Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis

Prognostics and health management (PHM) are developed to accurately estimate the state of health (SOH) of lithium-ion batteries, which are crucial parts for planning the employment strategy in energy storage systems. Numerous studies about the data-driven batteries prognostics mostly assume complete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety Jg. 236; S. 109288
Hauptverfasser: Meng, Huixing, Geng, Mengyao, Han, Te
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.08.2023
Schlagworte:
ISSN:0951-8320, 1879-0836
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Prognostics and health management (PHM) are developed to accurately estimate the state of health (SOH) of lithium-ion batteries, which are crucial parts for planning the employment strategy in energy storage systems. Numerous studies about the data-driven batteries prognostics mostly assume complete and stable charging/discharging data. The on-board prognostics with random charging/discharging behaviors remains a challenging problem. This paper proposes a novel batteries prognostics method using random segments of charging curves, aiming at improving the flexibility and applicability in practical usage. Firstly, partial incremental capacity analysis is conducted within specific voltage range. And the extracted partial incremental capacity curves are used as features for SOH estimation and prognostics. Second, a long short-term memory network guided by Bayesian optimization is proposed to automatically tune the hyper-parameters and achieve accurate SOH estimation results. The effectiveness and robustness of the partial incremental capacity features acquired from different voltage ranges are investigated to provide guidelines for users. The superiority of the proposed method is validated on lithium-ion battery aging datasets from NASA and CALCE Prognostics Data Repository. The experimental results show that it can accurately predict aging patterns and estimate SOH by solely using small segments of charging curves, showing a promising prospect. •Propose a novel battery prognostic method with LSTM and partial IC features.•Presented partial IC features avoid the identification of specified IC curve peaks.•Bayesian optimization is adapted into LSTM to automatically tune hyper-parameters.•The effectiveness is comprehensively investigated in two battery aging datasets.
AbstractList Prognostics and health management (PHM) are developed to accurately estimate the state of health (SOH) of lithium-ion batteries, which are crucial parts for planning the employment strategy in energy storage systems. Numerous studies about the data-driven batteries prognostics mostly assume complete and stable charging/discharging data. The on-board prognostics with random charging/discharging behaviors remains a challenging problem. This paper proposes a novel batteries prognostics method using random segments of charging curves, aiming at improving the flexibility and applicability in practical usage. Firstly, partial incremental capacity analysis is conducted within specific voltage range. And the extracted partial incremental capacity curves are used as features for SOH estimation and prognostics. Second, a long short-term memory network guided by Bayesian optimization is proposed to automatically tune the hyper-parameters and achieve accurate SOH estimation results. The effectiveness and robustness of the partial incremental capacity features acquired from different voltage ranges are investigated to provide guidelines for users. The superiority of the proposed method is validated on lithium-ion battery aging datasets from NASA and CALCE Prognostics Data Repository. The experimental results show that it can accurately predict aging patterns and estimate SOH by solely using small segments of charging curves, showing a promising prospect. •Propose a novel battery prognostic method with LSTM and partial IC features.•Presented partial IC features avoid the identification of specified IC curve peaks.•Bayesian optimization is adapted into LSTM to automatically tune hyper-parameters.•The effectiveness is comprehensively investigated in two battery aging datasets.
ArticleNumber 109288
Author Geng, Mengyao
Meng, Huixing
Han, Te
Author_xml – sequence: 1
  givenname: Huixing
  orcidid: 0000-0002-6487-890X
  surname: Meng
  fullname: Meng, Huixing
  organization: State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
– sequence: 2
  givenname: Mengyao
  surname: Geng
  fullname: Geng, Mengyao
  organization: State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
– sequence: 3
  givenname: Te
  orcidid: 0000-0002-6559-1986
  surname: Han
  fullname: Han, Te
  email: hante@bit.edu.cn
  organization: Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
BookMark eNp9kE1OHDEQha0IJAbIBVj5Aj2x-9eW2ABKSKSR2MDaqvZUMzXptlu2AXVOwnHjYbLKglU9ld73VPXO2YnzDhm7kmIthWy_7dcBY1yXoqzyQpdKfWErqTpdCFW1J2wldCMLVZXijJ3HuBdC1LrpVux9490zjzsfUpEwTHzCyYeFO0xvPvzmb5R2_BYWjASO-znRRH8gkXd88IHvEMZsmIN_dj4mspH7gY8ZopepOLh6SDmXMGYVccvzaoaQCEZOzgac0KWsLcxgKS0cHIxLpHjJTgcYI379Ny_Y04_vj3c_i83D_a-7m01hKyFSIXXb61pJ24ihHrq6LAdrlaplj7rCDrTuO9uqSljctm2DFYLCpmyGvheAVlUXTB1zbfAxBhxMPuPjwRSARiOFOTRs9ubQsDk0bI4NZ7T8D50DTRCWz6HrI4T5qVfCYKIldPk8CmiT2Xr6DP8LqCqc-w
CitedBy_id crossref_primary_10_1016_j_aei_2025_103290
crossref_primary_10_1016_j_jechem_2024_06_017
crossref_primary_10_1016_j_ress_2024_110002
crossref_primary_10_1007_s41939_024_00608_y
crossref_primary_10_1016_j_engappai_2023_107698
crossref_primary_10_1016_j_jpowsour_2024_235197
crossref_primary_10_1016_j_ress_2023_109808
crossref_primary_10_1007_s11760_024_03442_4
crossref_primary_10_1007_s11581_025_06063_0
crossref_primary_10_1016_j_est_2025_115714
crossref_primary_10_1016_j_etran_2025_100469
crossref_primary_10_1109_JIOT_2024_3387741
crossref_primary_10_1016_j_est_2024_111860
crossref_primary_10_1016_j_est_2025_115716
crossref_primary_10_1016_j_aei_2023_102075
crossref_primary_10_1016_j_ress_2024_110400
crossref_primary_10_1002_ente_202400488
crossref_primary_10_1016_j_ymssp_2025_113175
crossref_primary_10_1109_TIM_2024_3376018
crossref_primary_10_1016_j_ress_2024_110374
crossref_primary_10_1088_2631_8695_adf957
crossref_primary_10_1109_TTE_2024_3386212
crossref_primary_10_1016_j_aei_2024_102807
crossref_primary_10_1088_1361_6501_adfb97
crossref_primary_10_1109_JIOT_2024_3376715
crossref_primary_10_1142_S0218539325500111
crossref_primary_10_1016_j_energy_2025_138229
crossref_primary_10_1016_j_jechem_2024_08_037
crossref_primary_10_1149_1945_7111_ad24c1
crossref_primary_10_1016_j_ijfatigue_2023_107722
crossref_primary_10_1016_j_ress_2023_109812
crossref_primary_10_1016_j_asoc_2024_111631
crossref_primary_10_1016_j_energy_2025_138078
crossref_primary_10_1016_j_compag_2025_110490
crossref_primary_10_1016_j_ress_2025_110919
crossref_primary_10_1049_cim2_12108
crossref_primary_10_1016_j_engappai_2024_108146
crossref_primary_10_1109_TCE_2025_3563993
crossref_primary_10_3389_fenvs_2024_1437644
crossref_primary_10_1016_j_ress_2025_110995
crossref_primary_10_1016_j_jpowsour_2024_234808
crossref_primary_10_1016_j_apacoust_2024_109940
crossref_primary_10_1016_j_knosys_2023_110891
crossref_primary_10_1016_j_eswa_2025_126452
crossref_primary_10_1016_j_ress_2023_109890
crossref_primary_10_3390_batteries9060329
crossref_primary_10_1002_qre_3674
crossref_primary_10_1016_j_measurement_2023_113677
crossref_primary_10_1109_TIM_2023_3300451
crossref_primary_10_1016_j_energy_2025_135685
crossref_primary_10_1016_j_jpowsour_2025_236785
crossref_primary_10_1016_j_ress_2024_110464
crossref_primary_10_1016_j_est_2024_110678
crossref_primary_10_1016_j_est_2025_117598
crossref_primary_10_1109_JIOT_2024_3463718
crossref_primary_10_1016_j_aei_2023_102217
crossref_primary_10_1016_j_rser_2025_116125
crossref_primary_10_1109_TIM_2025_3556835
crossref_primary_10_1016_j_engappai_2025_110246
crossref_primary_10_1016_j_engappai_2025_112146
crossref_primary_10_1016_j_jpowsour_2024_235601
crossref_primary_10_1016_j_ress_2023_109744
crossref_primary_10_1088_1361_6501_adec0c
crossref_primary_10_1016_j_ress_2024_110468
crossref_primary_10_1038_s41467_024_53431_x
crossref_primary_10_1016_j_jechem_2025_03_092
crossref_primary_10_1016_j_ress_2024_110471
crossref_primary_10_1016_j_ress_2025_111064
crossref_primary_10_1016_j_ress_2025_110893
crossref_primary_10_1016_j_cie_2024_110581
crossref_primary_10_1007_s11581_025_06439_2
crossref_primary_10_1016_j_engappai_2024_109375
crossref_primary_10_1109_TEC_2023_3282017
crossref_primary_10_1016_j_jpowsour_2024_235713
crossref_primary_10_1016_j_ress_2023_109913
crossref_primary_10_1016_j_est_2024_111494
crossref_primary_10_1016_j_ress_2023_109873
crossref_primary_10_1016_j_energy_2024_131085
crossref_primary_10_3390_wevj16030127
crossref_primary_10_1016_j_heliyon_2024_e25808
crossref_primary_10_1016_j_ress_2024_110284
crossref_primary_10_1016_j_engappai_2025_111916
crossref_primary_10_1016_j_ress_2024_110563
crossref_primary_10_1016_j_energy_2025_137962
crossref_primary_10_1016_j_est_2025_116562
crossref_primary_10_1016_j_jechem_2023_12_043
crossref_primary_10_1007_s13391_024_00518_8
crossref_primary_10_1149_1945_7111_ad5d1e
crossref_primary_10_1016_j_energy_2024_130776
crossref_primary_10_1109_TII_2024_3441645
crossref_primary_10_1016_j_rser_2025_116269
crossref_primary_10_1016_j_ress_2023_109603
crossref_primary_10_1109_TPEL_2024_3512516
crossref_primary_10_1109_JIOT_2024_3403711
crossref_primary_10_1016_j_est_2024_114134
crossref_primary_10_3390_electronics12183883
crossref_primary_10_1016_j_energy_2025_138027
crossref_primary_10_1016_j_ress_2024_109963
crossref_primary_10_1016_j_ress_2025_111019
crossref_primary_10_1109_TIE_2024_3387115
crossref_primary_10_1016_j_ress_2024_110324
crossref_primary_10_1016_j_ress_2024_110566
crossref_primary_10_1016_j_ress_2024_110325
crossref_primary_10_3390_w15223940
crossref_primary_10_1016_j_ress_2024_110328
crossref_primary_10_1109_JSEN_2024_3472648
crossref_primary_10_1016_j_rser_2025_115867
crossref_primary_10_3390_en18133248
crossref_primary_10_1016_j_engappai_2023_106974
crossref_primary_10_1016_j_ress_2024_110450
crossref_primary_10_1063_5_0243760
crossref_primary_10_1016_j_ress_2025_111125
crossref_primary_10_1016_j_energy_2024_130882
crossref_primary_10_1016_j_cjche_2024_06_026
crossref_primary_10_1016_j_est_2024_111392
crossref_primary_10_1016_j_ress_2024_109954
crossref_primary_10_1016_j_rser_2023_113728
crossref_primary_10_1016_j_jechem_2024_03_013
crossref_primary_10_1109_LSP_2023_3336564
crossref_primary_10_1109_TTE_2025_3534146
crossref_primary_10_1016_j_engappai_2023_107031
crossref_primary_10_1016_j_ress_2024_110613
crossref_primary_10_1007_s40722_024_00369_3
crossref_primary_10_1016_j_energy_2025_135922
crossref_primary_10_3390_wevj15060248
crossref_primary_10_1016_j_ress_2024_110382
crossref_primary_10_1109_TTE_2025_3556447
crossref_primary_10_1016_j_energy_2024_131285
crossref_primary_10_1016_j_est_2025_116460
crossref_primary_10_1016_j_ejrh_2025_102206
crossref_primary_10_1016_j_ress_2025_110980
crossref_primary_10_1016_j_est_2025_115891
crossref_primary_10_1016_j_compeleceng_2024_109930
crossref_primary_10_1016_j_ress_2025_110906
crossref_primary_10_3390_en17122883
crossref_primary_10_1109_JSEN_2023_3326810
crossref_primary_10_1016_j_ress_2023_109788
crossref_primary_10_1016_j_engappai_2025_110724
crossref_primary_10_3390_batteries10090324
crossref_primary_10_3390_machines13090799
crossref_primary_10_1016_j_ress_2024_109980
crossref_primary_10_1016_j_ress_2024_110668
crossref_primary_10_1016_j_rineng_2025_106373
crossref_primary_10_1016_j_ress_2024_110395
crossref_primary_10_1109_TIM_2025_3573358
crossref_primary_10_1016_j_energy_2024_130743
crossref_primary_10_1016_j_est_2025_116994
crossref_primary_10_1109_TR_2024_3415117
crossref_primary_10_1109_ACCESS_2024_3370847
crossref_primary_10_1016_j_est_2025_116637
crossref_primary_10_1016_j_est_2023_109230
crossref_primary_10_1109_TTE_2024_3493939
crossref_primary_10_1016_j_ress_2023_109798
crossref_primary_10_1007_s11581_025_06589_3
crossref_primary_10_3390_electronics14122383
crossref_primary_10_1088_1361_6501_ad8e78
crossref_primary_10_1016_j_knosys_2024_112598
crossref_primary_10_1016_j_ress_2024_110712
Cites_doi 10.1016/j.est.2021.102570
10.1016/j.est.2021.103857
10.1016/j.apenergy.2019.114296
10.1016/j.jpowsour.2018.03.015
10.1016/j.jechem.2022.06.049
10.1109/TR.2022.3190639
10.1016/j.ress.2021.107675
10.1109/TR.2022.3159273
10.1016/j.est.2022.104901
10.1109/TR.2019.2957965
10.1016/j.jpowsour.2022.231961
10.1109/TPEL.2022.3144504
10.1016/j.ress.2022.108481
10.1016/j.jpowsour.2018.10.069
10.1016/j.ress.2020.107257
10.1109/TII.2019.2951843
10.1109/JIOT.2022.3228869
10.1016/j.jpowsour.2021.230774
10.1162/neco.1997.9.8.1735
10.1016/j.jpowsour.2014.03.058
10.1016/j.apenergy.2021.117511
10.1016/j.energy.2022.125278
10.1016/j.est.2021.102372
10.1109/TR.2022.3192526
10.1016/j.energy.2020.119233
10.1016/j.energy.2019.03.177
10.1109/TIE.2021.3109527
10.1016/j.est.2019.100817
10.1016/j.energy.2022.125501
10.1016/j.energy.2021.120333
10.1109/TPEL.2021.3134701
10.1109/TR.2020.3011500
10.1016/j.jpowsour.2018.11.072
10.1016/j.apenergy.2020.115895
10.1016/j.jpowsour.2021.230823
10.1016/j.jpowsour.2018.10.019
10.1016/j.rser.2019.109405
10.1016/j.jclepro.2020.120813
10.1109/TIE.2021.3111585
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ress.2023.109288
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2023_109288
S095183202300203X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-196b9481c50f4f7422fcc8841be93e7a99b7c6830ced665e3ea8e525fbb0aec83
ISICitedReferencesCount 184
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000983499500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Sat Nov 29 07:10:04 EST 2025
Tue Nov 18 22:53:35 EST 2025
Fri Feb 23 02:36:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Long short-term memory network
Incremental capacity analysis
Bayesian optimization
Capacity estimation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-196b9481c50f4f7422fcc8841be93e7a99b7c6830ced665e3ea8e525fbb0aec83
ORCID 0000-0002-6559-1986
0000-0002-6487-890X
ParticipantIDs crossref_citationtrail_10_1016_j_ress_2023_109288
crossref_primary_10_1016_j_ress_2023_109288
elsevier_sciencedirect_doi_10_1016_j_ress_2023_109288
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Zhang, Pan, Wang, Chen (b22) 2018; 384
Mi, Liu, Zhuang, Bai, Li (b34) 2023; 72
Tian, Yang, Gao, Li, Wang, Chang, Jiang (b43) 2022
Yang, Song, Hofmann, Sun (b7) 2022; 48
Han, Wang, Wei (b40) 2021; 302
Bergstra, Bardenet, Bengio, Kégl (b37) 2011
Shi, Chehade (b33) 2021; 205
Chang, Wang, Jiang, Wu (b27) 2021; 38
Wang, Du, Zhao, Tang, Shi (b20) 2021; 70
Deng, Ying, Jiaqiang, Zhu, Wei, Chen, Zhang, Liao (b4) 2019; 176
Tang, Liu, Lu, Liu, Wang, Gao (b24) 2020; 280
Ardeshiri, Liu, Ma (b18) 2022; 224
Shen, Sadoughi, Chen, Hong, Hu (b30) 2019; 25
Pecht (b39) 2017
Tian, Qin, Li, Zhao (b9) 2020; 261
Lai, Yi, Cui, Qin, Han, Sun, Zhou, Zheng (b12) 2021; 216
Li, Li, Cui, Chen, Wang, Zhou, Hong (b28) 2022; 545
Niu, Wang, Liu, Zhang (b16) 2022; 69
Shen, Sadoughi, Li, Wang, Hu (b17) 2020; 260
Lu, Tao, Fan (b21) 2014; 261
Qian, Xu, Chang, Sun, Feng, Yang, Ren, Wang (b29) 2021; 227
Remadna, Terrissa, Al Masry, Zerhouni (b36) 2023; 72
Zhao, Zhang, Wang (b15) 2022; 52
Guo, Cheng, Yang (b23) 2019; 412
Zhang, Kang, Duan, Zhou, Zhang, Shang, Chen (b44) 2022; 69
Meng, Geng, Xing, Zio (b8) 2022; 261
Zhang, Zhai, Shi, Liu (b6) 2023; 72
Guo, Huang, Hu (b19) 2021; 36
Li, Wang, Zhang, Zou, Dorrell (b25) 2019; 410
Saha, Goebel (b38) 2007
Lu, Lu, An, Wang, He (b41) 2023
Meng, Li (b3) 2019; 116
Han, Wang, Meng (b5) 2022; 520
Gu, See, Li, Shan, Wang, Zhao, Lim, Zhang (b11) 2023; 262
Lin, Wu, Meng, Wu, Wu (b10) 2022; 518
Deng, Hu, Li, Lin, Bian (b31) 2022; 37
Xiong, Li, Tian (b13) 2018; 405
She, Wang, Sun, Liu, Zhang (b26) 2019; 16
Zhu, Lu, Wang, Wang, Lu, de Silva, Xia (b42) 2023; 10
Guo, Li, Li (b14) 2020; 69
Wei, Ruan, Li, Li, Zhang, He (b32) 2022; 37
Luo, Chen, Zheng, Shi (b1) 2022; 74
Hochreiter, Schmidhuber (b35) 1997; 9
Xu, Tang, Yu, Xie, Han, Ouyang (b2) 2021; 214
Chang, Wang, Jiang, Wu (b45) 2021; 38
Zhang (10.1016/j.ress.2023.109288_b6) 2023; 72
Chang (10.1016/j.ress.2023.109288_b45) 2021; 38
Deng (10.1016/j.ress.2023.109288_b31) 2022; 37
Han (10.1016/j.ress.2023.109288_b5) 2022; 520
Guo (10.1016/j.ress.2023.109288_b23) 2019; 412
Shi (10.1016/j.ress.2023.109288_b33) 2021; 205
Xiong (10.1016/j.ress.2023.109288_b13) 2018; 405
Yang (10.1016/j.ress.2023.109288_b22) 2018; 384
Lai (10.1016/j.ress.2023.109288_b12) 2021; 216
Tang (10.1016/j.ress.2023.109288_b24) 2020; 280
Li (10.1016/j.ress.2023.109288_b28) 2022; 545
Mi (10.1016/j.ress.2023.109288_b34) 2023; 72
Luo (10.1016/j.ress.2023.109288_b1) 2022; 74
Xu (10.1016/j.ress.2023.109288_b2) 2021; 214
Guo (10.1016/j.ress.2023.109288_b14) 2020; 69
Shen (10.1016/j.ress.2023.109288_b17) 2020; 260
Pecht (10.1016/j.ress.2023.109288_b39) 2017
Lin (10.1016/j.ress.2023.109288_b10) 2022; 518
Ardeshiri (10.1016/j.ress.2023.109288_b18) 2022; 224
Meng (10.1016/j.ress.2023.109288_b3) 2019; 116
Deng (10.1016/j.ress.2023.109288_b4) 2019; 176
Yang (10.1016/j.ress.2023.109288_b7) 2022; 48
Bergstra (10.1016/j.ress.2023.109288_b37) 2011
Lu (10.1016/j.ress.2023.109288_b21) 2014; 261
Zhao (10.1016/j.ress.2023.109288_b15) 2022; 52
Li (10.1016/j.ress.2023.109288_b25) 2019; 410
Chang (10.1016/j.ress.2023.109288_b27) 2021; 38
Shen (10.1016/j.ress.2023.109288_b30) 2019; 25
Zhu (10.1016/j.ress.2023.109288_b42) 2023; 10
Hochreiter (10.1016/j.ress.2023.109288_b35) 1997; 9
Saha (10.1016/j.ress.2023.109288_b38) 2007
Lu (10.1016/j.ress.2023.109288_b41) 2023
Han (10.1016/j.ress.2023.109288_b40) 2021; 302
Wang (10.1016/j.ress.2023.109288_b20) 2021; 70
Zhang (10.1016/j.ress.2023.109288_b44) 2022; 69
Meng (10.1016/j.ress.2023.109288_b8) 2022; 261
Guo (10.1016/j.ress.2023.109288_b19) 2021; 36
Tian (10.1016/j.ress.2023.109288_b9) 2020; 261
Tian (10.1016/j.ress.2023.109288_b43) 2022
Niu (10.1016/j.ress.2023.109288_b16) 2022; 69
Wei (10.1016/j.ress.2023.109288_b32) 2022; 37
She (10.1016/j.ress.2023.109288_b26) 2019; 16
Gu (10.1016/j.ress.2023.109288_b11) 2023; 262
Qian (10.1016/j.ress.2023.109288_b29) 2021; 227
Remadna (10.1016/j.ress.2023.109288_b36) 2023; 72
References_xml – volume: 260
  year: 2020
  ident: b17
  article-title: Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries
  publication-title: Appl Energy
– volume: 384
  start-page: 387
  year: 2018
  end-page: 395
  ident: b22
  article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve
  publication-title: J Power Sources
– volume: 410
  start-page: 106
  year: 2019
  end-page: 114
  ident: b25
  article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis
  publication-title: J Power Sources
– volume: 520
  year: 2022
  ident: b5
  article-title: End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation
  publication-title: J Power Sources
– volume: 224
  year: 2022
  ident: b18
  article-title: Multivariate stacked bidirectional long short term memory for lithium-ion battery health management
  publication-title: Reliab Eng Syst Saf
– volume: 261
  start-page: 141
  year: 2014
  end-page: 147
  ident: b21
  article-title: Li-ion battery capacity estimation: A geometrical approach
  publication-title: J Power Sources
– volume: 74
  start-page: 159
  year: 2022
  end-page: 173
  ident: b1
  article-title: A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries
  publication-title: J Energy Chem
– volume: 69
  start-page: 8481
  year: 2022
  end-page: 8490
  ident: b16
  article-title: Lebesgue sampling based deep belief network for lithium-ion battery diagnosis and prognosis
  publication-title: IEEE Trans Ind Electron
– volume: 262
  year: 2023
  ident: b11
  article-title: A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model
  publication-title: Energy
– volume: 69
  start-page: 1110
  year: 2020
  end-page: 1129
  ident: b14
  article-title: A review on prognostics methods for engineering systems
  publication-title: IEEE Trans Reliab
– volume: 412
  start-page: 442
  year: 2019
  end-page: 450
  ident: b23
  article-title: A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction
  publication-title: J Power Sources
– volume: 280
  year: 2020
  ident: b24
  article-title: Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter
  publication-title: Appl Energy
– volume: 52
  year: 2022
  ident: b15
  article-title: Lithium-ion battery capacity and remaining useful life prediction using board learning system and long short-term memory neural network
  publication-title: J Energy Storage
– volume: 25
  year: 2019
  ident: b30
  article-title: A deep learning method for online capacity estimation of lithium-ion batteries
  publication-title: J Energy Storage
– volume: 214
  year: 2021
  ident: b2
  article-title: Remaining useful life prediction of lithium-ion batteries based on Wiener process under time-varying temperature condition
  publication-title: Reliab Eng Syst Saf
– volume: 176
  start-page: 91
  year: 2019
  end-page: 102
  ident: b4
  article-title: Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries
  publication-title: Energy
– start-page: 2546
  year: 2011
  end-page: 2554
  ident: b37
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Proceedings of the 24th international conference on neural information processing systems
– volume: 216
  year: 2021
  ident: b12
  article-title: Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter
  publication-title: Energy
– volume: 16
  start-page: 3345
  year: 2019
  end-page: 3354
  ident: b26
  article-title: Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network
  publication-title: IEEE Trans Ind Inf
– volume: 37
  start-page: 5021
  year: 2022
  end-page: 5031
  ident: b31
  article-title: Data-driven battery state of health estimation based on random partial charging data
  publication-title: IEEE Trans Power Electron
– volume: 227
  year: 2021
  ident: b29
  article-title: Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries
  publication-title: Energy
– volume: 518
  year: 2022
  ident: b10
  article-title: A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries
  publication-title: J Power Sources
– volume: 405
  start-page: 18
  year: 2018
  end-page: 29
  ident: b13
  article-title: Towards a smarter battery management system: A critical review on battery state of health monitoring methods
  publication-title: J Power Sources
– volume: 38
  year: 2021
  ident: b45
  article-title: Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm
  publication-title: J Energy Storage
– year: 2007
  ident: b38
  article-title: Battery data set
– volume: 70
  start-page: 775
  year: 2021
  end-page: 789
  ident: b20
  article-title: A deep learning based data fusion method for degradation modeling and prognostics
  publication-title: IEEE Trans Reliab
– volume: 37
  start-page: 7432
  year: 2022
  end-page: 7442
  ident: b32
  article-title: Multistage state of health estimation of lithium-ion battery with high tolerance to heavily partial charging
  publication-title: IEEE Trans Power Electron
– volume: 69
  start-page: 9121
  year: 2022
  end-page: 9132
  ident: b44
  article-title: An adaptive battery capacity estimation method suitable for random charging voltage range in electric vehicles
  publication-title: IEEE Trans Ind Electron
– volume: 116
  year: 2019
  ident: b3
  article-title: A review on prognostics and health management (PHM) methods of lithium-ion batteries
  publication-title: Renew Sustain Energy Rev
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b35
  article-title: Long short-term memory
  publication-title: Neural Comput
– volume: 302
  year: 2021
  ident: b40
  article-title: A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion
  publication-title: Appl Energy
– volume: 72
  start-page: 106
  year: 2023
  end-page: 124
  ident: b36
  article-title: RUL prediction using a fusion of attention-based convolutional variational autoencoder and ensemble learning classifier
  publication-title: IEEE Trans Reliab
– volume: 205
  year: 2021
  ident: b33
  article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
– volume: 72
  start-page: 214
  year: 2023
  end-page: 223
  ident: b6
  article-title: A Wiener process model with dynamic covariate for degradation modeling and remaining useful life prediction
  publication-title: IEEE Trans Reliab
– start-page: 1
  year: 2022
  end-page: 15
  ident: b43
  article-title: A state of health estimation method of lithium-ion batteries based on DT-IC-V health features extracted from partial charging segment
  publication-title: Int J Green Energy
– volume: 545
  year: 2022
  ident: b28
  article-title: A novel health indicator for online health estimation of lithium-ion batteries using partial incremental capacity and dynamic voltage warping
  publication-title: J Power Sources
– volume: 261
  year: 2022
  ident: b8
  article-title: A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena
  publication-title: Energy
– volume: 48
  year: 2022
  ident: b7
  article-title: Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest
  publication-title: J Energy Storage
– year: 2017
  ident: b39
  article-title: Battery data set
– start-page: 1
  year: 2023
  ident: b41
  article-title: Edge computing on IoT for machine signal processing and fault diagnosis: A review
  publication-title: IEEE Internet Things J
– volume: 261
  year: 2020
  ident: b9
  article-title: A review of the state of health for lithium-ion batteries: Research status and suggestions
  publication-title: J Clean Prod
– volume: 36
  year: 2021
  ident: b19
  article-title: A state-of-health estimation method of lithium-ion batteries based on multi-feature extracted from constant current charging curve
  publication-title: J Energy Storage
– volume: 38
  year: 2021
  ident: b27
  article-title: Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm
  publication-title: J Energy Storage
– volume: 72
  start-page: 125
  year: 2023
  end-page: 136
  ident: b34
  article-title: A synthetic feature processing method for remaining useful life prediction of rolling bearings
  publication-title: IEEE Trans Reliab
– volume: 10
  start-page: 7393
  year: 2023
  end-page: 7407
  ident: b42
  article-title: Real-time quality inspection of motor rotor using cost-effective intelligent edge system
  publication-title: IEEE Internet Things J
– volume: 38
  year: 2021
  ident: 10.1016/j.ress.2023.109288_b45
  article-title: Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102570
– volume: 48
  year: 2022
  ident: 10.1016/j.ress.2023.109288_b7
  article-title: Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.103857
– volume: 260
  year: 2020
  ident: 10.1016/j.ress.2023.109288_b17
  article-title: Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114296
– volume: 384
  start-page: 387
  year: 2018
  ident: 10.1016/j.ress.2023.109288_b22
  article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.03.015
– start-page: 1
  year: 2023
  ident: 10.1016/j.ress.2023.109288_b41
  article-title: Edge computing on IoT for machine signal processing and fault diagnosis: A review
  publication-title: IEEE Internet Things J
– volume: 74
  start-page: 159
  year: 2022
  ident: 10.1016/j.ress.2023.109288_b1
  article-title: A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2022.06.049
– volume: 72
  start-page: 106
  issue: 1
  year: 2023
  ident: 10.1016/j.ress.2023.109288_b36
  article-title: RUL prediction using a fusion of attention-based convolutional variational autoencoder and ensemble learning classifier
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2022.3190639
– volume: 214
  year: 2021
  ident: 10.1016/j.ress.2023.109288_b2
  article-title: Remaining useful life prediction of lithium-ion batteries based on Wiener process under time-varying temperature condition
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107675
– year: 2007
  ident: 10.1016/j.ress.2023.109288_b38
– volume: 72
  start-page: 214
  issue: 1
  year: 2023
  ident: 10.1016/j.ress.2023.109288_b6
  article-title: A Wiener process model with dynamic covariate for degradation modeling and remaining useful life prediction
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2022.3159273
– volume: 52
  year: 2022
  ident: 10.1016/j.ress.2023.109288_b15
  article-title: Lithium-ion battery capacity and remaining useful life prediction using board learning system and long short-term memory neural network
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104901
– volume: 69
  start-page: 1110
  issue: 3
  year: 2020
  ident: 10.1016/j.ress.2023.109288_b14
  article-title: A review on prognostics methods for engineering systems
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2019.2957965
– volume: 545
  year: 2022
  ident: 10.1016/j.ress.2023.109288_b28
  article-title: A novel health indicator for online health estimation of lithium-ion batteries using partial incremental capacity and dynamic voltage warping
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2022.231961
– volume: 37
  start-page: 7432
  issue: 6
  year: 2022
  ident: 10.1016/j.ress.2023.109288_b32
  article-title: Multistage state of health estimation of lithium-ion battery with high tolerance to heavily partial charging
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2022.3144504
– volume: 224
  year: 2022
  ident: 10.1016/j.ress.2023.109288_b18
  article-title: Multivariate stacked bidirectional long short term memory for lithium-ion battery health management
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108481
– volume: 410
  start-page: 106
  year: 2019
  ident: 10.1016/j.ress.2023.109288_b25
  article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.10.069
– volume: 205
  year: 2021
  ident: 10.1016/j.ress.2023.109288_b33
  article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107257
– volume: 16
  start-page: 3345
  issue: 5
  year: 2019
  ident: 10.1016/j.ress.2023.109288_b26
  article-title: Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2019.2951843
– volume: 10
  start-page: 7393
  issue: 8
  year: 2023
  ident: 10.1016/j.ress.2023.109288_b42
  article-title: Real-time quality inspection of motor rotor using cost-effective intelligent edge system
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3228869
– volume: 518
  year: 2022
  ident: 10.1016/j.ress.2023.109288_b10
  article-title: A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2021.230774
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.ress.2023.109288_b35
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 1
  year: 2022
  ident: 10.1016/j.ress.2023.109288_b43
  article-title: A state of health estimation method of lithium-ion batteries based on DT-IC-V health features extracted from partial charging segment
  publication-title: Int J Green Energy
– volume: 261
  start-page: 141
  year: 2014
  ident: 10.1016/j.ress.2023.109288_b21
  article-title: Li-ion battery capacity estimation: A geometrical approach
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.03.058
– volume: 302
  year: 2021
  ident: 10.1016/j.ress.2023.109288_b40
  article-title: A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117511
– volume: 261
  year: 2022
  ident: 10.1016/j.ress.2023.109288_b8
  article-title: A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125278
– volume: 36
  year: 2021
  ident: 10.1016/j.ress.2023.109288_b19
  article-title: A state-of-health estimation method of lithium-ion batteries based on multi-feature extracted from constant current charging curve
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102372
– volume: 72
  start-page: 125
  issue: 1
  year: 2023
  ident: 10.1016/j.ress.2023.109288_b34
  article-title: A synthetic feature processing method for remaining useful life prediction of rolling bearings
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2022.3192526
– volume: 216
  year: 2021
  ident: 10.1016/j.ress.2023.109288_b12
  article-title: Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119233
– year: 2017
  ident: 10.1016/j.ress.2023.109288_b39
– volume: 176
  start-page: 91
  year: 2019
  ident: 10.1016/j.ress.2023.109288_b4
  article-title: Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.177
– volume: 69
  start-page: 8481
  issue: 8
  year: 2022
  ident: 10.1016/j.ress.2023.109288_b16
  article-title: Lebesgue sampling based deep belief network for lithium-ion battery diagnosis and prognosis
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2021.3109527
– volume: 38
  year: 2021
  ident: 10.1016/j.ress.2023.109288_b27
  article-title: Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102570
– volume: 25
  year: 2019
  ident: 10.1016/j.ress.2023.109288_b30
  article-title: A deep learning method for online capacity estimation of lithium-ion batteries
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2019.100817
– volume: 262
  year: 2023
  ident: 10.1016/j.ress.2023.109288_b11
  article-title: A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125501
– volume: 227
  year: 2021
  ident: 10.1016/j.ress.2023.109288_b29
  article-title: Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120333
– volume: 37
  start-page: 5021
  issue: 5
  year: 2022
  ident: 10.1016/j.ress.2023.109288_b31
  article-title: Data-driven battery state of health estimation based on random partial charging data
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2021.3134701
– volume: 70
  start-page: 775
  issue: 2
  year: 2021
  ident: 10.1016/j.ress.2023.109288_b20
  article-title: A deep learning based data fusion method for degradation modeling and prognostics
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2020.3011500
– volume: 412
  start-page: 442
  year: 2019
  ident: 10.1016/j.ress.2023.109288_b23
  article-title: A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.11.072
– volume: 280
  year: 2020
  ident: 10.1016/j.ress.2023.109288_b24
  article-title: Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115895
– volume: 520
  year: 2022
  ident: 10.1016/j.ress.2023.109288_b5
  article-title: End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2021.230823
– volume: 405
  start-page: 18
  year: 2018
  ident: 10.1016/j.ress.2023.109288_b13
  article-title: Towards a smarter battery management system: A critical review on battery state of health monitoring methods
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.10.019
– start-page: 2546
  year: 2011
  ident: 10.1016/j.ress.2023.109288_b37
  article-title: Algorithms for hyper-parameter optimization
– volume: 116
  year: 2019
  ident: 10.1016/j.ress.2023.109288_b3
  article-title: A review on prognostics and health management (PHM) methods of lithium-ion batteries
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109405
– volume: 261
  year: 2020
  ident: 10.1016/j.ress.2023.109288_b9
  article-title: A review of the state of health for lithium-ion batteries: Research status and suggestions
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120813
– volume: 69
  start-page: 9121
  issue: 9
  year: 2022
  ident: 10.1016/j.ress.2023.109288_b44
  article-title: An adaptive battery capacity estimation method suitable for random charging voltage range in electric vehicles
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2021.3111585
SSID ssj0004957
Score 2.6916504
Snippet Prognostics and health management (PHM) are developed to accurately estimate the state of health (SOH) of lithium-ion batteries, which are crucial parts for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109288
SubjectTerms Bayesian optimization
Capacity estimation
Incremental capacity analysis
Lithium-ion batteries
Long short-term memory network
Title Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis
URI https://dx.doi.org/10.1016/j.ress.2023.109288
Volume 236
WOSCitedRecordID wos000983499500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCygEOiKfa8pAP3FYbbex92MeCigpCFYci5bayvbaaqtmNmqRK_gk_oT8Tz9q7awpU9MBlFTm2Y2W-zIwnM98g9D4lsiAmzWIuDI8h7yIWyl5WdE6EzGnFMla1zSaK01M2m_Fvo9FNVwtzfVnUNdtu-fK_itqOWWFD6ew9xN1vagfsayt0-7Rit89_EvxX6B60OrdudQxqN1pALu0uql2-twu8fhA73VZPNlZjLHwpZptx6Ooi27StunEczk1bqHw-3yximCVbRk57wY7AAlbwb8MSjtGydygXbgTSEWuFFbj4wtOehG4wJEI7gvBdpAdGxBaHjls6WgnjKUpaPGink042821nbCFryA_D2zvRDOrU9VzWYUyD0D6jbghOTmOra5JQTxMaatppwolrCPibEXDxiIsJxCsmsP1kmPwr4_YtS9jnJ3apbxcl7FHCHqXb4wHaI0XG2RjtHX0-nn0ZanC5Y5XtTu4LtFwu4e2T_NkJChybs6foib-R4COHpGdopOvn6HHAU_kC_QBM4QFT2GEKe0xhwBTuMIVDTGGLKewwhQNM4cbgAFO4xxRuMYXtkMcUDjCFO0zhDlMv0fdPx2cfT2Lf0iNWNEnWsdX3EviBVJaY1BQpIUYpxtKp1JzqQnAuC5Uzmihd5XmmqRZMZyQzUiZCK0ZfoXHd1HofYSJpXhFhVxGaciFFVRhmryvUpAJoJA_QtPuOS-X57qHtymX5d-keoKhfs3RsL3fOzjrRld5fdX5oaZF4x7rDe33Ka_Ro-Im8QeP11Ua_RQ_V9Xq-unrnYfgTqgPAqA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+short-term+memory+network+with+Bayesian+optimization+for+health+prognostics+of+lithium-ion+batteries+based+on+partial+incremental+capacity+analysis&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Meng%2C+Huixing&rft.au=Geng%2C+Mengyao&rft.au=Han%2C+Te&rft.date=2023-08-01&rft.issn=0951-8320&rft.volume=236&rft.spage=109288&rft_id=info:doi/10.1016%2Fj.ress.2023.109288&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2023_109288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon