.3134701 – volume: 70 start-page: 775 issue: 2 year: 2021 ident: 10.1016/j.ress.2023.109288_b20 article-title: A deep learning based data fusion method for degradation modeling and prognostics publication-title: IEEE Trans Reliab doi: 10.1109/TR.2020.3011500 – volume: 412 start-page: 442 year: 2019 ident: 10.1016/j.ress.2023.109288_b23 article-title: A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.11.072 – volume: 280 year: 2020 ident: 10.1016/j.ress.2023.109288_b24 article-title: Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115895 – volume: 520 year: 2022 ident: 10.1016/j.ress.2023.109288_b5 article-title: End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2021.230823 – volume: 405 start-page: 18 year: 2018 ident: 10.1016/j.ress.2023.109288_b13 article-title: Towards a smarter battery management system: A critical review on battery state of health monitoring methods publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.10.019 – start-page: 2546 year: 2011 ident: 10.1016/j.ress.2023.109288_b37 article-title: Algorithms for hyper-parameter optimization – volume: 116 year: 2019 ident: 10.1016/j.ress.2023.109288_b3 article-title: A review on prognostics and health management (PHM) methods of lithium-ion batteries publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109405 – volume: 261 year: 2020 ident: 10.1016/j.ress.2023.109288_b9 article-title: A review of the state of health for lithium-ion batteries: Research status and suggestions publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120813 – volume: 69 start-page: 9121 issue: 9 year: 2022 ident: 10.1016/j.ress.2023.109288_b44 article-title: An adaptive battery capacity estimation method suitable for random charging voltage range in electric vehicles publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2021.3111585 |
| SSID | ssj0004957 |
| Score | 2.6916099 |
| Snippet | Prognostics and health management (PHM) are developed to accurately estimate the state of health (SOH) of lithium-ion batteries, which are crucial parts for... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109288 |
| SubjectTerms | Bayesian optimization Capacity estimation Incremental capacity analysis Lithium-ion batteries Long short-term memory network |
| Title | Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis |
| URI | https://dx.doi.org/10.1016/j.ress.2023.109288 |
| Volume | 236 |
| WOSCitedRecordID | wos000983499500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBaydIftMOyJtXtAh90MB37IsXTshg7dUBQ7dEBuhiTLaIrGDpqkSP7JfsJ-ZklLtrVuK9bDLkYgy7IQfiEphvxIyAdRSg63VAiuMAuZKKMQSdVDaaaJUHAmkrItFD7JT0_5bCa-jUY_u1qY68u8rvl2K5b_VdQwBsLG0tl7iLtfFAbgMwgdriB2uP6T4E-we9DqHNzqENVusMBc2l1Q23xvG3j9KHemrZ5sQGMsXClmm3Fo6yLbtK26sRzOTVuofD7fLEKcpVpGTjhgB2gBS_y3YYnbaNk7tA03IukIWGGNLr50tCe-G4yJ0JYgfBeYgRGxxaHllg5WsnIUJS0ejNVJx5v5tjO2mDXkhvH2TjaDOrU9l40f00jSPqNuCE7GIeiayNfTSepr2jgSiW0I-JsRsPGIiwnGKya4_GSY_Cvj9i1L2OcndqlvFwWuUeAahV3jAdlL8kzwMdk7_HI0-zrU4ArLKtvt3BVo2VzC2zv5sxPkOTZnT8kTdyKhhxZJz8jI1M_JY4-n8gX5gZiiA6aoxRR1mKKIKdphivqYooApajFFPUzRpqIepmiPKdpiisKQwxT1MEU7TNEOUy_J989HZ5-OQ9fSI9RpFK1D0PcK-YF0FlWsylmSVFpzzmJlRGpyKYTK9ZSnkTbldJqZ1EhusiSrlIqk0Tx9RcZ1U5vXSDaQKMa4AivJmVJc5WUciwqOIEyzXMb7JO6-40I7vntsu3JZ_F26-yTon1latpc7Z2ed6Arnr1o_tAAk3vHcwb3e8oY8Gn4ib8l4fbUx78hDfb2er67eOxjeAGMMwNI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+short-term+memory+network+with+Bayesian+optimization+for+health+prognostics+of+lithium-ion+batteries+based+on+partial+incremental+capacity+analysis&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Meng%2C+Huixing&rft.au=Geng%2C+Mengyao&rft.au=Han%2C+Te&rft.date=2023-08-01&rft.issn=0951-8320&rft.volume=236&rft.spage=109288&rft_id=info:doi/10.1016%2Fj.ress.2023.109288&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2023_109288 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |