Iterative reconstruction of low-dose CT based on differential sparse

•Focuses on how to reduce the radiation dose of CT and ensure CT's imaging quality.•Proposes a discriminative sparse transform iterative reconstruction algorithm inspired by the prior image compressed sensing reconstruction and the differential feature representation model.•Data are low-dose 84...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomedical signal processing and control Ročník 79; s. 104204
Hlavní autoři: Lu, Siyu, Yang, Bo, Xiao, Ye, Liu, Shan, Liu, Mingzhe, Yin, Lirong, Zheng, Wenfeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2023
Témata:
ISSN:1746-8094, 1746-8108
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Focuses on how to reduce the radiation dose of CT and ensure CT's imaging quality.•Proposes a discriminative sparse transform iterative reconstruction algorithm inspired by the prior image compressed sensing reconstruction and the differential feature representation model.•Data are low-dose 840 × 840 CT images obtained by simulating the fan beam scanning scene from the heart trunk phantom CT data.•The results show that the discriminative sparse transform constraints can effectively introduce a priori image and reconstruct a better image effect and avoid the registration and matching problem of the reconstructed image caused by the difference of the prior image source. The commonly used method to reduce the dose is to reduce the tube current. The number of photons received by the detector decreases, making the CT image obtained by analytical reconstruction full of speckle noise and strip artifacts. It interferes with the diagnosis and analysis of the disease. Therefore, how to reduce the radiation dose of CT and ensuring CT's imaging quality is an important research topic in the field of low-dose CT. This paper proposes a discriminative sparse transform iterative reconstruction algorithm inspired by the previous image compressed sensing reconstruction and the differential feature representation model. The global constraint term is used to constrain the consistency between the projected data to be reconstructed and the real projection data. The prior information constraint term constrains the reconstructed image close to the preceding image. This paper adds low-dose CT images obtained from image post-processing based on learning sparse transform to the prior information. Compared with the global constraints constructed only by learning sparse transform, the discriminative sparse transform constraints can effectively introduce a priori image and reconstruct a better image effect. Also, the improved algorithm's prior image avoids the dependence of the classical prior image compression sensing reconstruction and the differential feature representation model on the prior image and avoids the registration and matching problem of the reconstructed image caused by the difference of the prior image source.
AbstractList •Focuses on how to reduce the radiation dose of CT and ensure CT's imaging quality.•Proposes a discriminative sparse transform iterative reconstruction algorithm inspired by the prior image compressed sensing reconstruction and the differential feature representation model.•Data are low-dose 840 × 840 CT images obtained by simulating the fan beam scanning scene from the heart trunk phantom CT data.•The results show that the discriminative sparse transform constraints can effectively introduce a priori image and reconstruct a better image effect and avoid the registration and matching problem of the reconstructed image caused by the difference of the prior image source. The commonly used method to reduce the dose is to reduce the tube current. The number of photons received by the detector decreases, making the CT image obtained by analytical reconstruction full of speckle noise and strip artifacts. It interferes with the diagnosis and analysis of the disease. Therefore, how to reduce the radiation dose of CT and ensuring CT's imaging quality is an important research topic in the field of low-dose CT. This paper proposes a discriminative sparse transform iterative reconstruction algorithm inspired by the previous image compressed sensing reconstruction and the differential feature representation model. The global constraint term is used to constrain the consistency between the projected data to be reconstructed and the real projection data. The prior information constraint term constrains the reconstructed image close to the preceding image. This paper adds low-dose CT images obtained from image post-processing based on learning sparse transform to the prior information. Compared with the global constraints constructed only by learning sparse transform, the discriminative sparse transform constraints can effectively introduce a priori image and reconstruct a better image effect. Also, the improved algorithm's prior image avoids the dependence of the classical prior image compression sensing reconstruction and the differential feature representation model on the prior image and avoids the registration and matching problem of the reconstructed image caused by the difference of the prior image source.
ArticleNumber 104204
Author Xiao, Ye
Yin, Lirong
Yang, Bo
Liu, Mingzhe
Liu, Shan
Zheng, Wenfeng
Lu, Siyu
Author_xml – sequence: 1
  givenname: Siyu
  surname: Lu
  fullname: Lu, Siyu
  organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 2
  givenname: Bo
  surname: Yang
  fullname: Yang, Bo
  email: boyang@uestc.edu.cn
  organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 3
  givenname: Ye
  surname: Xiao
  fullname: Xiao, Ye
  organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 4
  givenname: Shan
  surname: Liu
  fullname: Liu, Shan
  organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 5
  givenname: Mingzhe
  surname: Liu
  fullname: Liu, Mingzhe
  organization: School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325000, China
– sequence: 6
  givenname: Lirong
  surname: Yin
  fullname: Yin, Lirong
  email: lyin5@lsu.edu
  organization: Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA
– sequence: 7
  givenname: Wenfeng
  surname: Zheng
  fullname: Zheng, Wenfeng
  email: winfirms@uestc.edu.cn
  organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China
BookMark eNp9kE1LAzEQhoNUsK3-AU_7B3adZNNkF7xI_SoUvNRzSLITSFk3JYkV_727VC8eeprhhWeY91mQ2RAGJOSWQkWBirt9ZdLBVgwYGwPOgF-QOZVclA2FZva3Q8uvyCKlPQBvJOVz8rjJGHX2Rywi2jCkHD9t9mEogiv68FV2IWGx3hVGJ-yKMe-8cxhxyF73RTromPCaXDrdJ7z5nUvy_vy0W7-W27eXzfphW9oaIJe0rbmUXS2ElbyGlRWyE2J8uRXGGDSsdcDQSckaEC0YaxFrbVZO6IY2HOolYae7NoaUIjp1iP5Dx29FQU0e1F5NHtTkQZ08jFDzD7I-66lijtr359H7E4pjqaPHqJL1OFjs_Cgrqy74c_gPn3t6hQ
CitedBy_id crossref_primary_10_1109_TCE_2025_3535668
crossref_primary_10_1109_TCI_2024_3430469
crossref_primary_10_1371_journal_pone_0295632
crossref_primary_10_1016_j_bspc_2024_106218
crossref_primary_10_1007_s10278_023_00928_4
crossref_primary_10_1016_j_infrared_2022_104542
crossref_primary_10_1016_j_asoc_2024_111520
crossref_primary_10_1016_j_critrevonc_2024_104275
crossref_primary_10_3390_diagnostics13132155
crossref_primary_10_1016_j_heliyon_2024_e26652
crossref_primary_10_1177_08953996251319194
crossref_primary_10_1360_TB_2025_0050
crossref_primary_10_1007_s12033_023_00909_6
crossref_primary_10_2147_JMDH_S405174
crossref_primary_10_3390_diagnostics13142340
crossref_primary_10_1016_j_eswa_2022_119224
crossref_primary_10_1088_1361_6560_ad7b9b
crossref_primary_10_3389_fninf_2022_1063048
crossref_primary_10_1007_s10723_024_09742_w
crossref_primary_10_3390_app13095322
crossref_primary_10_1007_s40747_023_01095_3
crossref_primary_10_7717_peerj_cs_1663
crossref_primary_10_1016_j_compbiomed_2023_107293
crossref_primary_10_1080_00268976_2023_2259503
crossref_primary_10_3390_mi14122136
crossref_primary_10_3389_fnins_2023_1256351
crossref_primary_10_3390_electronics12071516
crossref_primary_10_1016_j_bspc_2023_104893
crossref_primary_10_1038_s41598_023_41797_9
crossref_primary_10_1016_j_heliyon_2023_e20890
crossref_primary_10_2478_jaiscr_2024_0005
crossref_primary_10_1109_ACCESS_2023_3313174
crossref_primary_10_32604_cmc_2023_038891
crossref_primary_10_1007_s42235_023_00365_7
crossref_primary_10_7717_peerj_cs_1375
crossref_primary_10_1049_cit2_70003
crossref_primary_10_1088_1361_6560_ade847
crossref_primary_10_1016_j_neucom_2024_127473
crossref_primary_10_1080_13682199_2023_2178094
crossref_primary_10_3934_acse_2025018
crossref_primary_10_1093_jcde_qwad093
crossref_primary_10_1002_ima_70067
crossref_primary_10_3390_math11061425
crossref_primary_10_1007_s10278_024_01314_4
crossref_primary_10_1016_j_compbiomed_2023_106949
crossref_primary_10_1007_s10237_023_01710_9
crossref_primary_10_1002_iid3_1090
crossref_primary_10_1007_s10489_025_06703_y
crossref_primary_10_1111_exsy_13564
crossref_primary_10_1007_s11036_023_02266_9
crossref_primary_10_1016_j_cpcardiol_2024_102397
crossref_primary_10_3233_THC_231517
crossref_primary_10_1016_j_compbiomed_2023_107197
crossref_primary_10_1038_s41598_023_34383_6
crossref_primary_10_1049_ipr2_12996
crossref_primary_10_1007_s10479_024_05857_1
crossref_primary_10_1515_bmt_2023_0581
crossref_primary_10_1016_j_envres_2023_116894
crossref_primary_10_1109_ACCESS_2023_3326475
crossref_primary_10_1371_journal_pone_0286161
crossref_primary_10_1007_s10723_023_09695_6
crossref_primary_10_1371_journal_pone_0292601
crossref_primary_10_3390_s23249872
crossref_primary_10_1002_mp_17685
crossref_primary_10_1016_j_engappai_2023_107413
crossref_primary_10_3389_fpubh_2023_1273253
crossref_primary_10_1007_s00500_023_09271_w
crossref_primary_10_1007_s12553_024_00931_x
crossref_primary_10_1016_j_heliyon_2024_e26172
crossref_primary_10_1016_j_envres_2023_116933
crossref_primary_10_1051_radiopro_2024046
crossref_primary_10_1515_biol_2022_0625
crossref_primary_10_3390_bioengineering10091012
crossref_primary_10_1016_j_biopha_2023_115301
crossref_primary_10_1049_ipr2_13074
crossref_primary_10_3390_diagnostics14020185
crossref_primary_10_1007_s10723_023_09706_6
crossref_primary_10_1080_00051144_2024_2353543
crossref_primary_10_1016_j_cpcardiol_2023_102353
crossref_primary_10_3390_s23156664
crossref_primary_10_3390_su15065312
crossref_primary_10_1007_s00521_023_09366_3
crossref_primary_10_3390_bioengineering10080979
crossref_primary_10_1109_TCI_2024_3507645
crossref_primary_10_3390_diagnostics13162687
crossref_primary_10_1016_j_artmed_2023_102572
crossref_primary_10_1371_journal_pone_0296107
crossref_primary_10_3389_fendo_2023_1226547
crossref_primary_10_1016_j_cpcardiol_2024_102748
crossref_primary_10_1109_ACCESS_2023_3323024
crossref_primary_10_1016_j_yexcr_2023_113821
crossref_primary_10_1016_j_bspc_2023_105147
crossref_primary_10_1016_j_artmed_2024_102779
crossref_primary_10_1088_2631_7990_adebbf
crossref_primary_10_1007_s40747_023_01287_x
crossref_primary_10_1016_j_cpcardiol_2023_102222
crossref_primary_10_1109_ACCESS_2025_3585926
crossref_primary_10_1016_j_envres_2023_117163
crossref_primary_10_3390_diagnostics13111942
crossref_primary_10_1080_01969722_2025_2470786
crossref_primary_10_7717_peerj_cs_1850
crossref_primary_10_1007_s12033_023_01010_8
crossref_primary_10_1016_j_envres_2023_115426
crossref_primary_10_1016_j_artmed_2023_102740
crossref_primary_10_3390_electronics13163184
crossref_primary_10_1038_s41598_023_46211_y
crossref_primary_10_1038_s41598_023_49218_7
crossref_primary_10_1016_j_artmed_2023_102744
crossref_primary_10_3390_mi14122204
crossref_primary_10_1109_ACCESS_2023_3346894
crossref_primary_10_1016_j_bspc_2023_105255
crossref_primary_10_1016_j_artmed_2024_102809
crossref_primary_10_1007_s11042_024_18945_y
crossref_primary_10_3390_cancers15174412
crossref_primary_10_1007_s11042_024_18808_6
crossref_primary_10_1007_s11042_024_18902_9
crossref_primary_10_1016_j_compbiomed_2023_107551
crossref_primary_10_1186_s12880_025_01808_9
crossref_primary_10_7717_peerj_cs_1681
crossref_primary_10_1109_TIM_2024_3396857
crossref_primary_10_1016_j_inoche_2023_110888
Cites_doi 10.1088/0031-9155/59/12/2997
10.1002/mp.12097
10.1088/0031-9155/56/18/011
10.1016/j.measurement.2021.110165
10.1109/TMI.2014.2336860
10.1109/TMI.2011.2172951
10.3390/s22082883
10.1109/IVMSPW.2016.7528219
10.1016/j.cmpb.2015.10.004
10.1109/TIP.2016.2528042
10.2214/ajr.179.5.1791107
10.1109/TMI.2014.2365179
10.1148/radiol.2292021261
10.1118/1.4851635
10.1109/78.258101
10.1088/1361-6560/aae511
10.1117/12.2008140
10.1118/1.4830431
10.1016/j.cmpb.2020.105344
10.1088/0031-9155/57/23/7923
10.1109/CVPR.2015.7299067
10.1002/mp.12344
10.1109/23.322963
10.1109/TCSVT.2016.2643009
10.1088/0031-9155/57/9/2667
10.1109/TMI.2015.2508780
10.3390/s21227443
10.1364/OE.404471
10.1118/1.3638125
10.1364/BOE.9.006222
10.1007/s12210-021-01020-1
10.1364/BOE.8.000679
10.1118/1.4773866
10.3390/atmos12111513
10.1109/TMI.2017.2757035
10.1109/TNS.1981.4331812
10.1109/TCI.2016.2582042
10.1051/matecconf/201927702006
10.1088/0031-9155/53/17/021
10.3390/s21227570
10.1117/12.912138
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.104204
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_104204
S1746809422006589
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-193477d366c74305c67d6602296bbbeb29f02ef77280690bccee3ab5f6a818403
ISICitedReferencesCount 141
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000883344100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Tue Nov 18 21:20:27 EST 2025
Sat Nov 29 07:03:49 EST 2025
Tue Jul 16 04:31:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Sparse representation
Image processing
Sparse transform
Iterative reconstruction
Low dose CT
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-193477d366c74305c67d6602296bbbeb29f02ef77280690bccee3ab5f6a818403
ParticipantIDs crossref_primary_10_1016_j_bspc_2022_104204
crossref_citationtrail_10_1016_j_bspc_2022_104204
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_104204
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lauzier, Chen (b0175) 2013; 40
Xu, Yang, Guo, Zheng, Poignet (b0185) 2020; 28
Zhuang, Gopal, Hebert (b0065) 1994; 41
Frush (b0005) 2002; 179
Kang, Min, Ye (b0080) 2017; 44
Liu (b0085) 2016; 28
Xu, Liu, Yin, Liu, Tian, Gu, Zheng, Yang, Liu (b0105) 2021; 12
Zhang, Rong, Lu, Xing, Meng (b0135) 2017; 36
Cho, Fessler (b0015) 2014; 34
Tang, Liu, Deng, Zhang, Yin, Zheng (b0075) 2020; 190
F. Guo, B. Yang, W. Zheng, S. Liu. Power Frequency Estimation Using Sine Filtering of Optimal Initial Phase. Measurement, 110165.2021.
He, Zhang, Ren, Sun (b0155) 2016
Zhang, Ye, Pal, Thibault, Sauer, Bouman (b0045) 2016; 2
Chen (b0170) 2011; 31
P.T. Lauzier, J. Tang, G.-H. Chen, Prior image constrained compressed sensing: a quantitative performance evaluation, in: Medical Imaging 2012: Physics of Medical Imaging, 2012, vol. 8313: International Society for Optics and Photonics, p. 83132F, doi: https://doi.org/10.1117/12.912138.
Heneghan, McGuire, Leder, DeLong, Yoshizumi, Nelson (b0010) 2003; 229
Sidky, Pan (b0095) 2008; 53
Chen (b0165) 2017; 8
Al Hussani, Al Hayani (b0210) 2014; 17
Yang, Liu, Zheng, Liu, Huang (b0200) 2018; 9
X. Zheng, Z. Lu, S. Ravishankar, Y. Long, J.A. Fessler, Low dose CT image reconstruction with learned sparsifying transform, in: 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), 2016: IEEE, pp. 1-5, doi: https://doi.org/10.1109/IVMSPW.2016.7528219.
Shangguan, Zhang, Liu, Cui, Bai, Gui (b0070) 2016; 123
Tian, Jia, Yuan, Pan, Jiang (b0100) 2011; 56
Ma (b0190) 2011; 38
Wang, Liao, Zhang, He, Li, Bian, Zhang, Gao, Meng, Zuo (b0215) 2018; 63
T. Bai, X. Mou, Q. Xu, Y. Zhang, Low-dose CT reconstruction based on multiscale dictionary, in: Medical Imaging 2013: Physics of Medical Imaging, 2013, vol. 8668: International Society for Optics and Photonics, p. 86683L, doi: https://doi.org/10.1117/12.2008140.
Zheng, Yang, Xiao, Tian, Liu, Yin (b0220) 2022; 22
G. Bertasius, J. Shi, L. Torresani, Deepedge: A multi-scale bifurcated deep network for top-down contour detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 4380-4389.
X. Ni, L. Yin, X. Chen, S. Liu, B. Yang, W. Zheng. Semantic representation for visual reasoning. In MATEC Web of Conferences (Vol. 277, p. 02006). EDP Sciences.2019.
Vinyals, Toshev, Bengio, Erhan (b0160) 2015
Li (b0020) 2014; 41
Yi, Eramian (b0145) 2016; 25
Chen (b0120) 2012; 57
Liu, Ma, Fan, Liang (b0090) 2012; 57
Niu (b0035) 2014; 59
Sahiner, Yagle (b0060) 1993; 41
Zhang, Zeng, Zhang, Wang, Liang, Ma (b0040) 2017; 44
Y. Li, W. Zheng, X. Liu, Y. Mou, L. Yin, B. Yang. Research and improvement of feature detection algorithm based on FAST. Rendiconti Lincei. Scienze Fisiche e Naturali, 1-15.2021.
Chen (b0125) 2014; 33
Won Kim, Kim (b0025) 2014; 41
Y. Wang, J. Tian, Y. Liu, B. Yang, S. Liu, L. Yin, W. Zheng. Adaptive Neural Network Control of Time Delay Teleoperation System Based on Model Approximation Sensors 21, 7443.2021.
Nien, Fessler (b0205) 2015; 35
Peters (b0055) 1981; 28
Zhang, Liu, Tian, Liu, Yang, Xiang, Yin, Zheng (b0195) 2021; 21
Lauzier (10.1016/j.bspc.2022.104204_b0175) 2013; 40
Tang (10.1016/j.bspc.2022.104204_b0075) 2020; 190
Sahiner (10.1016/j.bspc.2022.104204_b0060) 1993; 41
He (10.1016/j.bspc.2022.104204_b0155) 2016
Chen (10.1016/j.bspc.2022.104204_b0170) 2011; 31
Nien (10.1016/j.bspc.2022.104204_b0205) 2015; 35
Al Hussani (10.1016/j.bspc.2022.104204_b0210) 2014; 17
Vinyals (10.1016/j.bspc.2022.104204_b0160) 2015
Zhang (10.1016/j.bspc.2022.104204_b0040) 2017; 44
Heneghan (10.1016/j.bspc.2022.104204_b0010) 2003; 229
Li (10.1016/j.bspc.2022.104204_b0020) 2014; 41
Won Kim (10.1016/j.bspc.2022.104204_b0025) 2014; 41
Niu (10.1016/j.bspc.2022.104204_b0035) 2014; 59
Chen (10.1016/j.bspc.2022.104204_b0165) 2017; 8
Zhuang (10.1016/j.bspc.2022.104204_b0065) 1994; 41
Chen (10.1016/j.bspc.2022.104204_b0120) 2012; 57
Tian (10.1016/j.bspc.2022.104204_b0100) 2011; 56
10.1016/j.bspc.2022.104204_b0180
Frush (10.1016/j.bspc.2022.104204_b0005) 2002; 179
10.1016/j.bspc.2022.104204_b0140
Cho (10.1016/j.bspc.2022.104204_b0015) 2014; 34
Xu (10.1016/j.bspc.2022.104204_b0105) 2021; 12
Xu (10.1016/j.bspc.2022.104204_b0185) 2020; 28
Wang (10.1016/j.bspc.2022.104204_b0215) 2018; 63
Zhang (10.1016/j.bspc.2022.104204_b0045) 2016; 2
Ma (10.1016/j.bspc.2022.104204_b0190) 2011; 38
Peters (10.1016/j.bspc.2022.104204_b0055) 1981; 28
10.1016/j.bspc.2022.104204_b0110
Yi (10.1016/j.bspc.2022.104204_b0145) 2016; 25
10.1016/j.bspc.2022.104204_b0130
Liu (10.1016/j.bspc.2022.104204_b0085) 2016; 28
10.1016/j.bspc.2022.104204_b0115
Zhang (10.1016/j.bspc.2022.104204_b0195) 2021; 21
Zheng (10.1016/j.bspc.2022.104204_b0220) 2022; 22
Chen (10.1016/j.bspc.2022.104204_b0125) 2014; 33
10.1016/j.bspc.2022.104204_b0150
10.1016/j.bspc.2022.104204_b0030
Kang (10.1016/j.bspc.2022.104204_b0080) 2017; 44
Sidky (10.1016/j.bspc.2022.104204_b0095) 2008; 53
Shangguan (10.1016/j.bspc.2022.104204_b0070) 2016; 123
Zhang (10.1016/j.bspc.2022.104204_b0135) 2017; 36
10.1016/j.bspc.2022.104204_b0050
Liu (10.1016/j.bspc.2022.104204_b0090) 2012; 57
Yang (10.1016/j.bspc.2022.104204_b0200) 2018; 9
References_xml – volume: 28
  start-page: 1232
  year: 2016
  end-page: 1247
  ident: b0085
  article-title: 3D feature constrained reconstruction for low-dose CT imaging
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 41
  start-page: 3579
  year: 1993
  end-page: 3584
  ident: b0060
  article-title: Image reconstruction from projections under wavelet constraints
  publication-title: IEEE Trans. Signal Process.
– volume: 38
  start-page: 5713
  year: 2011
  end-page: 5731
  ident: b0190
  article-title: Low-dose computed tomography image restoration using previous normal-dose scan
  publication-title: Med. Phys.
– volume: 21
  start-page: 7570
  year: 2021
  ident: b0195
  article-title: Study on Reconstruction and Feature Tracking of Silicone Heart 3D Surface
  publication-title: Sensors
– volume: 63
  year: 2018
  ident: b0215
  article-title: Iterative quality enhancement via residual-artifact learning networks for low-dose CT
  publication-title: Phys. Med. Biol.
– volume: 2
  start-page: 359
  year: 2016
  end-page: 374
  ident: b0045
  article-title: A Gaussian mixture MRF for model-based iterative reconstruction with applications to low-dose X-ray CT
  publication-title: IEEE Trans. Comput. Imaging
– volume: 8
  start-page: 679
  year: 2017
  end-page: 694
  ident: b0165
  article-title: Low-dose CT via convolutional neural network
  publication-title: Biomed. Opt. Express
– volume: 41
  start-page: 1660
  year: 1994
  end-page: 1665
  ident: b0065
  article-title: Numerical evaluation of methods for computing tomographic projections
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 56
  start-page: 5949
  year: 2011
  ident: b0100
  article-title: Low-dose CT reconstruction via edge-preserving total variation regularization
  publication-title: Phys. Med. Biol.
– reference: T. Bai, X. Mou, Q. Xu, Y. Zhang, Low-dose CT reconstruction based on multiscale dictionary, in: Medical Imaging 2013: Physics of Medical Imaging, 2013, vol. 8668: International Society for Optics and Photonics, p. 86683L, doi: https://doi.org/10.1117/12.2008140.
– reference: F. Guo, B. Yang, W. Zheng, S. Liu. Power Frequency Estimation Using Sine Filtering of Optimal Initial Phase. Measurement, 110165.2021.
– volume: 17
  start-page: 151
  year: 2014
  end-page: 156
  ident: b0210
  article-title: The use of filtered back projection algorithm for reconstruction of tomographic image.
  publication-title: Eng. Sci.
– volume: 12
  start-page: 1513
  year: 2021
  ident: b0105
  article-title: Grey Correlation Analysis of Haze Impact Factor PM2.5
  publication-title: Atmosphere
– volume: 57
  start-page: 2667
  year: 2012
  ident: b0120
  article-title: Thoracic low-dose CT image processing using an artifact suppressed large-scale non-local means
  publication-title: Phys. Med. Biol.
– volume: 28
  start-page: 3641
  year: 1981
  end-page: 3647
  ident: b0055
  article-title: Algorithms for fast back-and re-projection in computed tomography
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 40
  year: 2013
  ident: b0175
  article-title: Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction
  publication-title: Med. Phys.
– volume: 35
  start-page: 1090
  year: 2015
  end-page: 1098
  ident: b0205
  article-title: Relaxed linearized algorithms for faster X-ray CT image reconstruction
  publication-title: IEEE Trans. Med. Imaging
– volume: 123
  start-page: 129
  year: 2016
  end-page: 141
  ident: b0070
  article-title: Low-dose CT statistical iterative reconstruction via modified MRF regularization
  publication-title: Comput. Methods Programs Biomed.
– volume: 57
  start-page: 7923
  year: 2012
  ident: b0090
  article-title: Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction
  publication-title: Phys. Med. Biol.
– volume: 190
  year: 2020
  ident: b0075
  article-title: Construction of force haptic reappearance system based on Geomagic Touch haptic device
  publication-title: Comput. Methods Programs Biomed.
– volume: 25
  start-page: 1626
  year: 2016
  end-page: 1638
  ident: b0145
  article-title: LBP-based segmentation of defocus blur
  publication-title: IEEE Trans. Image Process.
– start-page: 3156
  year: 2015
  end-page: 3164
  ident: b0160
  article-title: Show and tell: A neural image caption generator
  publication-title: in Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0155
  article-title: Deep residual learning for image recognition
  publication-title: in Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 179
  start-page: 1107
  year: 2002
  end-page: 1113
  ident: b0005
  article-title: Computer-simulated radiation dose reduction for abdominal multidetector CT of pediatric patients
  publication-title: Am. J. Roentgenol.
– volume: 59
  start-page: 2997
  year: 2014
  ident: b0035
  article-title: Sparse-view x-ray CT reconstruction via total generalized variation regularization
  publication-title: Phys. Med. Biol.
– volume: 44
  start-page: e360
  year: 2017
  end-page: e375
  ident: b0080
  article-title: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction
  publication-title: Med. Phys.
– volume: 53
  start-page: 4777
  year: 2008
  ident: b0095
  article-title: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization
  publication-title: Phys. Med. Biol.
– volume: 9
  start-page: 6222
  year: 2018
  end-page: 6236
  ident: b0200
  article-title: Reconstructing a 3D heart surface with stereo-endoscope by learning eigen-shapes
  publication-title: Biomed. Opt. Express
– volume: 41
  year: 2014
  ident: b0025
  article-title: Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images
  publication-title: Med. Phys.
– reference: X. Ni, L. Yin, X. Chen, S. Liu, B. Yang, W. Zheng. Semantic representation for visual reasoning. In MATEC Web of Conferences (Vol. 277, p. 02006). EDP Sciences.2019.
– volume: 41
  year: 2014
  ident: b0020
  article-title: Adaptive non-local means filtering based on local noise level for CT denoising
  publication-title: Med. Phys.
– volume: 229
  start-page: 575
  year: 2003
  end-page: 580
  ident: b0010
  article-title: Helical CT for nephrolithiasis and ureterolithiasis: comparison of conventional and reduced radiation-dose techniques
  publication-title: Radiology
– volume: 36
  start-page: 2510
  year: 2017
  end-page: 2523
  ident: b0135
  article-title: Low-dose lung CT image restoration using adaptive prior features from full-dose training database
  publication-title: IEEE Trans. Med. Imaging
– reference: Y. Wang, J. Tian, Y. Liu, B. Yang, S. Liu, L. Yin, W. Zheng. Adaptive Neural Network Control of Time Delay Teleoperation System Based on Model Approximation Sensors 21, 7443.2021.
– volume: 44
  start-page: 1168
  year: 2017
  end-page: 1185
  ident: b0040
  article-title: Applications of non-local means algorithm in low-dose X-ray CT image processing and reconstruction: A review
  publication-title: Med. Phys.
– volume: 31
  start-page: 907
  year: 2011
  end-page: 923
  ident: b0170
  article-title: Time-resolved interventional cardiac C-arm cone-beam CT: An application of the PICCS algorithm
  publication-title: IEEE Trans. Med. Imaging
– volume: 22
  start-page: 2883
  year: 2022
  ident: b0220
  article-title: Low-Dose CT Image Post-Processing Based on Learn-Type Sparse Transform
  publication-title: Sensors
– volume: 28
  start-page: 35469
  year: 2020
  end-page: 35482
  ident: b0185
  article-title: Sparse-view CBCT reconstruction via weighted Schatten p-norm minimization
  publication-title: Opt. Express
– reference: Y. Li, W. Zheng, X. Liu, Y. Mou, L. Yin, B. Yang. Research and improvement of feature detection algorithm based on FAST. Rendiconti Lincei. Scienze Fisiche e Naturali, 1-15.2021.
– volume: 33
  start-page: 2271
  year: 2014
  end-page: 2292
  ident: b0125
  article-title: Artifact suppressed dictionary learning for low-dose CT image processing
  publication-title: IEEE Trans. Med. Imaging
– reference: G. Bertasius, J. Shi, L. Torresani, Deepedge: A multi-scale bifurcated deep network for top-down contour detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 4380-4389.
– volume: 34
  start-page: 678
  year: 2014
  end-page: 689
  ident: b0015
  article-title: Regularization designs for uniform spatial resolution and noise properties in statistical image reconstruction for 3-D X-ray CT
  publication-title: IEEE Trans. Med. Imaging
– reference: P.T. Lauzier, J. Tang, G.-H. Chen, Prior image constrained compressed sensing: a quantitative performance evaluation, in: Medical Imaging 2012: Physics of Medical Imaging, 2012, vol. 8313: International Society for Optics and Photonics, p. 83132F, doi: https://doi.org/10.1117/12.912138.
– reference: X. Zheng, Z. Lu, S. Ravishankar, Y. Long, J.A. Fessler, Low dose CT image reconstruction with learned sparsifying transform, in: 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), 2016: IEEE, pp. 1-5, doi: https://doi.org/10.1109/IVMSPW.2016.7528219.
– volume: 59
  start-page: 2997
  issue: 12
  year: 2014
  ident: 10.1016/j.bspc.2022.104204_b0035
  article-title: Sparse-view x-ray CT reconstruction via total generalized variation regularization
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/12/2997
– volume: 44
  start-page: 1168
  issue: 3
  year: 2017
  ident: 10.1016/j.bspc.2022.104204_b0040
  article-title: Applications of non-local means algorithm in low-dose X-ray CT image processing and reconstruction: A review
  publication-title: Med. Phys.
  doi: 10.1002/mp.12097
– volume: 56
  start-page: 5949
  issue: 18
  year: 2011
  ident: 10.1016/j.bspc.2022.104204_b0100
  article-title: Low-dose CT reconstruction via edge-preserving total variation regularization
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/18/011
– ident: 10.1016/j.bspc.2022.104204_b0115
  doi: 10.1016/j.measurement.2021.110165
– volume: 33
  start-page: 2271
  issue: 12
  year: 2014
  ident: 10.1016/j.bspc.2022.104204_b0125
  article-title: Artifact suppressed dictionary learning for low-dose CT image processing
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2336860
– volume: 31
  start-page: 907
  issue: 4
  year: 2011
  ident: 10.1016/j.bspc.2022.104204_b0170
  article-title: Time-resolved interventional cardiac C-arm cone-beam CT: An application of the PICCS algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2172951
– volume: 22
  start-page: 2883
  issue: 8
  year: 2022
  ident: 10.1016/j.bspc.2022.104204_b0220
  article-title: Low-Dose CT Image Post-Processing Based on Learn-Type Sparse Transform
  publication-title: Sensors
  doi: 10.3390/s22082883
– ident: 10.1016/j.bspc.2022.104204_b0050
  doi: 10.1109/IVMSPW.2016.7528219
– volume: 123
  start-page: 129
  year: 2016
  ident: 10.1016/j.bspc.2022.104204_b0070
  article-title: Low-dose CT statistical iterative reconstruction via modified MRF regularization
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2015.10.004
– volume: 25
  start-page: 1626
  issue: 4
  year: 2016
  ident: 10.1016/j.bspc.2022.104204_b0145
  article-title: LBP-based segmentation of defocus blur
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2528042
– volume: 179
  start-page: 1107
  issue: 5
  year: 2002
  ident: 10.1016/j.bspc.2022.104204_b0005
  article-title: Computer-simulated radiation dose reduction for abdominal multidetector CT of pediatric patients
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.179.5.1791107
– volume: 34
  start-page: 678
  issue: 2
  year: 2014
  ident: 10.1016/j.bspc.2022.104204_b0015
  article-title: Regularization designs for uniform spatial resolution and noise properties in statistical image reconstruction for 3-D X-ray CT
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2365179
– volume: 229
  start-page: 575
  issue: 2
  year: 2003
  ident: 10.1016/j.bspc.2022.104204_b0010
  article-title: Helical CT for nephrolithiasis and ureterolithiasis: comparison of conventional and reduced radiation-dose techniques
  publication-title: Radiology
  doi: 10.1148/radiol.2292021261
– volume: 41
  issue: 1
  year: 2014
  ident: 10.1016/j.bspc.2022.104204_b0020
  article-title: Adaptive non-local means filtering based on local noise level for CT denoising
  publication-title: Med. Phys.
  doi: 10.1118/1.4851635
– volume: 41
  start-page: 3579
  issue: 12
  year: 1993
  ident: 10.1016/j.bspc.2022.104204_b0060
  article-title: Image reconstruction from projections under wavelet constraints
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258101
– volume: 63
  issue: 21
  year: 2018
  ident: 10.1016/j.bspc.2022.104204_b0215
  article-title: Iterative quality enhancement via residual-artifact learning networks for low-dose CT
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aae511
– ident: 10.1016/j.bspc.2022.104204_b0030
  doi: 10.1117/12.2008140
– volume: 41
  issue: 1
  year: 2014
  ident: 10.1016/j.bspc.2022.104204_b0025
  article-title: Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images
  publication-title: Med. Phys.
  doi: 10.1118/1.4830431
– volume: 190
  year: 2020
  ident: 10.1016/j.bspc.2022.104204_b0075
  article-title: Construction of force haptic reappearance system based on Geomagic Touch haptic device
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105344
– volume: 57
  start-page: 7923
  issue: 23
  year: 2012
  ident: 10.1016/j.bspc.2022.104204_b0090
  article-title: Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/23/7923
– ident: 10.1016/j.bspc.2022.104204_b0140
  doi: 10.1109/CVPR.2015.7299067
– volume: 44
  start-page: e360
  issue: 10
  year: 2017
  ident: 10.1016/j.bspc.2022.104204_b0080
  article-title: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction
  publication-title: Med. Phys.
  doi: 10.1002/mp.12344
– volume: 41
  start-page: 1660
  issue: 4
  year: 1994
  ident: 10.1016/j.bspc.2022.104204_b0065
  article-title: Numerical evaluation of methods for computing tomographic projections
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.322963
– volume: 28
  start-page: 1232
  issue: 5
  year: 2016
  ident: 10.1016/j.bspc.2022.104204_b0085
  article-title: 3D feature constrained reconstruction for low-dose CT imaging
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2016.2643009
– volume: 57
  start-page: 2667
  issue: 9
  year: 2012
  ident: 10.1016/j.bspc.2022.104204_b0120
  article-title: Thoracic low-dose CT image processing using an artifact suppressed large-scale non-local means
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/9/2667
– volume: 35
  start-page: 1090
  issue: 4
  year: 2015
  ident: 10.1016/j.bspc.2022.104204_b0205
  article-title: Relaxed linearized algorithms for faster X-ray CT image reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2508780
– ident: 10.1016/j.bspc.2022.104204_b0130
  doi: 10.3390/s21227443
– volume: 28
  start-page: 35469
  issue: 24
  year: 2020
  ident: 10.1016/j.bspc.2022.104204_b0185
  article-title: Sparse-view CBCT reconstruction via weighted Schatten p-norm minimization
  publication-title: Opt. Express
  doi: 10.1364/OE.404471
– volume: 38
  start-page: 5713
  issue: 10
  year: 2011
  ident: 10.1016/j.bspc.2022.104204_b0190
  article-title: Low-dose computed tomography image restoration using previous normal-dose scan
  publication-title: Med. Phys.
  doi: 10.1118/1.3638125
– volume: 9
  start-page: 6222
  issue: 12
  year: 2018
  ident: 10.1016/j.bspc.2022.104204_b0200
  article-title: Reconstructing a 3D heart surface with stereo-endoscope by learning eigen-shapes
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.9.006222
– ident: 10.1016/j.bspc.2022.104204_b0110
  doi: 10.1007/s12210-021-01020-1
– volume: 8
  start-page: 679
  issue: 2
  year: 2017
  ident: 10.1016/j.bspc.2022.104204_b0165
  article-title: Low-dose CT via convolutional neural network
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.000679
– volume: 40
  issue: 2
  year: 2013
  ident: 10.1016/j.bspc.2022.104204_b0175
  article-title: Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction
  publication-title: Med. Phys.
  doi: 10.1118/1.4773866
– volume: 12
  start-page: 1513
  year: 2021
  ident: 10.1016/j.bspc.2022.104204_b0105
  article-title: Grey Correlation Analysis of Haze Impact Factor PM2.5
  publication-title: Atmosphere
  doi: 10.3390/atmos12111513
– volume: 36
  start-page: 2510
  issue: 12
  year: 2017
  ident: 10.1016/j.bspc.2022.104204_b0135
  article-title: Low-dose lung CT image restoration using adaptive prior features from full-dose training database
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2757035
– start-page: 770
  year: 2016
  ident: 10.1016/j.bspc.2022.104204_b0155
  article-title: Deep residual learning for image recognition
– volume: 28
  start-page: 3641
  issue: 4
  year: 1981
  ident: 10.1016/j.bspc.2022.104204_b0055
  article-title: Algorithms for fast back-and re-projection in computed tomography
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.1981.4331812
– volume: 2
  start-page: 359
  issue: 3
  year: 2016
  ident: 10.1016/j.bspc.2022.104204_b0045
  article-title: A Gaussian mixture MRF for model-based iterative reconstruction with applications to low-dose X-ray CT
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2016.2582042
– ident: 10.1016/j.bspc.2022.104204_b0150
  doi: 10.1051/matecconf/201927702006
– volume: 53
  start-page: 4777
  issue: 17
  year: 2008
  ident: 10.1016/j.bspc.2022.104204_b0095
  article-title: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/17/021
– volume: 21
  start-page: 7570
  year: 2021
  ident: 10.1016/j.bspc.2022.104204_b0195
  article-title: Study on Reconstruction and Feature Tracking of Silicone Heart 3D Surface
  publication-title: Sensors
  doi: 10.3390/s21227570
– volume: 17
  start-page: 151
  issue: 2
  year: 2014
  ident: 10.1016/j.bspc.2022.104204_b0210
  article-title: The use of filtered back projection algorithm for reconstruction of tomographic image. Al-Nahrain Journal for
  publication-title: Eng. Sci.
– start-page: 3156
  year: 2015
  ident: 10.1016/j.bspc.2022.104204_b0160
  article-title: Show and tell: A neural image caption generator
– ident: 10.1016/j.bspc.2022.104204_b0180
  doi: 10.1117/12.912138
SSID ssj0048714
Score 2.614126
Snippet •Focuses on how to reduce the radiation dose of CT and ensure CT's imaging quality.•Proposes a discriminative sparse transform iterative reconstruction...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104204
SubjectTerms Image processing
Iterative reconstruction
Low dose CT
Sparse representation
Sparse transform
Title Iterative reconstruction of low-dose CT based on differential sparse
URI https://dx.doi.org/10.1016/j.bspc.2022.104204
Volume 79
WOSCitedRecordID wos000883344100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZ49ACHitJWQAH50BsKSpysnRxhCwJUoUpdpO0pih2nDULZiF1e_74ztuMNFKG2EnuIVtY6j_lmx58n8yDkc4k1ooAIwD8t0UEiFAtkWehgoLiOqqqMdBWaZhPi_Dwdj7NvLl1xatoJiKZJ7--z9lWhhjEAG1Nn_wFuf1IYgO8AOhwBdjj-FfCnpk4yBgSZza4vEIu08GpyF5QYoT4c7eH6VeK7gq5HyszkjrSw030UHnRoEvRt9mT9E8lra5MLuvRGF-3uQ3tujEe1frjxFsX5pA8n3ci4LoyL9odXq6-1nfbLaatzRLD4iSPCZ8jMw5HQoIoECx7bRsb7ujcWhWnfCtuWMn8YdOtbuNyX0xYLTjKGL6VZmMyXLx9U-B3Pi5dizBCrbJEsMzHIwFwvH5wejc-6FRr2aKbmu783l0xl4_6eXul5wtIjIaM18tbtHuiBRf0dWdDNOlnt1ZR8T754_Olj_Omkoh3-dDiiBn8K4338qcX_A7k4PhoNTwLXKiNQcRjOAqDhiRBlzLkSWMRNcVFyDg-RcSmlliyrQqYrgc3IeBZKBdwoLuSg4kWKe_z4I1lqJo3eIBQ5vGI8VWmm4fmjAjmg0hLss8bPJok6eeTK1ZHHdiZXeRcweJmjDHOUYW5luEn2_JzWVlF58deDTsy544GW3-WgFS_M2_rPeZ_Iylyft8kS4KJ3yBt1O6un17tOeX4DiUmA5Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+reconstruction+of+low-dose+CT+based+on+differential+sparse&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Lu%2C+Siyu&rft.au=Yang%2C+Bo&rft.au=Xiao%2C+Ye&rft.au=Liu%2C+Shan&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=79&rft_id=info:doi/10.1016%2Fj.bspc.2022.104204&rft.externalDocID=S1746809422006589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon