Boosting-LDA algriothm with multi-domain feature fusion for motor imagery EEG decoding

Stroke results in uncoordinated limb movements of patients, greatly affecting their quality of life. Deep participation of patients with stroke in active rehabilitation training using motor imagery electroencephalogram (EEG) signals can greatly improve the rehabilitation efficiency. At present, the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomedical signal processing and control Ročník 70; s. 102983
Hlavní autoři: Zhang, Yue, Chen, Weihai, Lin, Chun-Liang, Pei, Zhongcai, Chen, Jianer, Chen, Zuobing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2021
Témata:
ISSN:1746-8094, 1746-8108
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Stroke results in uncoordinated limb movements of patients, greatly affecting their quality of life. Deep participation of patients with stroke in active rehabilitation training using motor imagery electroencephalogram (EEG) signals can greatly improve the rehabilitation efficiency. At present, the brain–computer interface (BCI) based on motor imagery is mostly in the laboratory research stage, and the participants are mostly healthy people. Understanding EEG differences between healthy people and stroke patients is important. A Novel EEG decoding algorithm is proposed based on this present situation, which adopt the strategy of multi-domain feature complementary fusion in feature extraction, and the ensemble learning to enhance the robustness of the model. Multi-scale features were extracted from time domain, frequency domain, space domain and time–frequency domain for fusion, to effectively utilize them to improve the classification accuracy. The ensemble linear discriminant analysis (LDA) classifier based on Boosting algorithm is proposed to make boosting in the multi-domain feature level, and extract and optimize the most discriminative features from the high-dimensional feature combination space, which maximizes the ratio of the discreteness between inter-class and intra-class. Then, the public dataset and the collected EEG dataset of healthy subjects and stroke patients are used to validated the effective of proposed algorithm, and neural activation characteristics of participants during motor imagery processing are analyzed. Compared with the single feature classification algorithm, the proposed method has better positive effects on classification accuracy, sensitivity, specificity, and Kappa, which opens up new possibilities for the usage of brain-controlled active rehabilitation devices.
AbstractList Stroke results in uncoordinated limb movements of patients, greatly affecting their quality of life. Deep participation of patients with stroke in active rehabilitation training using motor imagery electroencephalogram (EEG) signals can greatly improve the rehabilitation efficiency. At present, the brain–computer interface (BCI) based on motor imagery is mostly in the laboratory research stage, and the participants are mostly healthy people. Understanding EEG differences between healthy people and stroke patients is important. A Novel EEG decoding algorithm is proposed based on this present situation, which adopt the strategy of multi-domain feature complementary fusion in feature extraction, and the ensemble learning to enhance the robustness of the model. Multi-scale features were extracted from time domain, frequency domain, space domain and time–frequency domain for fusion, to effectively utilize them to improve the classification accuracy. The ensemble linear discriminant analysis (LDA) classifier based on Boosting algorithm is proposed to make boosting in the multi-domain feature level, and extract and optimize the most discriminative features from the high-dimensional feature combination space, which maximizes the ratio of the discreteness between inter-class and intra-class. Then, the public dataset and the collected EEG dataset of healthy subjects and stroke patients are used to validated the effective of proposed algorithm, and neural activation characteristics of participants during motor imagery processing are analyzed. Compared with the single feature classification algorithm, the proposed method has better positive effects on classification accuracy, sensitivity, specificity, and Kappa, which opens up new possibilities for the usage of brain-controlled active rehabilitation devices.
ArticleNumber 102983
Author Chen, Zuobing
Zhang, Yue
Pei, Zhongcai
Chen, Jianer
Chen, Weihai
Lin, Chun-Liang
Author_xml – sequence: 1
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Weihai
  orcidid: 0000-0001-7912-4505
  surname: Chen
  fullname: Chen, Weihai
  email: whchen@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Chun-Liang
  surname: Lin
  fullname: Lin, Chun-Liang
  email: chunlin@dragon.nchu.edu.tw
  organization: College of Electrical Engineering and Computer Science, National Chung Hsing University, Taiwan
– sequence: 4
  givenname: Zhongcai
  surname: Pei
  fullname: Pei, Zhongcai
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: Jianer
  surname: Chen
  fullname: Chen, Jianer
  organization: Department of Geriatric Rehabilitation, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
– sequence: 6
  givenname: Zuobing
  surname: Chen
  fullname: Chen, Zuobing
  organization: Department of Rehabilitation Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
BookMark eNp9kM1OAjEUhRuDiYC-gKu-wODtzMBMEzeIiCYkbtRtU27vQAkzJW3R8PaWoBsXbu5f8p3ccwas17mOGLsVMBIgJnfb0SrscZRDLtIhl3VxwfqiKidZLaDu_c4gyys2CGELUNaVKPvs48G5EG23zpaPU653a29d3LT8y8YNbw-7aDPjWm073pCOB0-8OQTr0uo8b11M1bZ6Tf7I5_MFN4TOJLVrdtnoXaCbnz5k70_zt9lztnxdvMymywwLgJiJGoSQiLDKpV6JRqJpSpKgKywlSJLYEJVINBlXpoDEoMyFrEylcyzqcTFk-VkXvQvBU6P2Pv3jj0qAOiWjtuqUjDolo87JJKj-A6GNOiZX0Wu7-x-9P6OUTH1a8iqgpQ7JWE8YlXH2P_wbPaqBrQ
CitedBy_id crossref_primary_10_1109_TIM_2024_3480232
crossref_primary_10_1016_j_patrec_2023_08_010
crossref_primary_10_1016_j_eswa_2024_123239
crossref_primary_10_1016_j_bspc_2022_104053
crossref_primary_10_1016_j_jneumeth_2024_110108
crossref_primary_10_1109_TIM_2022_3224991
crossref_primary_10_1007_s10489_022_04077_z
crossref_primary_10_1007_s13042_025_02556_6
crossref_primary_10_1016_j_bspc_2022_103634
crossref_primary_10_3390_app12052736
crossref_primary_10_3390_brainsci15080883
crossref_primary_10_1063_5_0232481
crossref_primary_10_1109_TNSRE_2024_3502135
crossref_primary_10_1002_asjc_3089
crossref_primary_10_3390_brainsci15010050
crossref_primary_10_1109_JSEN_2023_3313236
crossref_primary_10_1109_ACCESS_2024_3407690
crossref_primary_10_3390_s25030610
crossref_primary_10_1371_journal_pone_0310348
crossref_primary_10_1016_j_cogr_2025_05_002
crossref_primary_10_3389_fnbot_2022_901765
crossref_primary_10_1109_THMS_2021_3138677
crossref_primary_10_1109_TBME_2023_3274231
crossref_primary_10_1016_j_bspc_2022_104147
crossref_primary_10_3389_fnhum_2022_973959
crossref_primary_10_1109_JSEN_2025_3579632
crossref_primary_10_3390_brainsci15080877
crossref_primary_10_1016_j_bspc_2021_103404
crossref_primary_10_1155_vib_8119232
crossref_primary_10_1016_j_asoc_2022_109685
crossref_primary_10_1177_1088467X251324336
Cites_doi 10.1016/j.neulet.2018.10.062
10.1088/1741-2552/aaaf82
10.1155/2011/759764
10.1166/jmihi.2018.2233
10.1038/s41598-018-20049-1
10.1111/psyp.13042
10.1023/A:1018054314350
10.1016/j.dsp.2014.12.015
10.1088/1741-2560/13/3/031001
10.1016/j.jneumeth.2020.108927
10.1364/BOE.413666
10.1088/1741-2552/ab260c
10.1016/j.irbm.2017.02.001
10.1093/sleepj/zsx050.115
10.3390/brainsci11010056
10.1109/TCDS.2016.2632130
10.1109/TBCAS.2020.3008766
10.1016/j.yebeh.2015.02.012
10.1088/1741-2560/14/1/016003
10.3390/app10051605
10.1007/s00500-019-04141-w
10.3389/fnins.2018.00217
10.1007/s11760-018-1383-9
10.1109/TNSRE.2016.2552539
10.1016/j.eswa.2020.113907
10.1007/s11063-018-9919-0
10.1080/17461391.2017.1415377
10.3389/fnhum.2017.00560
10.1016/j.compbiomed.2018.06.018
10.1007/978-3-642-21551-3_33
10.1109/TKDE.2004.29
10.1016/j.bspc.2020.102006
10.1109/TNSRE.2017.2757519
10.3389/fneur.2020.00375
10.1177/0049124104268644
10.1186/1743-0003-12-1
10.1093/cercor/bhx350
10.1016/j.bspc.2019.101730
10.1109/TNSRE.2018.2847316
10.1016/j.bspc.2016.09.007
10.1016/j.neucom.2017.02.053
10.1016/j.bspc.2016.06.006
10.3389/fnins.2020.587520
10.1109/TIM.2018.2799059
10.1109/CICC48029.2020.9075952
10.1109/TNSRE.2008.2008280
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.102983
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_102983
S1746809421005802
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-180119cc0b29ab1f9cdf4e90a7c4909e9cfee4cee657d30300c92197d7a2c3853
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000713289700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Sat Nov 29 06:57:53 EST 2025
Tue Nov 18 22:19:34 EST 2025
Fri Feb 23 02:40:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-domain feature fusion
Motor imagery
Electroencephalogram
Ensemble learning
Stroke patients
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-180119cc0b29ab1f9cdf4e90a7c4909e9cfee4cee657d30300c92197d7a2c3853
ORCID 0000-0001-7912-4505
ParticipantIDs crossref_primary_10_1016_j_bspc_2021_102983
crossref_citationtrail_10_1016_j_bspc_2021_102983
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102983
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bühlmann (b0195) 2012
Yuan, Chen, Wang, Chu, Tong (b0010) 2021; 11
Julia, Manfred, Daniela (b0080) 2018; 8
Park, Lee, Lee (b0200) 2018; 26
Gupta, Klerman (b0220) 2017; 40
Galan, Ferrez, Oliva, Guardia, Millan (b0255) 2008
Liu, Shen, Liu, Yang, Xiong, Lin (b0085) 2020; 14
Y. Wang, Classification of epileptic electroencephalograms signals using combining wavelet analysis and support vector machine, J. Med. Imag. Health In 8(1) (2018) 62–65. https://doi. org/10.1166/jmihi.2018.2233.
A.R. Aslam, T. Iqbal, M. Aftab, W. Saadeh. A10.13uJ/classification 2-channel Deep Neural Network-based SoC for Emotion Detection of Autistic Children. 2020 CICC, 2020. 10.1109/CICC48029.2020.9075952.
Song, Sepulveda (b0035) 2018; 26
Barry, De Blasio (b0095) 2018; 55
J. del R. Millán, The human-computer connection: An overview of brain-computer interfaces. Mètode Sci. Stud. J. 9 (2018) 134–141. 10.7203/me tode.9.12639.
Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T.H Falk, J. Faubert, Deep learning-based electroencephalography analysis: a systematic review, J. Neural Eng. 16 (2019) 051001. https://iopscience. iop.org/article/10.1088/1741-2552/ab260c.
Chiarelli, Croce, Merla, Zappasodi (b0170) 2018; 15
B, Chinara (b0070) 2021; 347
Alickovic, Subasi (b0125) 2018; 67
H. Zhou, J. Xu, C. Shi, G. Zuo, Research progress about brain-computer interface technology based on cognitive brain areas and its applications in rehabilitation, J. Biomed. Eng. 35(5) (2018) 799–804. https://doi. org/10.7507/1001-5515.201711013.
Webb, Zheng (b0205) 2004; 16
Shahid, Sinha, Prasad (b0235) 2010
Li, He, Wang, Zhang, Xia, Li (b0245) 2020; 10
Díaz, Gil, Sánchez (b0265) 2011; 2011
Merlin Praveena, Angelin Sarah, Thomas George (b0165) 2020
KevriC, Subasi (b0045) 2017; 31
Burnham, Anderson (b0225) 2004; 33
Mursalin, Zhang, Chen, Chawla (b0140) 2017; 241
Tabar, Halici (b0250) 2017; 14
Tuncer, Dogan, Ertam, Subasi (b0115) 2020; 61
Contreras-Vidal, A Bhagat, Brantley, Cruz-Garza, He, Manley, Nakagome, Nathan, Tan, Zhu, Pons (b0270) 2016; 13
Han, Zhao, Sun, Chen, Ke, Xu, Zhang, Zhou, Wang (b0155) 2018; 12
Lokman, Nalan (b0160) 2019; 13
Jafari, Bahram, John, Yalda (b0120) 2021; 12
Baysal, Ketenci, Altas, Kayikcioglu (b0105) 2021; 165
Tucker, Olivier, Pagel, Bleuler, Bouri, Lambercy, Millán, Riener, Vallery, Gassert (b0260) 2015; 12
Yan, Zhou, Yuan, Yuan, Wu, Zhao, Wang (b0215) 2015; 45
D. Liu, W. Chen, R. Chavarriaga, Z. Pei, J. del R. Millán, Decoding of self-paced lower-limb movement intention: a case study on the influence factors, Front. Hum. Neurosci. 11 (2017) 560. 10.3389/fnhum.2017.00560.
Khan, Ali (b0065) 2018; 100
F. Lebon, C. Ruffino, I. Greenhouse, L. Labruna, R.B. Ivry, C. Papaxanthis, The Neural Specificity of Movement Preparation during Actual and Imagined movements, Cereb. Cortex 29(2) (2018) 689–700. https://doi.org/10.1093/cercor/bhx350.
Aslam, Altaf (b0180) 2020; 14
Diykh, Li, Wen (b0050) 2016; 24
Ren, Hen (b0110) 2019; 50
Breiman (b0210) 1996; 24
Zhou, Chan (b0135) 2018; 10
Guo, Wang, Xiao, Xu (b0190) 2020; 24
Keng, Yang, Wang, Guan, Zhang (b0240) 2012; 6
Banala, Kim, Agrawal, Scholz (b0275) 2009; 17
Boualem, Ali, Taoufik (b0075) 2015; 40
Zhang, Wang, Jin, Zhang, Zou, Nakamura (b0040) 2017; 15
Y. Gao, B. Gao, Q. Chen, J. Liu, Y. Zhang, Deep convolutional neural network-based epileptic electroencephalogram (EEG) signal classification, Front. Neurol. 11 (2020) 375. 10.3389/ fneur.2020.00375.
Pierre, Jean-Francois, Alexandre (b0100) 2021
Grosprêtre, Jacquet, Lebon, Papaxanthis, Martin (b0005) 2018; 18
Liu, Sun, Zhang, Peter (b0060) 2016; 30
Zheng, Chen, Li, Zhang, You, Jiang (b0145) 2020; 56
Zhang, Chen, Zhang, Wang (b0230) 2017
O.K. Fasil, R. Rajesh, Time-domain exponential energy for epileptic EEG signal classification, Neurosci. Lett. 694 (2019) 1–8. 10.1016/j.neulet.2018.10.062.
Liu, Wang, Gao, Gao (b0090) 2017; 38
10.1016/j.bspc.2021.102983_b0025
Diykh (10.1016/j.bspc.2021.102983_b0050) 2016; 24
Banala (10.1016/j.bspc.2021.102983_b0275) 2009; 17
10.1016/j.bspc.2021.102983_b0020
10.1016/j.bspc.2021.102983_b0185
Jafari (10.1016/j.bspc.2021.102983_b0120) 2021; 12
Keng (10.1016/j.bspc.2021.102983_b0240) 2012; 6
Tabar (10.1016/j.bspc.2021.102983_b0250) 2017; 14
Liu (10.1016/j.bspc.2021.102983_b0085) 2020; 14
Ren (10.1016/j.bspc.2021.102983_b0110) 2019; 50
Burnham (10.1016/j.bspc.2021.102983_b0225) 2004; 33
Pierre (10.1016/j.bspc.2021.102983_b0100) 2021
Tucker (10.1016/j.bspc.2021.102983_b0260) 2015; 12
10.1016/j.bspc.2021.102983_b0030
Julia (10.1016/j.bspc.2021.102983_b0080) 2018; 8
Yan (10.1016/j.bspc.2021.102983_b0215) 2015; 45
10.1016/j.bspc.2021.102983_b0150
Alickovic (10.1016/j.bspc.2021.102983_b0125) 2018; 67
Contreras-Vidal (10.1016/j.bspc.2021.102983_b0270) 2016; 13
Yuan (10.1016/j.bspc.2021.102983_b0010) 2021; 11
Zheng (10.1016/j.bspc.2021.102983_b0145) 2020; 56
Grosprêtre (10.1016/j.bspc.2021.102983_b0005) 2018; 18
Merlin Praveena (10.1016/j.bspc.2021.102983_b0165) 2020
Liu (10.1016/j.bspc.2021.102983_b0090) 2017; 38
Khan (10.1016/j.bspc.2021.102983_b0065) 2018; 100
Chiarelli (10.1016/j.bspc.2021.102983_b0170) 2018; 15
Aslam (10.1016/j.bspc.2021.102983_b0180) 2020; 14
Zhang (10.1016/j.bspc.2021.102983_b0040) 2017; 15
Boualem (10.1016/j.bspc.2021.102983_b0075) 2015; 40
Tuncer (10.1016/j.bspc.2021.102983_b0115) 2020; 61
Baysal (10.1016/j.bspc.2021.102983_b0105) 2021; 165
Zhang (10.1016/j.bspc.2021.102983_b0230) 2017
Song (10.1016/j.bspc.2021.102983_b0035) 2018; 26
Mursalin (10.1016/j.bspc.2021.102983_b0140) 2017; 241
Shahid (10.1016/j.bspc.2021.102983_b0235) 2010
Barry (10.1016/j.bspc.2021.102983_b0095) 2018; 55
Li (10.1016/j.bspc.2021.102983_b0245) 2020; 10
Guo (10.1016/j.bspc.2021.102983_b0190) 2020; 24
10.1016/j.bspc.2021.102983_b0015
Han (10.1016/j.bspc.2021.102983_b0155) 2018; 12
10.1016/j.bspc.2021.102983_b0130
10.1016/j.bspc.2021.102983_b0175
10.1016/j.bspc.2021.102983_b0055
Bühlmann (10.1016/j.bspc.2021.102983_b0195) 2012
Liu (10.1016/j.bspc.2021.102983_b0060) 2016; 30
Webb (10.1016/j.bspc.2021.102983_b0205) 2004; 16
KevriC (10.1016/j.bspc.2021.102983_b0045) 2017; 31
Park (10.1016/j.bspc.2021.102983_b0200) 2018; 26
Galan (10.1016/j.bspc.2021.102983_b0255) 2008
Lokman (10.1016/j.bspc.2021.102983_b0160) 2019; 13
Díaz (10.1016/j.bspc.2021.102983_b0265) 2011; 2011
B (10.1016/j.bspc.2021.102983_b0070) 2021; 347
Breiman (10.1016/j.bspc.2021.102983_b0210) 1996; 24
Gupta (10.1016/j.bspc.2021.102983_b0220) 2017; 40
Zhou (10.1016/j.bspc.2021.102983_b0135) 2018; 10
References_xml – volume: 24
  start-page: 3727
  year: 2020
  end-page: 3735
  ident: b0190
  article-title: An ensemble learning framework for convolutional neural network based on multiple classifiers
  publication-title: Soft. Comput.
– volume: 45
  start-page: 8
  year: 2015
  end-page: 14
  ident: b0215
  article-title: Automatic seizure detection using stockwell transform and boosting algorithm for long-term EEG
  publication-title: Epilepsy Behav.
– reference: O.K. Fasil, R. Rajesh, Time-domain exponential energy for epileptic EEG signal classification, Neurosci. Lett. 694 (2019) 1–8. 10.1016/j.neulet.2018.10.062.
– volume: 100
  start-page: 10
  year: 2018
  end-page: 16
  ident: b0065
  article-title: A new feature for the classification of non-stationary signals based on the direction of signal energy in the time-frequency domain
  publication-title: Comput. Biol. Med.
– volume: 16
  start-page: 980
  year: 2004
  end-page: 991
  ident: b0205
  article-title: Multistrategy ensemble learning: reducing error by combining ensemble learning techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 14
  start-page: 016003
  year: 2017
  ident: b0250
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J. Neural Eng.
– volume: 40
  start-page: A43
  year: 2017
  ident: b0220
  article-title: Active ensemble learning for EEG epoch classification
  publication-title: Sleep
– volume: 33
  start-page: 261
  year: 2004
  end-page: 304
  ident: b0225
  article-title: Multimodel inference-understanding AIC and BIC in model selection
  publication-title: Sociol. Methods Res.
– volume: 17
  start-page: 2
  year: 2009
  end-page: 8
  ident: b0275
  article-title: Robot assisted gait training with active leg exoskeleton (ALEX)
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T.H Falk, J. Faubert, Deep learning-based electroencephalography analysis: a systematic review, J. Neural Eng. 16 (2019) 051001. https://iopscience. iop.org/article/10.1088/1741-2552/ab260c.
– year: 2017
  ident: b0230
  article-title: Extracting error-related potentials from motion imagination EEG in noninvasive brain-computer interface
  publication-title: 2017 CIS-RAM
– volume: 67
  start-page: 1258
  year: 2018
  end-page: 1265
  ident: b0125
  article-title: Ensemble SVM method for automatic sleep stage classification
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b0210
  publication-title: Bagging Predictors Machine Learning
– reference: D. Liu, W. Chen, R. Chavarriaga, Z. Pei, J. del R. Millán, Decoding of self-paced lower-limb movement intention: a case study on the influence factors, Front. Hum. Neurosci. 11 (2017) 560. 10.3389/fnhum.2017.00560.
– reference: A.R. Aslam, T. Iqbal, M. Aftab, W. Saadeh. A10.13uJ/classification 2-channel Deep Neural Network-based SoC for Emotion Detection of Autistic Children. 2020 CICC, 2020. 10.1109/CICC48029.2020.9075952.
– volume: 12
  start-page: 1
  year: 2015
  ident: b0260
  article-title: Control strategies for active lower extremity prosthetics and orthotics: a review
  publication-title: J. NeuroEng. Rehabil.
– volume: 31
  start-page: 398
  year: 2017
  end-page: 406
  ident: b0045
  article-title: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system
  publication-title: Biomed. Signal Process. Control
– volume: 40
  start-page: 1
  year: 2015
  end-page: 30
  ident: b0075
  article-title: Time-frequency features for pattern recognition using high-resolution TFDs: a tutorial review
  publication-title: Digit Signal Process
– reference: F. Lebon, C. Ruffino, I. Greenhouse, L. Labruna, R.B. Ivry, C. Papaxanthis, The Neural Specificity of Movement Preparation during Actual and Imagined movements, Cereb. Cortex 29(2) (2018) 689–700. https://doi.org/10.1093/cercor/bhx350.
– volume: 15
  start-page: 036028
  year: 2018
  ident: b0170
  article-title: Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification
  publication-title: J. Neural Eng.
– reference: Y. Wang, Classification of epileptic electroencephalograms signals using combining wavelet analysis and support vector machine, J. Med. Imag. Health In 8(1) (2018) 62–65. https://doi. org/10.1166/jmihi.2018.2233.
– volume: 55
  start-page: e13042
  year: 2018
  ident: b0095
  article-title: EEG frequency PCA in EEG-ERP dynamics
  publication-title: Psychophysiology
– volume: 14
  start-page: 838
  year: 2020
  end-page: 851
  ident: b0180
  article-title: An on-chip processor for chronic neurological disorders assistance using negative affectivity classification
  publication-title: IEEE Trans. Biomed. Circ. Sys.
– volume: 12
  year: 2018
  ident: b0155
  article-title: A fast, open EEG classification framework based on feature compression and channel ranking
  publication-title: Front. Neurosci.
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 11
  ident: b0265
  article-title: Lower-limb robotic rehabilitation: literature review and challenges
  publication-title: J. Robot.
– volume: 13
  start-page: 031001
  year: 2016
  ident: b0270
  article-title: Powered exoskeletons for bipedal locomotion after spinal cord injury
  publication-title: J. Neural Eng.
– volume: 26
  start-page: 1353
  year: 2018
  end-page: 1362
  ident: b0035
  article-title: A novel technique for selecting EMG-contaminated EEG channels in self-paced brain-computer interface task onset
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 6
  start-page: 39
  year: 2012
  ident: b0240
  article-title: Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b
  publication-title: Front. Neurosci.
– volume: 241
  start-page: 204
  year: 2017
  end-page: 214
  ident: b0140
  article-title: Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier
  publication-title: Neurocomputing
– volume: 18
  start-page: 209
  year: 2018
  end-page: 218
  ident: b0005
  article-title: Neural mechanisms of strength increase after one-week motor imagery training
  publication-title: Eur. J. Sport Sci.
– year: 2021
  ident: b0100
  article-title: Spectral independent component analysis with noise modeling for M/EEG source separation
  publication-title: J. Neurosci. Meth.
– volume: 12
  start-page: 1635
  year: 2021
  end-page: 1650
  ident: b0120
  article-title: Multimodal fusion of EEG-fNIRS: a mutual information-based hybrid classification framework
  publication-title: Biomed. Opt. Express
– volume: 15
  start-page: 457
  year: 2017
  end-page: 479
  ident: b0040
  article-title: A comparison study on multidomain EEG features for sleep stage classification
  publication-title: Comput. Intell. Neurosci.
– volume: 30
  start-page: 86
  year: 2016
  end-page: 97
  ident: b0060
  article-title: Sleep staging from the EEG signal using multi-domain feature extraction
  publication-title: Biomed. Signal Process. Control
– reference: Y. Gao, B. Gao, Q. Chen, J. Liu, Y. Zhang, Deep convolutional neural network-based epileptic electroencephalogram (EEG) signal classification, Front. Neurol. 11 (2020) 375. 10.3389/ fneur.2020.00375.
– year: 2020
  ident: b0165
  article-title: Deep learning techniques for EEG signal applications – a review
  publication-title: IETE J. Res.
– volume: 26
  start-page: 498
  year: 2018
  end-page: 505
  ident: b0200
  article-title: Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 24
  start-page: 1159
  year: 2016
  end-page: 1168
  ident: b0050
  article-title: EEG Sleep stages classification based on time domain features and structural graph similarity
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2008
  ident: b0255
  article-title: Feature Extraction for Multi-class BCI using Canonical Variates Analysis
  publication-title: 2007 IEEE International Symposium on Intelligent Signal Processing IEEE
– volume: 347
  start-page: 108927
  year: 2021
  ident: b0070
  article-title: Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal
  publication-title: J. Neurosci. Meth.
– volume: 165
  start-page: 113907
  year: 2021
  ident: b0105
  article-title: Multi-objective symbiotic organism search algorithm for optimal feature selection in brain computer interfaces
  publication-title: Expert Syst. Appl.
– volume: 50
  start-page: 1281
  year: 2019
  end-page: 1301
  ident: b0110
  article-title: Classification of EEG signals using hybrid feature extraction and ensemble extreme learning machine
  publication-title: Neural Process. Lett.
– volume: 10
  start-page: 267
  year: 2018
  end-page: 279
  ident: b0135
  article-title: Fuzzy feature extraction for multichannel EEG classification
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– reference: J. del R. Millán, The human-computer connection: An overview of brain-computer interfaces. Mètode Sci. Stud. J. 9 (2018) 134–141. 10.7203/me tode.9.12639.
– volume: 38
  start-page: 71
  year: 2017
  end-page: 77
  ident: b0090
  article-title: A quantitative analysis for EEG signals based on modified permutation-entropy
  publication-title: IRBM
– volume: 14
  year: 2020
  ident: b0085
  article-title: Parallel spatial-temporal self-attention CNN-based motor imagery classification for BCI
  publication-title: Front. Neurosci.
– volume: 61
  start-page: 102006
  year: 2020
  ident: b0115
  article-title: A novel ensemble local graph structure based feature extraction network for EEG signal analysis
  publication-title: Biomed. Signal Process. Control
– reference: H. Zhou, J. Xu, C. Shi, G. Zuo, Research progress about brain-computer interface technology based on cognitive brain areas and its applications in rehabilitation, J. Biomed. Eng. 35(5) (2018) 799–804. https://doi. org/10.7507/1001-5515.201711013.
– volume: 13
  start-page: 567
  year: 2019
  end-page: 573
  ident: b0160
  article-title: EEG motor movement classification based on cross-correlation with effective channel
  publication-title: Signal Image Video Process
– volume: 10
  start-page: 1605
  year: 2020
  ident: b0245
  article-title: A Novel Simplified Convolutional Neural Network Classification Algorithm of Motor Imagery EEG Signals Based on Deep Learning
  publication-title: Appl. Sci.
– volume: 56
  start-page: 101730
  year: 2020
  ident: b0145
  article-title: Decoding Human Brain activity with deep learning
  publication-title: Biomed. Signal Process. Control
– volume: 8
  start-page: 1580
  year: 2018
  ident: b0080
  article-title: The effect of feature-based attention on flanker interference processing: an fMRI-constrained source analysis
  publication-title: Sci. Rep.
– start-page: 985
  year: 2012
  end-page: 1022
  ident: b0195
  article-title: Bagging, boosting and ensemble methods
  publication-title: Handbooks of Computational Statistics
– year: 2010
  ident: b0235
  article-title: A Bispectrum approach to feature extraction for a motor imagery based brain-computer interfacing system
  publication-title: 2010 18th European Signal Processing Conference
– volume: 11
  start-page: 56
  year: 2021
  ident: b0010
  article-title: BCI training effects on chronic stroke correlate with functional reorganization in motor-related regions: a concurrent EEG and fMRI study
  publication-title: Brain Sci.
– ident: 10.1016/j.bspc.2021.102983_b0055
  doi: 10.1016/j.neulet.2018.10.062
– volume: 15
  start-page: 036028
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2021.102983_b0170
  article-title: Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaaf82
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.bspc.2021.102983_b0265
  article-title: Lower-limb robotic rehabilitation: literature review and challenges
  publication-title: J. Robot.
  doi: 10.1155/2011/759764
– volume: 15
  start-page: 457
  issue: 12
  year: 2017
  ident: 10.1016/j.bspc.2021.102983_b0040
  article-title: A comparison study on multidomain EEG features for sleep stage classification
  publication-title: Comput. Intell. Neurosci.
– year: 2008
  ident: 10.1016/j.bspc.2021.102983_b0255
  article-title: Feature Extraction for Multi-class BCI using Canonical Variates Analysis
– ident: 10.1016/j.bspc.2021.102983_b0150
  doi: 10.1166/jmihi.2018.2233
– volume: 8
  start-page: 1580
  year: 2018
  ident: 10.1016/j.bspc.2021.102983_b0080
  article-title: The effect of feature-based attention on flanker interference processing: an fMRI-constrained source analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-20049-1
– volume: 55
  start-page: e13042
  issue: 5
  year: 2018
  ident: 10.1016/j.bspc.2021.102983_b0095
  article-title: EEG frequency PCA in EEG-ERP dynamics
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13042
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.bspc.2021.102983_b0210
  publication-title: Bagging Predictors Machine Learning
  doi: 10.1023/A:1018054314350
– volume: 40
  start-page: 1
  year: 2015
  ident: 10.1016/j.bspc.2021.102983_b0075
  article-title: Time-frequency features for pattern recognition using high-resolution TFDs: a tutorial review
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2014.12.015
– volume: 13
  start-page: 031001
  issue: 3
  year: 2016
  ident: 10.1016/j.bspc.2021.102983_b0270
  article-title: Powered exoskeletons for bipedal locomotion after spinal cord injury
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/3/031001
– volume: 347
  start-page: 108927
  year: 2021
  ident: 10.1016/j.bspc.2021.102983_b0070
  article-title: Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2020.108927
– volume: 12
  start-page: 1635
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2021.102983_b0120
  article-title: Multimodal fusion of EEG-fNIRS: a mutual information-based hybrid classification framework
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.413666
– ident: 10.1016/j.bspc.2021.102983_b0175
  doi: 10.1088/1741-2552/ab260c
– volume: 6
  start-page: 39
  year: 2012
  ident: 10.1016/j.bspc.2021.102983_b0240
  article-title: Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b
  publication-title: Front. Neurosci.
– volume: 38
  start-page: 71
  issue: 2
  year: 2017
  ident: 10.1016/j.bspc.2021.102983_b0090
  article-title: A quantitative analysis for EEG signals based on modified permutation-entropy
  publication-title: IRBM
  doi: 10.1016/j.irbm.2017.02.001
– volume: 40
  start-page: A43
  year: 2017
  ident: 10.1016/j.bspc.2021.102983_b0220
  article-title: Active ensemble learning for EEG epoch classification
  publication-title: Sleep
  doi: 10.1093/sleepj/zsx050.115
– volume: 11
  start-page: 56
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2021.102983_b0010
  article-title: BCI training effects on chronic stroke correlate with functional reorganization in motor-related regions: a concurrent EEG and fMRI study
  publication-title: Brain Sci.
  doi: 10.3390/brainsci11010056
– volume: 10
  start-page: 267
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2021.102983_b0135
  article-title: Fuzzy feature extraction for multichannel EEG classification
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2016.2632130
– volume: 14
  start-page: 838
  issue: 4
  year: 2020
  ident: 10.1016/j.bspc.2021.102983_b0180
  article-title: An on-chip processor for chronic neurological disorders assistance using negative affectivity classification
  publication-title: IEEE Trans. Biomed. Circ. Sys.
  doi: 10.1109/TBCAS.2020.3008766
– volume: 45
  start-page: 8
  year: 2015
  ident: 10.1016/j.bspc.2021.102983_b0215
  article-title: Automatic seizure detection using stockwell transform and boosting algorithm for long-term EEG
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2015.02.012
– year: 2020
  ident: 10.1016/j.bspc.2021.102983_b0165
  article-title: Deep learning techniques for EEG signal applications – a review
  publication-title: IETE J. Res.
– volume: 14
  start-page: 016003
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2021.102983_b0250
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/14/1/016003
– volume: 10
  start-page: 1605
  issue: 5
  year: 2020
  ident: 10.1016/j.bspc.2021.102983_b0245
  article-title: A Novel Simplified Convolutional Neural Network Classification Algorithm of Motor Imagery EEG Signals Based on Deep Learning
  publication-title: Appl. Sci.
  doi: 10.3390/app10051605
– volume: 24
  start-page: 3727
  issue: 21
  year: 2020
  ident: 10.1016/j.bspc.2021.102983_b0190
  article-title: An ensemble learning framework for convolutional neural network based on multiple classifiers
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-019-04141-w
– volume: 12
  year: 2018
  ident: 10.1016/j.bspc.2021.102983_b0155
  article-title: A fast, open EEG classification framework based on feature compression and channel ranking
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00217
– volume: 13
  start-page: 567
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2021.102983_b0160
  article-title: EEG motor movement classification based on cross-correlation with effective channel
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-018-1383-9
– volume: 24
  start-page: 1159
  issue: 11
  year: 2016
  ident: 10.1016/j.bspc.2021.102983_b0050
  article-title: EEG Sleep stages classification based on time domain features and structural graph similarity
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2552539
– volume: 165
  start-page: 113907
  year: 2021
  ident: 10.1016/j.bspc.2021.102983_b0105
  article-title: Multi-objective symbiotic organism search algorithm for optimal feature selection in brain computer interfaces
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113907
– volume: 50
  start-page: 1281
  issue: 2
  year: 2019
  ident: 10.1016/j.bspc.2021.102983_b0110
  article-title: Classification of EEG signals using hybrid feature extraction and ensemble extreme learning machine
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-018-9919-0
– volume: 18
  start-page: 209
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2021.102983_b0005
  article-title: Neural mechanisms of strength increase after one-week motor imagery training
  publication-title: Eur. J. Sport Sci.
  doi: 10.1080/17461391.2017.1415377
– ident: 10.1016/j.bspc.2021.102983_b0020
  doi: 10.3389/fnhum.2017.00560
– volume: 100
  start-page: 10
  year: 2018
  ident: 10.1016/j.bspc.2021.102983_b0065
  article-title: A new feature for the classification of non-stationary signals based on the direction of signal energy in the time-frequency domain
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.018
– start-page: 985
  year: 2012
  ident: 10.1016/j.bspc.2021.102983_b0195
  article-title: Bagging, boosting and ensemble methods
  publication-title: Handbooks of Computational Statistics
  doi: 10.1007/978-3-642-21551-3_33
– volume: 16
  start-page: 980
  issue: 8
  year: 2004
  ident: 10.1016/j.bspc.2021.102983_b0205
  article-title: Multistrategy ensemble learning: reducing error by combining ensemble learning techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2004.29
– volume: 61
  start-page: 102006
  year: 2020
  ident: 10.1016/j.bspc.2021.102983_b0115
  article-title: A novel ensemble local graph structure based feature extraction network for EEG signal analysis
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102006
– volume: 26
  start-page: 498
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2021.102983_b0200
  article-title: Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2757519
– ident: 10.1016/j.bspc.2021.102983_b0130
  doi: 10.3389/fneur.2020.00375
– ident: 10.1016/j.bspc.2021.102983_b0030
– volume: 33
  start-page: 261
  issue: 2
  year: 2004
  ident: 10.1016/j.bspc.2021.102983_b0225
  article-title: Multimodel inference-understanding AIC and BIC in model selection
  publication-title: Sociol. Methods Res.
  doi: 10.1177/0049124104268644
– year: 2017
  ident: 10.1016/j.bspc.2021.102983_b0230
  article-title: Extracting error-related potentials from motion imagination EEG in noninvasive brain-computer interface
  publication-title: 2017 CIS-RAM
– volume: 12
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.bspc.2021.102983_b0260
  article-title: Control strategies for active lower extremity prosthetics and orthotics: a review
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-12-1
– ident: 10.1016/j.bspc.2021.102983_b0025
  doi: 10.1093/cercor/bhx350
– ident: 10.1016/j.bspc.2021.102983_b0015
– volume: 56
  start-page: 101730
  year: 2020
  ident: 10.1016/j.bspc.2021.102983_b0145
  article-title: Decoding Human Brain activity with deep learning
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101730
– volume: 26
  start-page: 1353
  issue: 7
  year: 2018
  ident: 10.1016/j.bspc.2021.102983_b0035
  article-title: A novel technique for selecting EMG-contaminated EEG channels in self-paced brain-computer interface task onset
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2847316
– volume: 31
  start-page: 398
  year: 2017
  ident: 10.1016/j.bspc.2021.102983_b0045
  article-title: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.09.007
– volume: 241
  start-page: 204
  year: 2017
  ident: 10.1016/j.bspc.2021.102983_b0140
  article-title: Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.053
– volume: 30
  start-page: 86
  year: 2016
  ident: 10.1016/j.bspc.2021.102983_b0060
  article-title: Sleep staging from the EEG signal using multi-domain feature extraction
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.06.006
– volume: 14
  year: 2020
  ident: 10.1016/j.bspc.2021.102983_b0085
  article-title: Parallel spatial-temporal self-attention CNN-based motor imagery classification for BCI
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.587520
– year: 2021
  ident: 10.1016/j.bspc.2021.102983_b0100
  article-title: Spectral independent component analysis with noise modeling for M/EEG source separation
  publication-title: J. Neurosci. Meth.
– volume: 67
  start-page: 1258
  issue: 6
  year: 2018
  ident: 10.1016/j.bspc.2021.102983_b0125
  article-title: Ensemble SVM method for automatic sleep stage classification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2799059
– ident: 10.1016/j.bspc.2021.102983_b0185
  doi: 10.1109/CICC48029.2020.9075952
– volume: 17
  start-page: 2
  issue: 1
  year: 2009
  ident: 10.1016/j.bspc.2021.102983_b0275
  article-title: Robot assisted gait training with active leg exoskeleton (ALEX)
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2008.2008280
– year: 2010
  ident: 10.1016/j.bspc.2021.102983_b0235
  article-title: A Bispectrum approach to feature extraction for a motor imagery based brain-computer interfacing system
SSID ssj0048714
Score 2.40465
Snippet Stroke results in uncoordinated limb movements of patients, greatly affecting their quality of life. Deep participation of patients with stroke in active...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102983
SubjectTerms Electroencephalogram
Ensemble learning
Motor imagery
Multi-domain feature fusion
Stroke patients
Title Boosting-LDA algriothm with multi-domain feature fusion for motor imagery EEG decoding
URI https://dx.doi.org/10.1016/j.bspc.2021.102983
Volume 70
WOSCitedRecordID wos000713289700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcUHmpBYr2wM1ytXa8We8xlLSAqopDgcDFsveRumrsqEmqcuKvM-t9JJRS0QMXy7LWa8vzaXZm_c03CL2RuqSVIDzWqWlhxiBBqaiU8UAQzTOmKM9E12yCHR_n4zH_1Ov99LUwl-esafKrKz77r6aGa2BsUzp7B3OHSeECnIPR4Qhmh-M_Gf5t284Nlzk-ejeMTH-hGowxtRuuHX0wlu20rJtIq07UM9LLuecbgt0MP31qhC1-RKPRYSQhPQ3Lm__525Xs23rKemLC2ZktN_AFj47__sem9LdlgNG-qwr5qurTsg60oNpxAJZNfATAnaw8d8c6-H7aNhPhxru9ijQJZCzvXllm5I9tW2Pvf23jEOdAEyMJ37_Rt9tthrO9aj4z2pNpsrca_LuQ9rUFLtAOPaPtrDBzFGaOws5xD22mjHLw7JvDD6PxR7-YQzrXycOHF3d1V5YieP1Nbo5t1uKVky30yCUaeGgB8hj1VPMEPVyTn3yKvqxDBQeoYAMVvA4V7KCCLVQwQAV3UMEOKhiggj1UnqHPB6OT_fex67MRiz4hizjJjfCfEKRKeVklmgupM8VJyUTGCVdcaKUyiKYGlEkIeQgRHBY6JlmZij7Ee8_RRtM2ahthmlSDiudCMGKEBBmE36RPteSQHVGdVzso8V-oEE6E3vRCOS_-bpsdFIV7ZlaC5dbR1H_4wgWRNjgsAEe33PfiTk95iR6s8P0KbSwulmoX3ReXi3p-8dqB6Bc2K5Mj
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting-LDA+algriothm+with+multi-domain+feature+fusion+for+motor+imagery+EEG+decoding&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Yue&rft.au=Chen%2C+Weihai&rft.au=Lin%2C+Chun-Liang&rft.au=Pei%2C+Zhongcai&rft.date=2021-09-01&rft.issn=1746-8094&rft.volume=70&rft.spage=102983&rft_id=info:doi/10.1016%2Fj.bspc.2021.102983&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon