Iterative reconstruction of low-dose CT based on differential sparse
•Focuses on how to reduce the radiation dose of CT and ensure CT's imaging quality.•Proposes a discriminative sparse transform iterative reconstruction algorithm inspired by the prior image compressed sensing reconstruction and the differential feature representation model.•Data are low-dose 84...
Uloženo v:
| Vydáno v: | Biomedical signal processing and control Ročník 79; s. 104204 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.01.2023
|
| Témata: | |
| ISSN: | 1746-8094, 1746-8108 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Focuses on how to reduce the radiation dose of CT and ensure CT's imaging quality.•Proposes a discriminative sparse transform iterative reconstruction algorithm inspired by the prior image compressed sensing reconstruction and the differential feature representation model.•Data are low-dose 840 × 840 CT images obtained by simulating the fan beam scanning scene from the heart trunk phantom CT data.•The results show that the discriminative sparse transform constraints can effectively introduce a priori image and reconstruct a better image effect and avoid the registration and matching problem of the reconstructed image caused by the difference of the prior image source.
The commonly used method to reduce the dose is to reduce the tube current. The number of photons received by the detector decreases, making the CT image obtained by analytical reconstruction full of speckle noise and strip artifacts. It interferes with the diagnosis and analysis of the disease. Therefore, how to reduce the radiation dose of CT and ensuring CT's imaging quality is an important research topic in the field of low-dose CT. This paper proposes a discriminative sparse transform iterative reconstruction algorithm inspired by the previous image compressed sensing reconstruction and the differential feature representation model. The global constraint term is used to constrain the consistency between the projected data to be reconstructed and the real projection data. The prior information constraint term constrains the reconstructed image close to the preceding image. This paper adds low-dose CT images obtained from image post-processing based on learning sparse transform to the prior information. Compared with the global constraints constructed only by learning sparse transform, the discriminative sparse transform constraints can effectively introduce a priori image and reconstruct a better image effect. Also, the improved algorithm's prior image avoids the dependence of the classical prior image compression sensing reconstruction and the differential feature representation model on the prior image and avoids the registration and matching problem of the reconstructed image caused by the difference of the prior image source. |
|---|---|
| AbstractList | •Focuses on how to reduce the radiation dose of CT and ensure CT's imaging quality.•Proposes a discriminative sparse transform iterative reconstruction algorithm inspired by the prior image compressed sensing reconstruction and the differential feature representation model.•Data are low-dose 840 × 840 CT images obtained by simulating the fan beam scanning scene from the heart trunk phantom CT data.•The results show that the discriminative sparse transform constraints can effectively introduce a priori image and reconstruct a better image effect and avoid the registration and matching problem of the reconstructed image caused by the difference of the prior image source.
The commonly used method to reduce the dose is to reduce the tube current. The number of photons received by the detector decreases, making the CT image obtained by analytical reconstruction full of speckle noise and strip artifacts. It interferes with the diagnosis and analysis of the disease. Therefore, how to reduce the radiation dose of CT and ensuring CT's imaging quality is an important research topic in the field of low-dose CT. This paper proposes a discriminative sparse transform iterative reconstruction algorithm inspired by the previous image compressed sensing reconstruction and the differential feature representation model. The global constraint term is used to constrain the consistency between the projected data to be reconstructed and the real projection data. The prior information constraint term constrains the reconstructed image close to the preceding image. This paper adds low-dose CT images obtained from image post-processing based on learning sparse transform to the prior information. Compared with the global constraints constructed only by learning sparse transform, the discriminative sparse transform constraints can effectively introduce a priori image and reconstruct a better image effect. Also, the improved algorithm's prior image avoids the dependence of the classical prior image compression sensing reconstruction and the differential feature representation model on the prior image and avoids the registration and matching problem of the reconstructed image caused by the difference of the prior image source. |
| ArticleNumber | 104204 |
| Author | Xiao, Ye Yin, Lirong Yang, Bo Liu, Mingzhe Liu, Shan Zheng, Wenfeng Lu, Siyu |
| Author_xml | – sequence: 1 givenname: Siyu surname: Lu fullname: Lu, Siyu organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 2 givenname: Bo surname: Yang fullname: Yang, Bo email: boyang@uestc.edu.cn organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 3 givenname: Ye surname: Xiao fullname: Xiao, Ye organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 4 givenname: Shan surname: Liu fullname: Liu, Shan organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 5 givenname: Mingzhe surname: Liu fullname: Liu, Mingzhe organization: School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325000, China – sequence: 6 givenname: Lirong surname: Yin fullname: Yin, Lirong email: lyin5@lsu.edu organization: Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA – sequence: 7 givenname: Wenfeng surname: Zheng fullname: Zheng, Wenfeng email: winfirms@uestc.edu.cn organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU_7B3adZNNkF7xI_SoUvNRzSLITSFk3JYkV_727VC8eeprhhWeY91mQ2RAGJOSWQkWBirt9ZdLBVgwYGwPOgF-QOZVclA2FZva3Q8uvyCKlPQBvJOVz8rjJGHX2Rywi2jCkHD9t9mEogiv68FV2IWGx3hVGJ-yKMe-8cxhxyF73RTromPCaXDrdJ7z5nUvy_vy0W7-W27eXzfphW9oaIJe0rbmUXS2ElbyGlRWyE2J8uRXGGDSsdcDQSckaEC0YaxFrbVZO6IY2HOolYae7NoaUIjp1iP5Dx29FQU0e1F5NHtTkQZ08jFDzD7I-66lijtr359H7E4pjqaPHqJL1OFjs_Cgrqy74c_gPn3t6hQ |
| CitedBy_id | crossref_primary_10_1109_TCE_2025_3535668 crossref_primary_10_1109_TCI_2024_3430469 crossref_primary_10_1371_journal_pone_0295632 crossref_primary_10_1016_j_bspc_2024_106218 crossref_primary_10_1007_s10278_023_00928_4 crossref_primary_10_1016_j_infrared_2022_104542 crossref_primary_10_1016_j_asoc_2024_111520 crossref_primary_10_1016_j_critrevonc_2024_104275 crossref_primary_10_3390_diagnostics13132155 crossref_primary_10_1016_j_heliyon_2024_e26652 crossref_primary_10_1177_08953996251319194 crossref_primary_10_1360_TB_2025_0050 crossref_primary_10_1007_s12033_023_00909_6 crossref_primary_10_2147_JMDH_S405174 crossref_primary_10_3390_diagnostics13142340 crossref_primary_10_1016_j_eswa_2022_119224 crossref_primary_10_1088_1361_6560_ad7b9b crossref_primary_10_3389_fninf_2022_1063048 crossref_primary_10_1007_s10723_024_09742_w crossref_primary_10_3390_app13095322 crossref_primary_10_1007_s40747_023_01095_3 crossref_primary_10_7717_peerj_cs_1663 crossref_primary_10_1016_j_compbiomed_2023_107293 crossref_primary_10_1080_00268976_2023_2259503 crossref_primary_10_3390_mi14122136 crossref_primary_10_3389_fnins_2023_1256351 crossref_primary_10_3390_electronics12071516 crossref_primary_10_1016_j_bspc_2023_104893 crossref_primary_10_1038_s41598_023_41797_9 crossref_primary_10_1016_j_heliyon_2023_e20890 crossref_primary_10_2478_jaiscr_2024_0005 crossref_primary_10_1109_ACCESS_2023_3313174 crossref_primary_10_32604_cmc_2023_038891 crossref_primary_10_1007_s42235_023_00365_7 crossref_primary_10_7717_peerj_cs_1375 crossref_primary_10_1049_cit2_70003 crossref_primary_10_1088_1361_6560_ade847 crossref_primary_10_1016_j_neucom_2024_127473 crossref_primary_10_1080_13682199_2023_2178094 crossref_primary_10_3934_acse_2025018 crossref_primary_10_1093_jcde_qwad093 crossref_primary_10_1002_ima_70067 crossref_primary_10_3390_math11061425 crossref_primary_10_1007_s10278_024_01314_4 crossref_primary_10_1016_j_compbiomed_2023_106949 crossref_primary_10_1007_s10237_023_01710_9 crossref_primary_10_1002_iid3_1090 crossref_primary_10_1007_s10489_025_06703_y crossref_primary_10_1111_exsy_13564 crossref_primary_10_1007_s11036_023_02266_9 crossref_primary_10_1016_j_cpcardiol_2024_102397 crossref_primary_10_3233_THC_231517 crossref_primary_10_1016_j_compbiomed_2023_107197 crossref_primary_10_1038_s41598_023_34383_6 crossref_primary_10_1049_ipr2_12996 crossref_primary_10_1007_s10479_024_05857_1 crossref_primary_10_1515_bmt_2023_0581 crossref_primary_10_1016_j_envres_2023_116894 crossref_primary_10_1109_ACCESS_2023_3326475 crossref_primary_10_1371_journal_pone_0286161 crossref_primary_10_1007_s10723_023_09695_6 crossref_primary_10_1371_journal_pone_0292601 crossref_primary_10_3390_s23249872 crossref_primary_10_1002_mp_17685 crossref_primary_10_1016_j_engappai_2023_107413 crossref_primary_10_3389_fpubh_2023_1273253 crossref_primary_10_1007_s00500_023_09271_w crossref_primary_10_1007_s12553_024_00931_x crossref_primary_10_1016_j_heliyon_2024_e26172 crossref_primary_10_1016_j_envres_2023_116933 crossref_primary_10_1051_radiopro_2024046 crossref_primary_10_1515_biol_2022_0625 crossref_primary_10_3390_bioengineering10091012 crossref_primary_10_1016_j_biopha_2023_115301 crossref_primary_10_1049_ipr2_13074 crossref_primary_10_3390_diagnostics14020185 crossref_primary_10_1007_s10723_023_09706_6 crossref_primary_10_1080_00051144_2024_2353543 crossref_primary_10_1016_j_cpcardiol_2023_102353 crossref_primary_10_3390_s23156664 crossref_primary_10_3390_su15065312 crossref_primary_10_1007_s00521_023_09366_3 crossref_primary_10_3390_bioengineering10080979 crossref_primary_10_1109_TCI_2024_3507645 crossref_primary_10_3390_diagnostics13162687 crossref_primary_10_1016_j_artmed_2023_102572 crossref_primary_10_1371_journal_pone_0296107 crossref_primary_10_3389_fendo_2023_1226547 crossref_primary_10_1016_j_cpcardiol_2024_102748 crossref_primary_10_1109_ACCESS_2023_3323024 crossref_primary_10_1016_j_yexcr_2023_113821 crossref_primary_10_1016_j_bspc_2023_105147 crossref_primary_10_1016_j_artmed_2024_102779 crossref_primary_10_1088_2631_7990_adebbf crossref_primary_10_1007_s40747_023_01287_x crossref_primary_10_1016_j_cpcardiol_2023_102222 crossref_primary_10_1109_ACCESS_2025_3585926 crossref_primary_10_1016_j_envres_2023_117163 crossref_primary_10_3390_diagnostics13111942 crossref_primary_10_1080_01969722_2025_2470786 crossref_primary_10_7717_peerj_cs_1850 crossref_primary_10_1007_s12033_023_01010_8 crossref_primary_10_1016_j_envres_2023_115426 crossref_primary_10_1016_j_artmed_2023_102740 crossref_primary_10_3390_electronics13163184 crossref_primary_10_1038_s41598_023_46211_y crossref_primary_10_1038_s41598_023_49218_7 crossref_primary_10_1016_j_artmed_2023_102744 crossref_primary_10_3390_mi14122204 crossref_primary_10_1109_ACCESS_2023_3346894 crossref_primary_10_1016_j_bspc_2023_105255 crossref_primary_10_1016_j_artmed_2024_102809 crossref_primary_10_1007_s11042_024_18945_y crossref_primary_10_3390_cancers15174412 crossref_primary_10_1007_s11042_024_18808_6 crossref_primary_10_1007_s11042_024_18902_9 crossref_primary_10_1016_j_compbiomed_2023_107551 crossref_primary_10_1186_s12880_025_01808_9 crossref_primary_10_7717_peerj_cs_1681 crossref_primary_10_1109_TIM_2024_3396857 crossref_primary_10_1016_j_inoche_2023_110888 |
| Cites_doi | 10.1088/0031-9155/59/12/2997 10.1002/mp.12097 10.1088/0031-9155/56/18/011 10.1016/j.measurement.2021.110165 10.1109/TMI.2014.2336860 10.1109/TMI.2011.2172951 10.3390/s22082883 10.1109/IVMSPW.2016.7528219 10.1016/j.cmpb.2015.10.004 10.1109/TIP.2016.2528042 10.2214/ajr.179.5.1791107 10.1109/TMI.2014.2365179 10.1148/radiol.2292021261 10.1118/1.4851635 10.1109/78.258101 10.1088/1361-6560/aae511 10.1117/12.2008140 10.1118/1.4830431 10.1016/j.cmpb.2020.105344 10.1088/0031-9155/57/23/7923 10.1109/CVPR.2015.7299067 10.1002/mp.12344 10.1109/23.322963 10.1109/TCSVT.2016.2643009 10.1088/0031-9155/57/9/2667 10.1109/TMI.2015.2508780 10.3390/s21227443 10.1364/OE.404471 10.1118/1.3638125 10.1364/BOE.9.006222 10.1007/s12210-021-01020-1 10.1364/BOE.8.000679 10.1118/1.4773866 10.3390/atmos12111513 10.1109/TMI.2017.2757035 10.1109/TNS.1981.4331812 10.1109/TCI.2016.2582042 10.1051/matecconf/201927702006 10.1088/0031-9155/53/17/021 10.3390/s21227570 10.1117/12.912138 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2022.104204 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2022_104204 S1746809422006589 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-193477d366c74305c67d6602296bbbeb29f02ef77280690bccee3ab5f6a818403 |
| ISICitedReferencesCount | 141 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000883344100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Tue Nov 18 21:20:27 EST 2025 Sat Nov 29 07:03:49 EST 2025 Tue Jul 16 04:31:06 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sparse representation Image processing Sparse transform Iterative reconstruction Low dose CT |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-193477d366c74305c67d6602296bbbeb29f02ef77280690bccee3ab5f6a818403 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2022_104204 crossref_citationtrail_10_1016_j_bspc_2022_104204 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_104204 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lauzier, Chen (b0175) 2013; 40 Xu, Yang, Guo, Zheng, Poignet (b0185) 2020; 28 Zhuang, Gopal, Hebert (b0065) 1994; 41 Frush (b0005) 2002; 179 Kang, Min, Ye (b0080) 2017; 44 Liu (b0085) 2016; 28 Xu, Liu, Yin, Liu, Tian, Gu, Zheng, Yang, Liu (b0105) 2021; 12 Zhang, Rong, Lu, Xing, Meng (b0135) 2017; 36 Cho, Fessler (b0015) 2014; 34 Tang, Liu, Deng, Zhang, Yin, Zheng (b0075) 2020; 190 F. Guo, B. Yang, W. Zheng, S. Liu. Power Frequency Estimation Using Sine Filtering of Optimal Initial Phase. Measurement, 110165.2021. He, Zhang, Ren, Sun (b0155) 2016 Zhang, Ye, Pal, Thibault, Sauer, Bouman (b0045) 2016; 2 Chen (b0170) 2011; 31 P.T. Lauzier, J. Tang, G.-H. Chen, Prior image constrained compressed sensing: a quantitative performance evaluation, in: Medical Imaging 2012: Physics of Medical Imaging, 2012, vol. 8313: International Society for Optics and Photonics, p. 83132F, doi: https://doi.org/10.1117/12.912138. Heneghan, McGuire, Leder, DeLong, Yoshizumi, Nelson (b0010) 2003; 229 Sidky, Pan (b0095) 2008; 53 Chen (b0165) 2017; 8 Al Hussani, Al Hayani (b0210) 2014; 17 Yang, Liu, Zheng, Liu, Huang (b0200) 2018; 9 X. Zheng, Z. Lu, S. Ravishankar, Y. Long, J.A. Fessler, Low dose CT image reconstruction with learned sparsifying transform, in: 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), 2016: IEEE, pp. 1-5, doi: https://doi.org/10.1109/IVMSPW.2016.7528219. Shangguan, Zhang, Liu, Cui, Bai, Gui (b0070) 2016; 123 Tian, Jia, Yuan, Pan, Jiang (b0100) 2011; 56 Ma (b0190) 2011; 38 Wang, Liao, Zhang, He, Li, Bian, Zhang, Gao, Meng, Zuo (b0215) 2018; 63 T. Bai, X. Mou, Q. Xu, Y. Zhang, Low-dose CT reconstruction based on multiscale dictionary, in: Medical Imaging 2013: Physics of Medical Imaging, 2013, vol. 8668: International Society for Optics and Photonics, p. 86683L, doi: https://doi.org/10.1117/12.2008140. Zheng, Yang, Xiao, Tian, Liu, Yin (b0220) 2022; 22 G. Bertasius, J. Shi, L. Torresani, Deepedge: A multi-scale bifurcated deep network for top-down contour detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 4380-4389. X. Ni, L. Yin, X. Chen, S. Liu, B. Yang, W. Zheng. Semantic representation for visual reasoning. In MATEC Web of Conferences (Vol. 277, p. 02006). EDP Sciences.2019. Vinyals, Toshev, Bengio, Erhan (b0160) 2015 Li (b0020) 2014; 41 Yi, Eramian (b0145) 2016; 25 Chen (b0120) 2012; 57 Liu, Ma, Fan, Liang (b0090) 2012; 57 Niu (b0035) 2014; 59 Sahiner, Yagle (b0060) 1993; 41 Zhang, Zeng, Zhang, Wang, Liang, Ma (b0040) 2017; 44 Y. Li, W. Zheng, X. Liu, Y. Mou, L. Yin, B. Yang. Research and improvement of feature detection algorithm based on FAST. Rendiconti Lincei. Scienze Fisiche e Naturali, 1-15.2021. Chen (b0125) 2014; 33 Won Kim, Kim (b0025) 2014; 41 Y. Wang, J. Tian, Y. Liu, B. Yang, S. Liu, L. Yin, W. Zheng. Adaptive Neural Network Control of Time Delay Teleoperation System Based on Model Approximation Sensors 21, 7443.2021. Nien, Fessler (b0205) 2015; 35 Peters (b0055) 1981; 28 Zhang, Liu, Tian, Liu, Yang, Xiang, Yin, Zheng (b0195) 2021; 21 Lauzier (10.1016/j.bspc.2022.104204_b0175) 2013; 40 Tang (10.1016/j.bspc.2022.104204_b0075) 2020; 190 Sahiner (10.1016/j.bspc.2022.104204_b0060) 1993; 41 He (10.1016/j.bspc.2022.104204_b0155) 2016 Chen (10.1016/j.bspc.2022.104204_b0170) 2011; 31 Nien (10.1016/j.bspc.2022.104204_b0205) 2015; 35 Al Hussani (10.1016/j.bspc.2022.104204_b0210) 2014; 17 Vinyals (10.1016/j.bspc.2022.104204_b0160) 2015 Zhang (10.1016/j.bspc.2022.104204_b0040) 2017; 44 Heneghan (10.1016/j.bspc.2022.104204_b0010) 2003; 229 Li (10.1016/j.bspc.2022.104204_b0020) 2014; 41 Won Kim (10.1016/j.bspc.2022.104204_b0025) 2014; 41 Niu (10.1016/j.bspc.2022.104204_b0035) 2014; 59 Chen (10.1016/j.bspc.2022.104204_b0165) 2017; 8 Zhuang (10.1016/j.bspc.2022.104204_b0065) 1994; 41 Chen (10.1016/j.bspc.2022.104204_b0120) 2012; 57 Tian (10.1016/j.bspc.2022.104204_b0100) 2011; 56 10.1016/j.bspc.2022.104204_b0180 Frush (10.1016/j.bspc.2022.104204_b0005) 2002; 179 10.1016/j.bspc.2022.104204_b0140 Cho (10.1016/j.bspc.2022.104204_b0015) 2014; 34 Xu (10.1016/j.bspc.2022.104204_b0105) 2021; 12 Xu (10.1016/j.bspc.2022.104204_b0185) 2020; 28 Wang (10.1016/j.bspc.2022.104204_b0215) 2018; 63 Zhang (10.1016/j.bspc.2022.104204_b0045) 2016; 2 Ma (10.1016/j.bspc.2022.104204_b0190) 2011; 38 Peters (10.1016/j.bspc.2022.104204_b0055) 1981; 28 10.1016/j.bspc.2022.104204_b0110 Yi (10.1016/j.bspc.2022.104204_b0145) 2016; 25 10.1016/j.bspc.2022.104204_b0130 Liu (10.1016/j.bspc.2022.104204_b0085) 2016; 28 10.1016/j.bspc.2022.104204_b0115 Zhang (10.1016/j.bspc.2022.104204_b0195) 2021; 21 Zheng (10.1016/j.bspc.2022.104204_b0220) 2022; 22 Chen (10.1016/j.bspc.2022.104204_b0125) 2014; 33 10.1016/j.bspc.2022.104204_b0150 10.1016/j.bspc.2022.104204_b0030 Kang (10.1016/j.bspc.2022.104204_b0080) 2017; 44 Sidky (10.1016/j.bspc.2022.104204_b0095) 2008; 53 Shangguan (10.1016/j.bspc.2022.104204_b0070) 2016; 123 Zhang (10.1016/j.bspc.2022.104204_b0135) 2017; 36 10.1016/j.bspc.2022.104204_b0050 Liu (10.1016/j.bspc.2022.104204_b0090) 2012; 57 Yang (10.1016/j.bspc.2022.104204_b0200) 2018; 9 |
| References_xml | – volume: 28 start-page: 1232 year: 2016 end-page: 1247 ident: b0085 article-title: 3D feature constrained reconstruction for low-dose CT imaging publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 41 start-page: 3579 year: 1993 end-page: 3584 ident: b0060 article-title: Image reconstruction from projections under wavelet constraints publication-title: IEEE Trans. Signal Process. – volume: 38 start-page: 5713 year: 2011 end-page: 5731 ident: b0190 article-title: Low-dose computed tomography image restoration using previous normal-dose scan publication-title: Med. Phys. – volume: 21 start-page: 7570 year: 2021 ident: b0195 article-title: Study on Reconstruction and Feature Tracking of Silicone Heart 3D Surface publication-title: Sensors – volume: 63 year: 2018 ident: b0215 article-title: Iterative quality enhancement via residual-artifact learning networks for low-dose CT publication-title: Phys. Med. Biol. – volume: 2 start-page: 359 year: 2016 end-page: 374 ident: b0045 article-title: A Gaussian mixture MRF for model-based iterative reconstruction with applications to low-dose X-ray CT publication-title: IEEE Trans. Comput. Imaging – volume: 8 start-page: 679 year: 2017 end-page: 694 ident: b0165 article-title: Low-dose CT via convolutional neural network publication-title: Biomed. Opt. Express – volume: 41 start-page: 1660 year: 1994 end-page: 1665 ident: b0065 article-title: Numerical evaluation of methods for computing tomographic projections publication-title: IEEE Trans. Nucl. Sci. – volume: 56 start-page: 5949 year: 2011 ident: b0100 article-title: Low-dose CT reconstruction via edge-preserving total variation regularization publication-title: Phys. Med. Biol. – reference: T. Bai, X. Mou, Q. Xu, Y. Zhang, Low-dose CT reconstruction based on multiscale dictionary, in: Medical Imaging 2013: Physics of Medical Imaging, 2013, vol. 8668: International Society for Optics and Photonics, p. 86683L, doi: https://doi.org/10.1117/12.2008140. – reference: F. Guo, B. Yang, W. Zheng, S. Liu. Power Frequency Estimation Using Sine Filtering of Optimal Initial Phase. Measurement, 110165.2021. – volume: 17 start-page: 151 year: 2014 end-page: 156 ident: b0210 article-title: The use of filtered back projection algorithm for reconstruction of tomographic image. publication-title: Eng. Sci. – volume: 12 start-page: 1513 year: 2021 ident: b0105 article-title: Grey Correlation Analysis of Haze Impact Factor PM2.5 publication-title: Atmosphere – volume: 57 start-page: 2667 year: 2012 ident: b0120 article-title: Thoracic low-dose CT image processing using an artifact suppressed large-scale non-local means publication-title: Phys. Med. Biol. – volume: 28 start-page: 3641 year: 1981 end-page: 3647 ident: b0055 article-title: Algorithms for fast back-and re-projection in computed tomography publication-title: IEEE Trans. Nucl. Sci. – volume: 40 year: 2013 ident: b0175 article-title: Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction publication-title: Med. Phys. – volume: 35 start-page: 1090 year: 2015 end-page: 1098 ident: b0205 article-title: Relaxed linearized algorithms for faster X-ray CT image reconstruction publication-title: IEEE Trans. Med. Imaging – volume: 123 start-page: 129 year: 2016 end-page: 141 ident: b0070 article-title: Low-dose CT statistical iterative reconstruction via modified MRF regularization publication-title: Comput. Methods Programs Biomed. – volume: 57 start-page: 7923 year: 2012 ident: b0090 article-title: Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction publication-title: Phys. Med. Biol. – volume: 190 year: 2020 ident: b0075 article-title: Construction of force haptic reappearance system based on Geomagic Touch haptic device publication-title: Comput. Methods Programs Biomed. – volume: 25 start-page: 1626 year: 2016 end-page: 1638 ident: b0145 article-title: LBP-based segmentation of defocus blur publication-title: IEEE Trans. Image Process. – start-page: 3156 year: 2015 end-page: 3164 ident: b0160 article-title: Show and tell: A neural image caption generator publication-title: in Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 770 year: 2016 end-page: 778 ident: b0155 article-title: Deep residual learning for image recognition publication-title: in Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 179 start-page: 1107 year: 2002 end-page: 1113 ident: b0005 article-title: Computer-simulated radiation dose reduction for abdominal multidetector CT of pediatric patients publication-title: Am. J. Roentgenol. – volume: 59 start-page: 2997 year: 2014 ident: b0035 article-title: Sparse-view x-ray CT reconstruction via total generalized variation regularization publication-title: Phys. Med. Biol. – volume: 44 start-page: e360 year: 2017 end-page: e375 ident: b0080 article-title: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction publication-title: Med. Phys. – volume: 53 start-page: 4777 year: 2008 ident: b0095 article-title: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization publication-title: Phys. Med. Biol. – volume: 9 start-page: 6222 year: 2018 end-page: 6236 ident: b0200 article-title: Reconstructing a 3D heart surface with stereo-endoscope by learning eigen-shapes publication-title: Biomed. Opt. Express – volume: 41 year: 2014 ident: b0025 article-title: Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images publication-title: Med. Phys. – reference: X. Ni, L. Yin, X. Chen, S. Liu, B. Yang, W. Zheng. Semantic representation for visual reasoning. In MATEC Web of Conferences (Vol. 277, p. 02006). EDP Sciences.2019. – volume: 41 year: 2014 ident: b0020 article-title: Adaptive non-local means filtering based on local noise level for CT denoising publication-title: Med. Phys. – volume: 229 start-page: 575 year: 2003 end-page: 580 ident: b0010 article-title: Helical CT for nephrolithiasis and ureterolithiasis: comparison of conventional and reduced radiation-dose techniques publication-title: Radiology – volume: 36 start-page: 2510 year: 2017 end-page: 2523 ident: b0135 article-title: Low-dose lung CT image restoration using adaptive prior features from full-dose training database publication-title: IEEE Trans. Med. Imaging – reference: Y. Wang, J. Tian, Y. Liu, B. Yang, S. Liu, L. Yin, W. Zheng. Adaptive Neural Network Control of Time Delay Teleoperation System Based on Model Approximation Sensors 21, 7443.2021. – volume: 44 start-page: 1168 year: 2017 end-page: 1185 ident: b0040 article-title: Applications of non-local means algorithm in low-dose X-ray CT image processing and reconstruction: A review publication-title: Med. Phys. – volume: 31 start-page: 907 year: 2011 end-page: 923 ident: b0170 article-title: Time-resolved interventional cardiac C-arm cone-beam CT: An application of the PICCS algorithm publication-title: IEEE Trans. Med. Imaging – volume: 22 start-page: 2883 year: 2022 ident: b0220 article-title: Low-Dose CT Image Post-Processing Based on Learn-Type Sparse Transform publication-title: Sensors – volume: 28 start-page: 35469 year: 2020 end-page: 35482 ident: b0185 article-title: Sparse-view CBCT reconstruction via weighted Schatten p-norm minimization publication-title: Opt. Express – reference: Y. Li, W. Zheng, X. Liu, Y. Mou, L. Yin, B. Yang. Research and improvement of feature detection algorithm based on FAST. Rendiconti Lincei. Scienze Fisiche e Naturali, 1-15.2021. – volume: 33 start-page: 2271 year: 2014 end-page: 2292 ident: b0125 article-title: Artifact suppressed dictionary learning for low-dose CT image processing publication-title: IEEE Trans. Med. Imaging – reference: G. Bertasius, J. Shi, L. Torresani, Deepedge: A multi-scale bifurcated deep network for top-down contour detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 4380-4389. – volume: 34 start-page: 678 year: 2014 end-page: 689 ident: b0015 article-title: Regularization designs for uniform spatial resolution and noise properties in statistical image reconstruction for 3-D X-ray CT publication-title: IEEE Trans. Med. Imaging – reference: P.T. Lauzier, J. Tang, G.-H. Chen, Prior image constrained compressed sensing: a quantitative performance evaluation, in: Medical Imaging 2012: Physics of Medical Imaging, 2012, vol. 8313: International Society for Optics and Photonics, p. 83132F, doi: https://doi.org/10.1117/12.912138. – reference: X. Zheng, Z. Lu, S. Ravishankar, Y. Long, J.A. Fessler, Low dose CT image reconstruction with learned sparsifying transform, in: 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), 2016: IEEE, pp. 1-5, doi: https://doi.org/10.1109/IVMSPW.2016.7528219. – volume: 59 start-page: 2997 issue: 12 year: 2014 ident: 10.1016/j.bspc.2022.104204_b0035 article-title: Sparse-view x-ray CT reconstruction via total generalized variation regularization publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/59/12/2997 – volume: 44 start-page: 1168 issue: 3 year: 2017 ident: 10.1016/j.bspc.2022.104204_b0040 article-title: Applications of non-local means algorithm in low-dose X-ray CT image processing and reconstruction: A review publication-title: Med. Phys. doi: 10.1002/mp.12097 – volume: 56 start-page: 5949 issue: 18 year: 2011 ident: 10.1016/j.bspc.2022.104204_b0100 article-title: Low-dose CT reconstruction via edge-preserving total variation regularization publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/56/18/011 – ident: 10.1016/j.bspc.2022.104204_b0115 doi: 10.1016/j.measurement.2021.110165 – volume: 33 start-page: 2271 issue: 12 year: 2014 ident: 10.1016/j.bspc.2022.104204_b0125 article-title: Artifact suppressed dictionary learning for low-dose CT image processing publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2336860 – volume: 31 start-page: 907 issue: 4 year: 2011 ident: 10.1016/j.bspc.2022.104204_b0170 article-title: Time-resolved interventional cardiac C-arm cone-beam CT: An application of the PICCS algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2172951 – volume: 22 start-page: 2883 issue: 8 year: 2022 ident: 10.1016/j.bspc.2022.104204_b0220 article-title: Low-Dose CT Image Post-Processing Based on Learn-Type Sparse Transform publication-title: Sensors doi: 10.3390/s22082883 – ident: 10.1016/j.bspc.2022.104204_b0050 doi: 10.1109/IVMSPW.2016.7528219 – volume: 123 start-page: 129 year: 2016 ident: 10.1016/j.bspc.2022.104204_b0070 article-title: Low-dose CT statistical iterative reconstruction via modified MRF regularization publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2015.10.004 – volume: 25 start-page: 1626 issue: 4 year: 2016 ident: 10.1016/j.bspc.2022.104204_b0145 article-title: LBP-based segmentation of defocus blur publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2528042 – volume: 179 start-page: 1107 issue: 5 year: 2002 ident: 10.1016/j.bspc.2022.104204_b0005 article-title: Computer-simulated radiation dose reduction for abdominal multidetector CT of pediatric patients publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.179.5.1791107 – volume: 34 start-page: 678 issue: 2 year: 2014 ident: 10.1016/j.bspc.2022.104204_b0015 article-title: Regularization designs for uniform spatial resolution and noise properties in statistical image reconstruction for 3-D X-ray CT publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2365179 – volume: 229 start-page: 575 issue: 2 year: 2003 ident: 10.1016/j.bspc.2022.104204_b0010 article-title: Helical CT for nephrolithiasis and ureterolithiasis: comparison of conventional and reduced radiation-dose techniques publication-title: Radiology doi: 10.1148/radiol.2292021261 – volume: 41 issue: 1 year: 2014 ident: 10.1016/j.bspc.2022.104204_b0020 article-title: Adaptive non-local means filtering based on local noise level for CT denoising publication-title: Med. Phys. doi: 10.1118/1.4851635 – volume: 41 start-page: 3579 issue: 12 year: 1993 ident: 10.1016/j.bspc.2022.104204_b0060 article-title: Image reconstruction from projections under wavelet constraints publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.258101 – volume: 63 issue: 21 year: 2018 ident: 10.1016/j.bspc.2022.104204_b0215 article-title: Iterative quality enhancement via residual-artifact learning networks for low-dose CT publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aae511 – ident: 10.1016/j.bspc.2022.104204_b0030 doi: 10.1117/12.2008140 – volume: 41 issue: 1 year: 2014 ident: 10.1016/j.bspc.2022.104204_b0025 article-title: Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images publication-title: Med. Phys. doi: 10.1118/1.4830431 – volume: 190 year: 2020 ident: 10.1016/j.bspc.2022.104204_b0075 article-title: Construction of force haptic reappearance system based on Geomagic Touch haptic device publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105344 – volume: 57 start-page: 7923 issue: 23 year: 2012 ident: 10.1016/j.bspc.2022.104204_b0090 article-title: Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/23/7923 – ident: 10.1016/j.bspc.2022.104204_b0140 doi: 10.1109/CVPR.2015.7299067 – volume: 44 start-page: e360 issue: 10 year: 2017 ident: 10.1016/j.bspc.2022.104204_b0080 article-title: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction publication-title: Med. Phys. doi: 10.1002/mp.12344 – volume: 41 start-page: 1660 issue: 4 year: 1994 ident: 10.1016/j.bspc.2022.104204_b0065 article-title: Numerical evaluation of methods for computing tomographic projections publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.322963 – volume: 28 start-page: 1232 issue: 5 year: 2016 ident: 10.1016/j.bspc.2022.104204_b0085 article-title: 3D feature constrained reconstruction for low-dose CT imaging publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2016.2643009 – volume: 57 start-page: 2667 issue: 9 year: 2012 ident: 10.1016/j.bspc.2022.104204_b0120 article-title: Thoracic low-dose CT image processing using an artifact suppressed large-scale non-local means publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/9/2667 – volume: 35 start-page: 1090 issue: 4 year: 2015 ident: 10.1016/j.bspc.2022.104204_b0205 article-title: Relaxed linearized algorithms for faster X-ray CT image reconstruction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2508780 – ident: 10.1016/j.bspc.2022.104204_b0130 doi: 10.3390/s21227443 – volume: 28 start-page: 35469 issue: 24 year: 2020 ident: 10.1016/j.bspc.2022.104204_b0185 article-title: Sparse-view CBCT reconstruction via weighted Schatten p-norm minimization publication-title: Opt. Express doi: 10.1364/OE.404471 – volume: 38 start-page: 5713 issue: 10 year: 2011 ident: 10.1016/j.bspc.2022.104204_b0190 article-title: Low-dose computed tomography image restoration using previous normal-dose scan publication-title: Med. Phys. doi: 10.1118/1.3638125 – volume: 9 start-page: 6222 issue: 12 year: 2018 ident: 10.1016/j.bspc.2022.104204_b0200 article-title: Reconstructing a 3D heart surface with stereo-endoscope by learning eigen-shapes publication-title: Biomed. Opt. Express doi: 10.1364/BOE.9.006222 – ident: 10.1016/j.bspc.2022.104204_b0110 doi: 10.1007/s12210-021-01020-1 – volume: 8 start-page: 679 issue: 2 year: 2017 ident: 10.1016/j.bspc.2022.104204_b0165 article-title: Low-dose CT via convolutional neural network publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.000679 – volume: 40 issue: 2 year: 2013 ident: 10.1016/j.bspc.2022.104204_b0175 article-title: Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction publication-title: Med. Phys. doi: 10.1118/1.4773866 – volume: 12 start-page: 1513 year: 2021 ident: 10.1016/j.bspc.2022.104204_b0105 article-title: Grey Correlation Analysis of Haze Impact Factor PM2.5 publication-title: Atmosphere doi: 10.3390/atmos12111513 – volume: 36 start-page: 2510 issue: 12 year: 2017 ident: 10.1016/j.bspc.2022.104204_b0135 article-title: Low-dose lung CT image restoration using adaptive prior features from full-dose training database publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2757035 – start-page: 770 year: 2016 ident: 10.1016/j.bspc.2022.104204_b0155 article-title: Deep residual learning for image recognition – volume: 28 start-page: 3641 issue: 4 year: 1981 ident: 10.1016/j.bspc.2022.104204_b0055 article-title: Algorithms for fast back-and re-projection in computed tomography publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.1981.4331812 – volume: 2 start-page: 359 issue: 3 year: 2016 ident: 10.1016/j.bspc.2022.104204_b0045 article-title: A Gaussian mixture MRF for model-based iterative reconstruction with applications to low-dose X-ray CT publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2016.2582042 – ident: 10.1016/j.bspc.2022.104204_b0150 doi: 10.1051/matecconf/201927702006 – volume: 53 start-page: 4777 issue: 17 year: 2008 ident: 10.1016/j.bspc.2022.104204_b0095 article-title: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/17/021 – volume: 21 start-page: 7570 year: 2021 ident: 10.1016/j.bspc.2022.104204_b0195 article-title: Study on Reconstruction and Feature Tracking of Silicone Heart 3D Surface publication-title: Sensors doi: 10.3390/s21227570 – volume: 17 start-page: 151 issue: 2 year: 2014 ident: 10.1016/j.bspc.2022.104204_b0210 article-title: The use of filtered back projection algorithm for reconstruction of tomographic image. Al-Nahrain Journal for publication-title: Eng. Sci. – start-page: 3156 year: 2015 ident: 10.1016/j.bspc.2022.104204_b0160 article-title: Show and tell: A neural image caption generator – ident: 10.1016/j.bspc.2022.104204_b0180 doi: 10.1117/12.912138 |
| SSID | ssj0048714 |
| Score | 2.614126 |
| Snippet | •Focuses on how to reduce the radiation dose of CT and ensure CT's imaging quality.•Proposes a discriminative sparse transform iterative reconstruction... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104204 |
| SubjectTerms | Image processing Iterative reconstruction Low dose CT Sparse representation Sparse transform |
| Title | Iterative reconstruction of low-dose CT based on differential sparse |
| URI | https://dx.doi.org/10.1016/j.bspc.2022.104204 |
| Volume | 79 |
| WOSCitedRecordID | wos000883344100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZ49ACHitJWQAH50BsKSpysnRxhCwJUoUpdpO0pih2nDULZiF1e_74ztuMNFKG2EnuIVtY6j_lmx58n8yDkc4k1ooAIwD8t0UEiFAtkWehgoLiOqqqMdBWaZhPi_Dwdj7NvLl1xatoJiKZJ7--z9lWhhjEAG1Nn_wFuf1IYgO8AOhwBdjj-FfCnpk4yBgSZza4vEIu08GpyF5QYoT4c7eH6VeK7gq5HyszkjrSw030UHnRoEvRt9mT9E8lra5MLuvRGF-3uQ3tujEe1frjxFsX5pA8n3ci4LoyL9odXq6-1nfbLaatzRLD4iSPCZ8jMw5HQoIoECx7bRsb7ujcWhWnfCtuWMn8YdOtbuNyX0xYLTjKGL6VZmMyXLx9U-B3Pi5dizBCrbJEsMzHIwFwvH5wejc-6FRr2aKbmu783l0xl4_6eXul5wtIjIaM18tbtHuiBRf0dWdDNOlnt1ZR8T754_Olj_Omkoh3-dDiiBn8K4338qcX_A7k4PhoNTwLXKiNQcRjOAqDhiRBlzLkSWMRNcVFyDg-RcSmlliyrQqYrgc3IeBZKBdwoLuSg4kWKe_z4I1lqJo3eIBQ5vGI8VWmm4fmjAjmg0hLss8bPJok6eeTK1ZHHdiZXeRcweJmjDHOUYW5luEn2_JzWVlF58deDTsy544GW3-WgFS_M2_rPeZ_Iylyft8kS4KJ3yBt1O6un17tOeX4DiUmA5Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+reconstruction+of+low-dose+CT+based+on+differential+sparse&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Lu%2C+Siyu&rft.au=Yang%2C+Bo&rft.au=Xiao%2C+Ye&rft.au=Liu%2C+Shan&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=79&rft_id=info:doi/10.1016%2Fj.bspc.2022.104204&rft.externalDocID=S1746809422006589 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |