Boosting-LDA algriothm with multi-domain feature fusion for motor imagery EEG decoding
Stroke results in uncoordinated limb movements of patients, greatly affecting their quality of life. Deep participation of patients with stroke in active rehabilitation training using motor imagery electroencephalogram (EEG) signals can greatly improve the rehabilitation efficiency. At present, the...
Uloženo v:
| Vydáno v: | Biomedical signal processing and control Ročník 70; s. 102983 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.09.2021
|
| Témata: | |
| ISSN: | 1746-8094, 1746-8108 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Stroke results in uncoordinated limb movements of patients, greatly affecting their quality of life. Deep participation of patients with stroke in active rehabilitation training using motor imagery electroencephalogram (EEG) signals can greatly improve the rehabilitation efficiency. At present, the brain–computer interface (BCI) based on motor imagery is mostly in the laboratory research stage, and the participants are mostly healthy people. Understanding EEG differences between healthy people and stroke patients is important. A Novel EEG decoding algorithm is proposed based on this present situation, which adopt the strategy of multi-domain feature complementary fusion in feature extraction, and the ensemble learning to enhance the robustness of the model. Multi-scale features were extracted from time domain, frequency domain, space domain and time–frequency domain for fusion, to effectively utilize them to improve the classification accuracy. The ensemble linear discriminant analysis (LDA) classifier based on Boosting algorithm is proposed to make boosting in the multi-domain feature level, and extract and optimize the most discriminative features from the high-dimensional feature combination space, which maximizes the ratio of the discreteness between inter-class and intra-class. Then, the public dataset and the collected EEG dataset of healthy subjects and stroke patients are used to validated the effective of proposed algorithm, and neural activation characteristics of participants during motor imagery processing are analyzed. Compared with the single feature classification algorithm, the proposed method has better positive effects on classification accuracy, sensitivity, specificity, and Kappa, which opens up new possibilities for the usage of brain-controlled active rehabilitation devices. |
|---|---|
| AbstractList | Stroke results in uncoordinated limb movements of patients, greatly affecting their quality of life. Deep participation of patients with stroke in active rehabilitation training using motor imagery electroencephalogram (EEG) signals can greatly improve the rehabilitation efficiency. At present, the brain–computer interface (BCI) based on motor imagery is mostly in the laboratory research stage, and the participants are mostly healthy people. Understanding EEG differences between healthy people and stroke patients is important. A Novel EEG decoding algorithm is proposed based on this present situation, which adopt the strategy of multi-domain feature complementary fusion in feature extraction, and the ensemble learning to enhance the robustness of the model. Multi-scale features were extracted from time domain, frequency domain, space domain and time–frequency domain for fusion, to effectively utilize them to improve the classification accuracy. The ensemble linear discriminant analysis (LDA) classifier based on Boosting algorithm is proposed to make boosting in the multi-domain feature level, and extract and optimize the most discriminative features from the high-dimensional feature combination space, which maximizes the ratio of the discreteness between inter-class and intra-class. Then, the public dataset and the collected EEG dataset of healthy subjects and stroke patients are used to validated the effective of proposed algorithm, and neural activation characteristics of participants during motor imagery processing are analyzed. Compared with the single feature classification algorithm, the proposed method has better positive effects on classification accuracy, sensitivity, specificity, and Kappa, which opens up new possibilities for the usage of brain-controlled active rehabilitation devices. |
| ArticleNumber | 102983 |
| Author | Chen, Zuobing Zhang, Yue Pei, Zhongcai Chen, Jianer Chen, Weihai Lin, Chun-Liang |
| Author_xml | – sequence: 1 givenname: Yue surname: Zhang fullname: Zhang, Yue organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Weihai orcidid: 0000-0001-7912-4505 surname: Chen fullname: Chen, Weihai email: whchen@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Chun-Liang surname: Lin fullname: Lin, Chun-Liang email: chunlin@dragon.nchu.edu.tw organization: College of Electrical Engineering and Computer Science, National Chung Hsing University, Taiwan – sequence: 4 givenname: Zhongcai surname: Pei fullname: Pei, Zhongcai organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 5 givenname: Jianer surname: Chen fullname: Chen, Jianer organization: Department of Geriatric Rehabilitation, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China – sequence: 6 givenname: Zuobing surname: Chen fullname: Chen, Zuobing organization: Department of Rehabilitation Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China |
| BookMark | eNp9kM1OAjEUhRuDiYC-gKu-wODtzMBMEzeIiCYkbtRtU27vQAkzJW3R8PaWoBsXbu5f8p3ccwas17mOGLsVMBIgJnfb0SrscZRDLtIhl3VxwfqiKidZLaDu_c4gyys2CGELUNaVKPvs48G5EG23zpaPU653a29d3LT8y8YNbw-7aDPjWm073pCOB0-8OQTr0uo8b11M1bZ6Tf7I5_MFN4TOJLVrdtnoXaCbnz5k70_zt9lztnxdvMymywwLgJiJGoSQiLDKpV6JRqJpSpKgKywlSJLYEJVINBlXpoDEoMyFrEylcyzqcTFk-VkXvQvBU6P2Pv3jj0qAOiWjtuqUjDolo87JJKj-A6GNOiZX0Wu7-x-9P6OUTH1a8iqgpQ7JWE8YlXH2P_wbPaqBrQ |
| CitedBy_id | crossref_primary_10_1109_TIM_2024_3480232 crossref_primary_10_1016_j_patrec_2023_08_010 crossref_primary_10_1016_j_eswa_2024_123239 crossref_primary_10_1016_j_bspc_2022_104053 crossref_primary_10_1016_j_jneumeth_2024_110108 crossref_primary_10_1109_TIM_2022_3224991 crossref_primary_10_1007_s10489_022_04077_z crossref_primary_10_1007_s13042_025_02556_6 crossref_primary_10_1016_j_bspc_2022_103634 crossref_primary_10_3390_app12052736 crossref_primary_10_3390_brainsci15080883 crossref_primary_10_1063_5_0232481 crossref_primary_10_1109_TNSRE_2024_3502135 crossref_primary_10_1002_asjc_3089 crossref_primary_10_3390_brainsci15010050 crossref_primary_10_1109_JSEN_2023_3313236 crossref_primary_10_1109_ACCESS_2024_3407690 crossref_primary_10_3390_s25030610 crossref_primary_10_1371_journal_pone_0310348 crossref_primary_10_1016_j_cogr_2025_05_002 crossref_primary_10_3389_fnbot_2022_901765 crossref_primary_10_1109_THMS_2021_3138677 crossref_primary_10_1109_TBME_2023_3274231 crossref_primary_10_1016_j_bspc_2022_104147 crossref_primary_10_3389_fnhum_2022_973959 crossref_primary_10_1109_JSEN_2025_3579632 crossref_primary_10_3390_brainsci15080877 crossref_primary_10_1016_j_bspc_2021_103404 crossref_primary_10_1155_vib_8119232 crossref_primary_10_1016_j_asoc_2022_109685 crossref_primary_10_1177_1088467X251324336 |
| Cites_doi | 10.1016/j.neulet.2018.10.062 10.1088/1741-2552/aaaf82 10.1155/2011/759764 10.1166/jmihi.2018.2233 10.1038/s41598-018-20049-1 10.1111/psyp.13042 10.1023/A:1018054314350 10.1016/j.dsp.2014.12.015 10.1088/1741-2560/13/3/031001 10.1016/j.jneumeth.2020.108927 10.1364/BOE.413666 10.1088/1741-2552/ab260c 10.1016/j.irbm.2017.02.001 10.1093/sleepj/zsx050.115 10.3390/brainsci11010056 10.1109/TCDS.2016.2632130 10.1109/TBCAS.2020.3008766 10.1016/j.yebeh.2015.02.012 10.1088/1741-2560/14/1/016003 10.3390/app10051605 10.1007/s00500-019-04141-w 10.3389/fnins.2018.00217 10.1007/s11760-018-1383-9 10.1109/TNSRE.2016.2552539 10.1016/j.eswa.2020.113907 10.1007/s11063-018-9919-0 10.1080/17461391.2017.1415377 10.3389/fnhum.2017.00560 10.1016/j.compbiomed.2018.06.018 10.1007/978-3-642-21551-3_33 10.1109/TKDE.2004.29 10.1016/j.bspc.2020.102006 10.1109/TNSRE.2017.2757519 10.3389/fneur.2020.00375 10.1177/0049124104268644 10.1186/1743-0003-12-1 10.1093/cercor/bhx350 10.1016/j.bspc.2019.101730 10.1109/TNSRE.2018.2847316 10.1016/j.bspc.2016.09.007 10.1016/j.neucom.2017.02.053 10.1016/j.bspc.2016.06.006 10.3389/fnins.2020.587520 10.1109/TIM.2018.2799059 10.1109/CICC48029.2020.9075952 10.1109/TNSRE.2008.2008280 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2021.102983 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2021_102983 S1746809421005802 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-180119cc0b29ab1f9cdf4e90a7c4909e9cfee4cee657d30300c92197d7a2c3853 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000713289700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Sat Nov 29 06:57:53 EST 2025 Tue Nov 18 22:19:34 EST 2025 Fri Feb 23 02:40:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-domain feature fusion Motor imagery Electroencephalogram Ensemble learning Stroke patients |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-180119cc0b29ab1f9cdf4e90a7c4909e9cfee4cee657d30300c92197d7a2c3853 |
| ORCID | 0000-0001-7912-4505 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2021_102983 crossref_citationtrail_10_1016_j_bspc_2021_102983 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102983 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bühlmann (b0195) 2012 Yuan, Chen, Wang, Chu, Tong (b0010) 2021; 11 Julia, Manfred, Daniela (b0080) 2018; 8 Park, Lee, Lee (b0200) 2018; 26 Gupta, Klerman (b0220) 2017; 40 Galan, Ferrez, Oliva, Guardia, Millan (b0255) 2008 Liu, Shen, Liu, Yang, Xiong, Lin (b0085) 2020; 14 Y. Wang, Classification of epileptic electroencephalograms signals using combining wavelet analysis and support vector machine, J. Med. Imag. Health In 8(1) (2018) 62–65. https://doi. org/10.1166/jmihi.2018.2233. A.R. Aslam, T. Iqbal, M. Aftab, W. Saadeh. A10.13uJ/classification 2-channel Deep Neural Network-based SoC for Emotion Detection of Autistic Children. 2020 CICC, 2020. 10.1109/CICC48029.2020.9075952. Song, Sepulveda (b0035) 2018; 26 Barry, De Blasio (b0095) 2018; 55 J. del R. Millán, The human-computer connection: An overview of brain-computer interfaces. Mètode Sci. Stud. J. 9 (2018) 134–141. 10.7203/me tode.9.12639. Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T.H Falk, J. Faubert, Deep learning-based electroencephalography analysis: a systematic review, J. Neural Eng. 16 (2019) 051001. https://iopscience. iop.org/article/10.1088/1741-2552/ab260c. Chiarelli, Croce, Merla, Zappasodi (b0170) 2018; 15 B, Chinara (b0070) 2021; 347 Alickovic, Subasi (b0125) 2018; 67 H. Zhou, J. Xu, C. Shi, G. Zuo, Research progress about brain-computer interface technology based on cognitive brain areas and its applications in rehabilitation, J. Biomed. Eng. 35(5) (2018) 799–804. https://doi. org/10.7507/1001-5515.201711013. Webb, Zheng (b0205) 2004; 16 Shahid, Sinha, Prasad (b0235) 2010 Li, He, Wang, Zhang, Xia, Li (b0245) 2020; 10 Díaz, Gil, Sánchez (b0265) 2011; 2011 Merlin Praveena, Angelin Sarah, Thomas George (b0165) 2020 KevriC, Subasi (b0045) 2017; 31 Burnham, Anderson (b0225) 2004; 33 Mursalin, Zhang, Chen, Chawla (b0140) 2017; 241 Tabar, Halici (b0250) 2017; 14 Tuncer, Dogan, Ertam, Subasi (b0115) 2020; 61 Contreras-Vidal, A Bhagat, Brantley, Cruz-Garza, He, Manley, Nakagome, Nathan, Tan, Zhu, Pons (b0270) 2016; 13 Han, Zhao, Sun, Chen, Ke, Xu, Zhang, Zhou, Wang (b0155) 2018; 12 Lokman, Nalan (b0160) 2019; 13 Jafari, Bahram, John, Yalda (b0120) 2021; 12 Baysal, Ketenci, Altas, Kayikcioglu (b0105) 2021; 165 Tucker, Olivier, Pagel, Bleuler, Bouri, Lambercy, Millán, Riener, Vallery, Gassert (b0260) 2015; 12 Yan, Zhou, Yuan, Yuan, Wu, Zhao, Wang (b0215) 2015; 45 D. Liu, W. Chen, R. Chavarriaga, Z. Pei, J. del R. Millán, Decoding of self-paced lower-limb movement intention: a case study on the influence factors, Front. Hum. Neurosci. 11 (2017) 560. 10.3389/fnhum.2017.00560. Khan, Ali (b0065) 2018; 100 F. Lebon, C. Ruffino, I. Greenhouse, L. Labruna, R.B. Ivry, C. Papaxanthis, The Neural Specificity of Movement Preparation during Actual and Imagined movements, Cereb. Cortex 29(2) (2018) 689–700. https://doi.org/10.1093/cercor/bhx350. Aslam, Altaf (b0180) 2020; 14 Diykh, Li, Wen (b0050) 2016; 24 Ren, Hen (b0110) 2019; 50 Breiman (b0210) 1996; 24 Zhou, Chan (b0135) 2018; 10 Guo, Wang, Xiao, Xu (b0190) 2020; 24 Keng, Yang, Wang, Guan, Zhang (b0240) 2012; 6 Banala, Kim, Agrawal, Scholz (b0275) 2009; 17 Boualem, Ali, Taoufik (b0075) 2015; 40 Zhang, Wang, Jin, Zhang, Zou, Nakamura (b0040) 2017; 15 Y. Gao, B. Gao, Q. Chen, J. Liu, Y. Zhang, Deep convolutional neural network-based epileptic electroencephalogram (EEG) signal classification, Front. Neurol. 11 (2020) 375. 10.3389/ fneur.2020.00375. Pierre, Jean-Francois, Alexandre (b0100) 2021 Grosprêtre, Jacquet, Lebon, Papaxanthis, Martin (b0005) 2018; 18 Liu, Sun, Zhang, Peter (b0060) 2016; 30 Zheng, Chen, Li, Zhang, You, Jiang (b0145) 2020; 56 Zhang, Chen, Zhang, Wang (b0230) 2017 O.K. Fasil, R. Rajesh, Time-domain exponential energy for epileptic EEG signal classification, Neurosci. Lett. 694 (2019) 1–8. 10.1016/j.neulet.2018.10.062. Liu, Wang, Gao, Gao (b0090) 2017; 38 10.1016/j.bspc.2021.102983_b0025 Diykh (10.1016/j.bspc.2021.102983_b0050) 2016; 24 Banala (10.1016/j.bspc.2021.102983_b0275) 2009; 17 10.1016/j.bspc.2021.102983_b0020 10.1016/j.bspc.2021.102983_b0185 Jafari (10.1016/j.bspc.2021.102983_b0120) 2021; 12 Keng (10.1016/j.bspc.2021.102983_b0240) 2012; 6 Tabar (10.1016/j.bspc.2021.102983_b0250) 2017; 14 Liu (10.1016/j.bspc.2021.102983_b0085) 2020; 14 Ren (10.1016/j.bspc.2021.102983_b0110) 2019; 50 Burnham (10.1016/j.bspc.2021.102983_b0225) 2004; 33 Pierre (10.1016/j.bspc.2021.102983_b0100) 2021 Tucker (10.1016/j.bspc.2021.102983_b0260) 2015; 12 10.1016/j.bspc.2021.102983_b0030 Julia (10.1016/j.bspc.2021.102983_b0080) 2018; 8 Yan (10.1016/j.bspc.2021.102983_b0215) 2015; 45 10.1016/j.bspc.2021.102983_b0150 Alickovic (10.1016/j.bspc.2021.102983_b0125) 2018; 67 Contreras-Vidal (10.1016/j.bspc.2021.102983_b0270) 2016; 13 Yuan (10.1016/j.bspc.2021.102983_b0010) 2021; 11 Zheng (10.1016/j.bspc.2021.102983_b0145) 2020; 56 Grosprêtre (10.1016/j.bspc.2021.102983_b0005) 2018; 18 Merlin Praveena (10.1016/j.bspc.2021.102983_b0165) 2020 Liu (10.1016/j.bspc.2021.102983_b0090) 2017; 38 Khan (10.1016/j.bspc.2021.102983_b0065) 2018; 100 Chiarelli (10.1016/j.bspc.2021.102983_b0170) 2018; 15 Aslam (10.1016/j.bspc.2021.102983_b0180) 2020; 14 Zhang (10.1016/j.bspc.2021.102983_b0040) 2017; 15 Boualem (10.1016/j.bspc.2021.102983_b0075) 2015; 40 Tuncer (10.1016/j.bspc.2021.102983_b0115) 2020; 61 Baysal (10.1016/j.bspc.2021.102983_b0105) 2021; 165 Zhang (10.1016/j.bspc.2021.102983_b0230) 2017 Song (10.1016/j.bspc.2021.102983_b0035) 2018; 26 Mursalin (10.1016/j.bspc.2021.102983_b0140) 2017; 241 Shahid (10.1016/j.bspc.2021.102983_b0235) 2010 Barry (10.1016/j.bspc.2021.102983_b0095) 2018; 55 Li (10.1016/j.bspc.2021.102983_b0245) 2020; 10 Guo (10.1016/j.bspc.2021.102983_b0190) 2020; 24 10.1016/j.bspc.2021.102983_b0015 Han (10.1016/j.bspc.2021.102983_b0155) 2018; 12 10.1016/j.bspc.2021.102983_b0130 10.1016/j.bspc.2021.102983_b0175 10.1016/j.bspc.2021.102983_b0055 Bühlmann (10.1016/j.bspc.2021.102983_b0195) 2012 Liu (10.1016/j.bspc.2021.102983_b0060) 2016; 30 Webb (10.1016/j.bspc.2021.102983_b0205) 2004; 16 KevriC (10.1016/j.bspc.2021.102983_b0045) 2017; 31 Park (10.1016/j.bspc.2021.102983_b0200) 2018; 26 Galan (10.1016/j.bspc.2021.102983_b0255) 2008 Lokman (10.1016/j.bspc.2021.102983_b0160) 2019; 13 Díaz (10.1016/j.bspc.2021.102983_b0265) 2011; 2011 B (10.1016/j.bspc.2021.102983_b0070) 2021; 347 Breiman (10.1016/j.bspc.2021.102983_b0210) 1996; 24 Gupta (10.1016/j.bspc.2021.102983_b0220) 2017; 40 Zhou (10.1016/j.bspc.2021.102983_b0135) 2018; 10 |
| References_xml | – volume: 24 start-page: 3727 year: 2020 end-page: 3735 ident: b0190 article-title: An ensemble learning framework for convolutional neural network based on multiple classifiers publication-title: Soft. Comput. – volume: 45 start-page: 8 year: 2015 end-page: 14 ident: b0215 article-title: Automatic seizure detection using stockwell transform and boosting algorithm for long-term EEG publication-title: Epilepsy Behav. – reference: O.K. Fasil, R. Rajesh, Time-domain exponential energy for epileptic EEG signal classification, Neurosci. Lett. 694 (2019) 1–8. 10.1016/j.neulet.2018.10.062. – volume: 100 start-page: 10 year: 2018 end-page: 16 ident: b0065 article-title: A new feature for the classification of non-stationary signals based on the direction of signal energy in the time-frequency domain publication-title: Comput. Biol. Med. – volume: 16 start-page: 980 year: 2004 end-page: 991 ident: b0205 article-title: Multistrategy ensemble learning: reducing error by combining ensemble learning techniques publication-title: IEEE Trans. Knowl. Data Eng. – volume: 14 start-page: 016003 year: 2017 ident: b0250 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: J. Neural Eng. – volume: 40 start-page: A43 year: 2017 ident: b0220 article-title: Active ensemble learning for EEG epoch classification publication-title: Sleep – volume: 33 start-page: 261 year: 2004 end-page: 304 ident: b0225 article-title: Multimodel inference-understanding AIC and BIC in model selection publication-title: Sociol. Methods Res. – volume: 17 start-page: 2 year: 2009 end-page: 8 ident: b0275 article-title: Robot assisted gait training with active leg exoskeleton (ALEX) publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – reference: Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T.H Falk, J. Faubert, Deep learning-based electroencephalography analysis: a systematic review, J. Neural Eng. 16 (2019) 051001. https://iopscience. iop.org/article/10.1088/1741-2552/ab260c. – year: 2017 ident: b0230 article-title: Extracting error-related potentials from motion imagination EEG in noninvasive brain-computer interface publication-title: 2017 CIS-RAM – volume: 67 start-page: 1258 year: 2018 end-page: 1265 ident: b0125 article-title: Ensemble SVM method for automatic sleep stage classification publication-title: IEEE Trans. Instrum. Meas. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b0210 publication-title: Bagging Predictors Machine Learning – reference: D. Liu, W. Chen, R. Chavarriaga, Z. Pei, J. del R. Millán, Decoding of self-paced lower-limb movement intention: a case study on the influence factors, Front. Hum. Neurosci. 11 (2017) 560. 10.3389/fnhum.2017.00560. – reference: A.R. Aslam, T. Iqbal, M. Aftab, W. Saadeh. A10.13uJ/classification 2-channel Deep Neural Network-based SoC for Emotion Detection of Autistic Children. 2020 CICC, 2020. 10.1109/CICC48029.2020.9075952. – volume: 12 start-page: 1 year: 2015 ident: b0260 article-title: Control strategies for active lower extremity prosthetics and orthotics: a review publication-title: J. NeuroEng. Rehabil. – volume: 31 start-page: 398 year: 2017 end-page: 406 ident: b0045 article-title: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system publication-title: Biomed. Signal Process. Control – volume: 40 start-page: 1 year: 2015 end-page: 30 ident: b0075 article-title: Time-frequency features for pattern recognition using high-resolution TFDs: a tutorial review publication-title: Digit Signal Process – reference: F. Lebon, C. Ruffino, I. Greenhouse, L. Labruna, R.B. Ivry, C. Papaxanthis, The Neural Specificity of Movement Preparation during Actual and Imagined movements, Cereb. Cortex 29(2) (2018) 689–700. https://doi.org/10.1093/cercor/bhx350. – volume: 15 start-page: 036028 year: 2018 ident: b0170 article-title: Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification publication-title: J. Neural Eng. – reference: Y. Wang, Classification of epileptic electroencephalograms signals using combining wavelet analysis and support vector machine, J. Med. Imag. Health In 8(1) (2018) 62–65. https://doi. org/10.1166/jmihi.2018.2233. – volume: 55 start-page: e13042 year: 2018 ident: b0095 article-title: EEG frequency PCA in EEG-ERP dynamics publication-title: Psychophysiology – volume: 14 start-page: 838 year: 2020 end-page: 851 ident: b0180 article-title: An on-chip processor for chronic neurological disorders assistance using negative affectivity classification publication-title: IEEE Trans. Biomed. Circ. Sys. – volume: 12 year: 2018 ident: b0155 article-title: A fast, open EEG classification framework based on feature compression and channel ranking publication-title: Front. Neurosci. – volume: 2011 start-page: 1 year: 2011 end-page: 11 ident: b0265 article-title: Lower-limb robotic rehabilitation: literature review and challenges publication-title: J. Robot. – volume: 13 start-page: 031001 year: 2016 ident: b0270 article-title: Powered exoskeletons for bipedal locomotion after spinal cord injury publication-title: J. Neural Eng. – volume: 26 start-page: 1353 year: 2018 end-page: 1362 ident: b0035 article-title: A novel technique for selecting EMG-contaminated EEG channels in self-paced brain-computer interface task onset publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 6 start-page: 39 year: 2012 ident: b0240 article-title: Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b publication-title: Front. Neurosci. – volume: 241 start-page: 204 year: 2017 end-page: 214 ident: b0140 article-title: Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier publication-title: Neurocomputing – volume: 18 start-page: 209 year: 2018 end-page: 218 ident: b0005 article-title: Neural mechanisms of strength increase after one-week motor imagery training publication-title: Eur. J. Sport Sci. – year: 2021 ident: b0100 article-title: Spectral independent component analysis with noise modeling for M/EEG source separation publication-title: J. Neurosci. Meth. – volume: 12 start-page: 1635 year: 2021 end-page: 1650 ident: b0120 article-title: Multimodal fusion of EEG-fNIRS: a mutual information-based hybrid classification framework publication-title: Biomed. Opt. Express – volume: 15 start-page: 457 year: 2017 end-page: 479 ident: b0040 article-title: A comparison study on multidomain EEG features for sleep stage classification publication-title: Comput. Intell. Neurosci. – volume: 30 start-page: 86 year: 2016 end-page: 97 ident: b0060 article-title: Sleep staging from the EEG signal using multi-domain feature extraction publication-title: Biomed. Signal Process. Control – reference: Y. Gao, B. Gao, Q. Chen, J. Liu, Y. Zhang, Deep convolutional neural network-based epileptic electroencephalogram (EEG) signal classification, Front. Neurol. 11 (2020) 375. 10.3389/ fneur.2020.00375. – year: 2020 ident: b0165 article-title: Deep learning techniques for EEG signal applications – a review publication-title: IETE J. Res. – volume: 26 start-page: 498 year: 2018 end-page: 505 ident: b0200 article-title: Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 24 start-page: 1159 year: 2016 end-page: 1168 ident: b0050 article-title: EEG Sleep stages classification based on time domain features and structural graph similarity publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2008 ident: b0255 article-title: Feature Extraction for Multi-class BCI using Canonical Variates Analysis publication-title: 2007 IEEE International Symposium on Intelligent Signal Processing IEEE – volume: 347 start-page: 108927 year: 2021 ident: b0070 article-title: Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal publication-title: J. Neurosci. Meth. – volume: 165 start-page: 113907 year: 2021 ident: b0105 article-title: Multi-objective symbiotic organism search algorithm for optimal feature selection in brain computer interfaces publication-title: Expert Syst. Appl. – volume: 50 start-page: 1281 year: 2019 end-page: 1301 ident: b0110 article-title: Classification of EEG signals using hybrid feature extraction and ensemble extreme learning machine publication-title: Neural Process. Lett. – volume: 10 start-page: 267 year: 2018 end-page: 279 ident: b0135 article-title: Fuzzy feature extraction for multichannel EEG classification publication-title: IEEE Trans. Cogn. Dev. Syst. – reference: J. del R. Millán, The human-computer connection: An overview of brain-computer interfaces. Mètode Sci. Stud. J. 9 (2018) 134–141. 10.7203/me tode.9.12639. – volume: 38 start-page: 71 year: 2017 end-page: 77 ident: b0090 article-title: A quantitative analysis for EEG signals based on modified permutation-entropy publication-title: IRBM – volume: 14 year: 2020 ident: b0085 article-title: Parallel spatial-temporal self-attention CNN-based motor imagery classification for BCI publication-title: Front. Neurosci. – volume: 61 start-page: 102006 year: 2020 ident: b0115 article-title: A novel ensemble local graph structure based feature extraction network for EEG signal analysis publication-title: Biomed. Signal Process. Control – reference: H. Zhou, J. Xu, C. Shi, G. Zuo, Research progress about brain-computer interface technology based on cognitive brain areas and its applications in rehabilitation, J. Biomed. Eng. 35(5) (2018) 799–804. https://doi. org/10.7507/1001-5515.201711013. – volume: 13 start-page: 567 year: 2019 end-page: 573 ident: b0160 article-title: EEG motor movement classification based on cross-correlation with effective channel publication-title: Signal Image Video Process – volume: 10 start-page: 1605 year: 2020 ident: b0245 article-title: A Novel Simplified Convolutional Neural Network Classification Algorithm of Motor Imagery EEG Signals Based on Deep Learning publication-title: Appl. Sci. – volume: 56 start-page: 101730 year: 2020 ident: b0145 article-title: Decoding Human Brain activity with deep learning publication-title: Biomed. Signal Process. Control – volume: 8 start-page: 1580 year: 2018 ident: b0080 article-title: The effect of feature-based attention on flanker interference processing: an fMRI-constrained source analysis publication-title: Sci. Rep. – start-page: 985 year: 2012 end-page: 1022 ident: b0195 article-title: Bagging, boosting and ensemble methods publication-title: Handbooks of Computational Statistics – year: 2010 ident: b0235 article-title: A Bispectrum approach to feature extraction for a motor imagery based brain-computer interfacing system publication-title: 2010 18th European Signal Processing Conference – volume: 11 start-page: 56 year: 2021 ident: b0010 article-title: BCI training effects on chronic stroke correlate with functional reorganization in motor-related regions: a concurrent EEG and fMRI study publication-title: Brain Sci. – ident: 10.1016/j.bspc.2021.102983_b0055 doi: 10.1016/j.neulet.2018.10.062 – volume: 15 start-page: 036028 issue: 3 year: 2018 ident: 10.1016/j.bspc.2021.102983_b0170 article-title: Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaaf82 – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.bspc.2021.102983_b0265 article-title: Lower-limb robotic rehabilitation: literature review and challenges publication-title: J. Robot. doi: 10.1155/2011/759764 – volume: 15 start-page: 457 issue: 12 year: 2017 ident: 10.1016/j.bspc.2021.102983_b0040 article-title: A comparison study on multidomain EEG features for sleep stage classification publication-title: Comput. Intell. Neurosci. – year: 2008 ident: 10.1016/j.bspc.2021.102983_b0255 article-title: Feature Extraction for Multi-class BCI using Canonical Variates Analysis – ident: 10.1016/j.bspc.2021.102983_b0150 doi: 10.1166/jmihi.2018.2233 – volume: 8 start-page: 1580 year: 2018 ident: 10.1016/j.bspc.2021.102983_b0080 article-title: The effect of feature-based attention on flanker interference processing: an fMRI-constrained source analysis publication-title: Sci. Rep. doi: 10.1038/s41598-018-20049-1 – volume: 55 start-page: e13042 issue: 5 year: 2018 ident: 10.1016/j.bspc.2021.102983_b0095 article-title: EEG frequency PCA in EEG-ERP dynamics publication-title: Psychophysiology doi: 10.1111/psyp.13042 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.bspc.2021.102983_b0210 publication-title: Bagging Predictors Machine Learning doi: 10.1023/A:1018054314350 – volume: 40 start-page: 1 year: 2015 ident: 10.1016/j.bspc.2021.102983_b0075 article-title: Time-frequency features for pattern recognition using high-resolution TFDs: a tutorial review publication-title: Digit Signal Process doi: 10.1016/j.dsp.2014.12.015 – volume: 13 start-page: 031001 issue: 3 year: 2016 ident: 10.1016/j.bspc.2021.102983_b0270 article-title: Powered exoskeletons for bipedal locomotion after spinal cord injury publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/3/031001 – volume: 347 start-page: 108927 year: 2021 ident: 10.1016/j.bspc.2021.102983_b0070 article-title: Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal publication-title: J. Neurosci. Meth. doi: 10.1016/j.jneumeth.2020.108927 – volume: 12 start-page: 1635 issue: 3 year: 2021 ident: 10.1016/j.bspc.2021.102983_b0120 article-title: Multimodal fusion of EEG-fNIRS: a mutual information-based hybrid classification framework publication-title: Biomed. Opt. Express doi: 10.1364/BOE.413666 – ident: 10.1016/j.bspc.2021.102983_b0175 doi: 10.1088/1741-2552/ab260c – volume: 6 start-page: 39 year: 2012 ident: 10.1016/j.bspc.2021.102983_b0240 article-title: Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b publication-title: Front. Neurosci. – volume: 38 start-page: 71 issue: 2 year: 2017 ident: 10.1016/j.bspc.2021.102983_b0090 article-title: A quantitative analysis for EEG signals based on modified permutation-entropy publication-title: IRBM doi: 10.1016/j.irbm.2017.02.001 – volume: 40 start-page: A43 year: 2017 ident: 10.1016/j.bspc.2021.102983_b0220 article-title: Active ensemble learning for EEG epoch classification publication-title: Sleep doi: 10.1093/sleepj/zsx050.115 – volume: 11 start-page: 56 issue: 1 year: 2021 ident: 10.1016/j.bspc.2021.102983_b0010 article-title: BCI training effects on chronic stroke correlate with functional reorganization in motor-related regions: a concurrent EEG and fMRI study publication-title: Brain Sci. doi: 10.3390/brainsci11010056 – volume: 10 start-page: 267 issue: 2 year: 2018 ident: 10.1016/j.bspc.2021.102983_b0135 article-title: Fuzzy feature extraction for multichannel EEG classification publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2016.2632130 – volume: 14 start-page: 838 issue: 4 year: 2020 ident: 10.1016/j.bspc.2021.102983_b0180 article-title: An on-chip processor for chronic neurological disorders assistance using negative affectivity classification publication-title: IEEE Trans. Biomed. Circ. Sys. doi: 10.1109/TBCAS.2020.3008766 – volume: 45 start-page: 8 year: 2015 ident: 10.1016/j.bspc.2021.102983_b0215 article-title: Automatic seizure detection using stockwell transform and boosting algorithm for long-term EEG publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2015.02.012 – year: 2020 ident: 10.1016/j.bspc.2021.102983_b0165 article-title: Deep learning techniques for EEG signal applications – a review publication-title: IETE J. Res. – volume: 14 start-page: 016003 issue: 1 year: 2017 ident: 10.1016/j.bspc.2021.102983_b0250 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: J. Neural Eng. doi: 10.1088/1741-2560/14/1/016003 – volume: 10 start-page: 1605 issue: 5 year: 2020 ident: 10.1016/j.bspc.2021.102983_b0245 article-title: A Novel Simplified Convolutional Neural Network Classification Algorithm of Motor Imagery EEG Signals Based on Deep Learning publication-title: Appl. Sci. doi: 10.3390/app10051605 – volume: 24 start-page: 3727 issue: 21 year: 2020 ident: 10.1016/j.bspc.2021.102983_b0190 article-title: An ensemble learning framework for convolutional neural network based on multiple classifiers publication-title: Soft. Comput. doi: 10.1007/s00500-019-04141-w – volume: 12 year: 2018 ident: 10.1016/j.bspc.2021.102983_b0155 article-title: A fast, open EEG classification framework based on feature compression and channel ranking publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00217 – volume: 13 start-page: 567 issue: 3 year: 2019 ident: 10.1016/j.bspc.2021.102983_b0160 article-title: EEG motor movement classification based on cross-correlation with effective channel publication-title: Signal Image Video Process doi: 10.1007/s11760-018-1383-9 – volume: 24 start-page: 1159 issue: 11 year: 2016 ident: 10.1016/j.bspc.2021.102983_b0050 article-title: EEG Sleep stages classification based on time domain features and structural graph similarity publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2552539 – volume: 165 start-page: 113907 year: 2021 ident: 10.1016/j.bspc.2021.102983_b0105 article-title: Multi-objective symbiotic organism search algorithm for optimal feature selection in brain computer interfaces publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113907 – volume: 50 start-page: 1281 issue: 2 year: 2019 ident: 10.1016/j.bspc.2021.102983_b0110 article-title: Classification of EEG signals using hybrid feature extraction and ensemble extreme learning machine publication-title: Neural Process. Lett. doi: 10.1007/s11063-018-9919-0 – volume: 18 start-page: 209 issue: 2 year: 2018 ident: 10.1016/j.bspc.2021.102983_b0005 article-title: Neural mechanisms of strength increase after one-week motor imagery training publication-title: Eur. J. Sport Sci. doi: 10.1080/17461391.2017.1415377 – ident: 10.1016/j.bspc.2021.102983_b0020 doi: 10.3389/fnhum.2017.00560 – volume: 100 start-page: 10 year: 2018 ident: 10.1016/j.bspc.2021.102983_b0065 article-title: A new feature for the classification of non-stationary signals based on the direction of signal energy in the time-frequency domain publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.06.018 – start-page: 985 year: 2012 ident: 10.1016/j.bspc.2021.102983_b0195 article-title: Bagging, boosting and ensemble methods publication-title: Handbooks of Computational Statistics doi: 10.1007/978-3-642-21551-3_33 – volume: 16 start-page: 980 issue: 8 year: 2004 ident: 10.1016/j.bspc.2021.102983_b0205 article-title: Multistrategy ensemble learning: reducing error by combining ensemble learning techniques publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2004.29 – volume: 61 start-page: 102006 year: 2020 ident: 10.1016/j.bspc.2021.102983_b0115 article-title: A novel ensemble local graph structure based feature extraction network for EEG signal analysis publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102006 – volume: 26 start-page: 498 issue: 2 year: 2018 ident: 10.1016/j.bspc.2021.102983_b0200 article-title: Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2757519 – ident: 10.1016/j.bspc.2021.102983_b0130 doi: 10.3389/fneur.2020.00375 – ident: 10.1016/j.bspc.2021.102983_b0030 – volume: 33 start-page: 261 issue: 2 year: 2004 ident: 10.1016/j.bspc.2021.102983_b0225 article-title: Multimodel inference-understanding AIC and BIC in model selection publication-title: Sociol. Methods Res. doi: 10.1177/0049124104268644 – year: 2017 ident: 10.1016/j.bspc.2021.102983_b0230 article-title: Extracting error-related potentials from motion imagination EEG in noninvasive brain-computer interface publication-title: 2017 CIS-RAM – volume: 12 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.bspc.2021.102983_b0260 article-title: Control strategies for active lower extremity prosthetics and orthotics: a review publication-title: J. NeuroEng. Rehabil. doi: 10.1186/1743-0003-12-1 – ident: 10.1016/j.bspc.2021.102983_b0025 doi: 10.1093/cercor/bhx350 – ident: 10.1016/j.bspc.2021.102983_b0015 – volume: 56 start-page: 101730 year: 2020 ident: 10.1016/j.bspc.2021.102983_b0145 article-title: Decoding Human Brain activity with deep learning publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101730 – volume: 26 start-page: 1353 issue: 7 year: 2018 ident: 10.1016/j.bspc.2021.102983_b0035 article-title: A novel technique for selecting EMG-contaminated EEG channels in self-paced brain-computer interface task onset publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2847316 – volume: 31 start-page: 398 year: 2017 ident: 10.1016/j.bspc.2021.102983_b0045 article-title: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.09.007 – volume: 241 start-page: 204 year: 2017 ident: 10.1016/j.bspc.2021.102983_b0140 article-title: Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.053 – volume: 30 start-page: 86 year: 2016 ident: 10.1016/j.bspc.2021.102983_b0060 article-title: Sleep staging from the EEG signal using multi-domain feature extraction publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.06.006 – volume: 14 year: 2020 ident: 10.1016/j.bspc.2021.102983_b0085 article-title: Parallel spatial-temporal self-attention CNN-based motor imagery classification for BCI publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.587520 – year: 2021 ident: 10.1016/j.bspc.2021.102983_b0100 article-title: Spectral independent component analysis with noise modeling for M/EEG source separation publication-title: J. Neurosci. Meth. – volume: 67 start-page: 1258 issue: 6 year: 2018 ident: 10.1016/j.bspc.2021.102983_b0125 article-title: Ensemble SVM method for automatic sleep stage classification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2799059 – ident: 10.1016/j.bspc.2021.102983_b0185 doi: 10.1109/CICC48029.2020.9075952 – volume: 17 start-page: 2 issue: 1 year: 2009 ident: 10.1016/j.bspc.2021.102983_b0275 article-title: Robot assisted gait training with active leg exoskeleton (ALEX) publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2008.2008280 – year: 2010 ident: 10.1016/j.bspc.2021.102983_b0235 article-title: A Bispectrum approach to feature extraction for a motor imagery based brain-computer interfacing system |
| SSID | ssj0048714 |
| Score | 2.40465 |
| Snippet | Stroke results in uncoordinated limb movements of patients, greatly affecting their quality of life. Deep participation of patients with stroke in active... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 102983 |
| SubjectTerms | Electroencephalogram Ensemble learning Motor imagery Multi-domain feature fusion Stroke patients |
| Title | Boosting-LDA algriothm with multi-domain feature fusion for motor imagery EEG decoding |
| URI | https://dx.doi.org/10.1016/j.bspc.2021.102983 |
| Volume | 70 |
| WOSCitedRecordID | wos000713289700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcUHmpBYr2wM1ytXa8We8xlLSAqopDgcDFsveRumrsqEmqcuKvM-t9JJRS0QMXy7LWa8vzaXZm_c03CL2RuqSVIDzWqWlhxiBBqaiU8UAQzTOmKM9E12yCHR_n4zH_1Ov99LUwl-esafKrKz77r6aGa2BsUzp7B3OHSeECnIPR4Qhmh-M_Gf5t284Nlzk-ejeMTH-hGowxtRuuHX0wlu20rJtIq07UM9LLuecbgt0MP31qhC1-RKPRYSQhPQ3Lm__525Xs23rKemLC2ZktN_AFj47__sem9LdlgNG-qwr5qurTsg60oNpxAJZNfATAnaw8d8c6-H7aNhPhxru9ijQJZCzvXllm5I9tW2Pvf23jEOdAEyMJ37_Rt9tthrO9aj4z2pNpsrca_LuQ9rUFLtAOPaPtrDBzFGaOws5xD22mjHLw7JvDD6PxR7-YQzrXycOHF3d1V5YieP1Nbo5t1uKVky30yCUaeGgB8hj1VPMEPVyTn3yKvqxDBQeoYAMVvA4V7KCCLVQwQAV3UMEOKhiggj1UnqHPB6OT_fex67MRiz4hizjJjfCfEKRKeVklmgupM8VJyUTGCVdcaKUyiKYGlEkIeQgRHBY6JlmZij7Ee8_RRtM2ahthmlSDiudCMGKEBBmE36RPteSQHVGdVzso8V-oEE6E3vRCOS_-bpsdFIV7ZlaC5dbR1H_4wgWRNjgsAEe33PfiTk95iR6s8P0KbSwulmoX3ReXi3p-8dqB6Bc2K5Mj |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting-LDA+algriothm+with+multi-domain+feature+fusion+for+motor+imagery+EEG+decoding&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Yue&rft.au=Chen%2C+Weihai&rft.au=Lin%2C+Chun-Liang&rft.au=Pei%2C+Zhongcai&rft.date=2021-09-01&rft.issn=1746-8094&rft.volume=70&rft.spage=102983&rft_id=info:doi/10.1016%2Fj.bspc.2021.102983&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102983 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |