Extended skew partition problem

A skew partition as defined by Chvátal is a partition of the vertex set of a graph into four nonempty parts A 1 , A 2 , B 1 , B 2 such that there are all possible edges between A 1 and A 2 , and no edges between B 1 and B 2 . We introduce the concept of ( n 1 , n 2 ) -extended skew partition which i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics Jg. 306; H. 19; S. 2438 - 2449
Hauptverfasser: Dantas, Simone, de Figueiredo, Celina M.H., Gravier, Sylvain, Klein, Sulamita
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 06.10.2006
Schlagworte:
ISSN:0012-365X, 1872-681X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A skew partition as defined by Chvátal is a partition of the vertex set of a graph into four nonempty parts A 1 , A 2 , B 1 , B 2 such that there are all possible edges between A 1 and A 2 , and no edges between B 1 and B 2 . We introduce the concept of ( n 1 , n 2 ) -extended skew partition which includes all partitioning problems into n 1 + n 2 nonempty parts A 1 , … , A n 1 , B 1 , … , B n 2 such that there are all possible edges between the A i parts, no edges between the B j parts, i ∈ { 1 , … , n 1 } , j ∈ { 1 , … , n 2 } , which generalizes the skew partition. We present a polynomial-time algorithm for testing whether a graph admits an ( n 1 , n 2 ) -extended skew partition. As a tool to complete this task we also develop a generalized 2-SAT algorithm, which by itself may have application to other partition problems.
AbstractList A skew partition as defined by Chvátal is a partition of the vertex set of a graph into four nonempty parts A 1 , A 2 , B 1 , B 2 such that there are all possible edges between A 1 and A 2 , and no edges between B 1 and B 2 . We introduce the concept of ( n 1 , n 2 ) -extended skew partition which includes all partitioning problems into n 1 + n 2 nonempty parts A 1 , … , A n 1 , B 1 , … , B n 2 such that there are all possible edges between the A i parts, no edges between the B j parts, i ∈ { 1 , … , n 1 } , j ∈ { 1 , … , n 2 } , which generalizes the skew partition. We present a polynomial-time algorithm for testing whether a graph admits an ( n 1 , n 2 ) -extended skew partition. As a tool to complete this task we also develop a generalized 2-SAT algorithm, which by itself may have application to other partition problems.
Author Gravier, Sylvain
Klein, Sulamita
de Figueiredo, Celina M.H.
Dantas, Simone
Author_xml – sequence: 1
  givenname: Simone
  surname: Dantas
  fullname: Dantas, Simone
  organization: COPPE, Universidade Federal do Rio de Janeiro, Brazil
– sequence: 2
  givenname: Celina M.H.
  surname: de Figueiredo
  fullname: de Figueiredo, Celina M.H.
  email: celina@cos.ufrj.br
  organization: Instituto de Matemática and COPPE, Universidade Federal do Rio de Janeiro, Brazil
– sequence: 3
  givenname: Sylvain
  surname: Gravier
  fullname: Gravier, Sylvain
  organization: CNRS, Laboratoire Leibniz, France
– sequence: 4
  givenname: Sulamita
  surname: Klein
  fullname: Klein, Sulamita
  organization: Instituto de Matemática and COPPE, Universidade Federal do Rio de Janeiro, Brazil
BookMark eNp9z0tLAzEQwPEgFWyrX8CL_QK7zmQ36S54kVIfUPCi0FvIYwKp7W5Jgo9v7y568tDTMIf_ML8Zm3R9R4xdI5QIKG93pQvJlhxAlMhLqOozNsVmyQvZ4HbCpgDIi0qK7QWbpbSDYZdVM2U3669MnSO3SO_0uTjqmEMOfbc4xt7s6XDJzr3eJ7r6m3P29rB-XT0Vm5fH59X9prAVQC5QNB4rIYQGv2w9R0HGeykI0FtvLAdpvJMGWxQtubqppWlbiRqNsCjqas74710b-5QieXWM4aDjt0JQI1Ht1EhUI1EhVwNxiJp_kQ1Zj-_nqMP-dHr3m9KA-ggUVbKBOksuRLJZuT6cyn8AtzduEA
CitedBy_id crossref_primary_10_1137_060666238
crossref_primary_10_1016_j_endm_2008_01_015
Cites_doi 10.1016/S0166-218X(03)00371-8
10.1006/jctb.1997.1812
10.1016/0020-0190(79)90002-4
10.1016/0095-8956(85)90049-8
10.1007/s004939970003
10.1145/301250.301373
10.1137/S0895480100384055
10.1007/BF01204715
10.1016/0012-365X(92)90588-7
10.1006/jagm.1999.1122
ContentType Journal Article
Copyright 2006 Elsevier B.V.
Copyright_xml – notice: 2006 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.disc.2005.12.034
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-681X
EndPage 2449
ExternalDocumentID 10_1016_j_disc_2005_12_034
S0012365X0600330X
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6I.
6OB
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
VH1
WH7
WUQ
XJT
XOL
XPP
ZCG
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-158f13555a0f79f215ebff65e01fcfbc206bfd6b19159ed4846b9961a1b5c1543
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000241351300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-365X
IngestDate Sat Nov 29 06:17:30 EST 2025
Tue Nov 18 21:22:27 EST 2025
Fri Feb 23 02:29:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Algorithms and data structures
Skew partition
Computational and structural complexity
2-SAT
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-158f13555a0f79f215ebff65e01fcfbc206bfd6b19159ed4846b9961a1b5c1543
OpenAccessLink https://dx.doi.org/10.1016/j.disc.2005.12.034
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_disc_2005_12_034
crossref_citationtrail_10_1016_j_disc_2005_12_034
elsevier_sciencedirect_doi_10_1016_j_disc_2005_12_034
PublicationCentury 2000
PublicationDate 2006-10-06
PublicationDateYYYYMMDD 2006-10-06
PublicationDate_xml – month: 10
  year: 2006
  text: 2006-10-06
  day: 06
PublicationDecade 2000
PublicationTitle Discrete mathematics
PublicationYear 2006
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chvátal (bib5) 1985; 39
Fleischner, Stiebitz (bib12) 1992; 101
Feder, Hell, Klein, Motwani (bib11) 2003; 16
American Institute of Mathematics, 2002.
S. Dantas, C.M.H. de Figueiredo, S. Gravier, S. Klein, On H-partition problems, Relat ´orio T ´ecnico COPPE/Engenharia de Sistemas e Computação, ES-579/02, Maio—2002.
P. Hell, S. Klein, L.T. Nogueira, F. Protti, Independent
Alon, Tarsi (bib1) 1992; 12
Feder, Hell, Huang (bib9) 1999; 19
K. Cameron, E.M. Eschen, C.T. Hoàng, R. Sritharan, The list partition problem for graphs, in: Proceedings of SODA 2004—ACM—SIAM Symposium on Discrete Algorithms.
T. Feder, P. Hell, S. Klein, R. Motwani, Complexity of graph partition problems, in: Proceedings of the 31st Annual ACM Symposium on Theory of Computing, 1999, pp. 464–472.
Feder, Hell (bib8) 1998; 72
M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, Strong perfect graph theorem, in: Perfect Graph Conjecture Workshop, P. Seymour, R. Thomas, organizers
Aspvall, Plass, Tarjan (bib2) 1979; 8
de Figueiredo, Klein, Kohayakawa, Reed (bib7) 2000; 37
Hell, Klein, Nogueira, Protti (bib13) 2004; 143
s in chordal graphs, in: Proceedings of CLAIO 2002—XI Latin–Iberian American Congress of Operations Research, 2002, pp. 1–11.
10.1016/j.disc.2005.12.034_bib6
10.1016/j.disc.2005.12.034_bib4
Feder (10.1016/j.disc.2005.12.034_bib11) 2003; 16
10.1016/j.disc.2005.12.034_bib3
10.1016/j.disc.2005.12.034_bib10
10.1016/j.disc.2005.12.034_bib14
Fleischner (10.1016/j.disc.2005.12.034_bib12) 1992; 101
Hell (10.1016/j.disc.2005.12.034_bib13) 2004; 143
de Figueiredo (10.1016/j.disc.2005.12.034_bib7) 2000; 37
Chvátal (10.1016/j.disc.2005.12.034_bib5) 1985; 39
Aspvall (10.1016/j.disc.2005.12.034_bib2) 1979; 8
Feder (10.1016/j.disc.2005.12.034_bib8) 1998; 72
Feder (10.1016/j.disc.2005.12.034_bib9) 1999; 19
Alon (10.1016/j.disc.2005.12.034_bib1) 1992; 12
References_xml – volume: 39
  start-page: 189
  year: 1985
  end-page: 199
  ident: bib5
  article-title: Star-cutsets and perfect graphs
  publication-title: J. Combin. Theory Ser. B
– reference: K. Cameron, E.M. Eschen, C.T. Hoàng, R. Sritharan, The list partition problem for graphs, in: Proceedings of SODA 2004—ACM—SIAM Symposium on Discrete Algorithms.
– reference: S. Dantas, C.M.H. de Figueiredo, S. Gravier, S. Klein, On H-partition problems, Relat ´orio T ´ecnico COPPE/Engenharia de Sistemas e Computação, ES-579/02, Maio—2002.
– reference: P. Hell, S. Klein, L.T. Nogueira, F. Protti, Independent
– reference: T. Feder, P. Hell, S. Klein, R. Motwani, Complexity of graph partition problems, in: Proceedings of the 31st Annual ACM Symposium on Theory of Computing, 1999, pp. 464–472.
– volume: 101
  start-page: 39
  year: 1992
  end-page: 48
  ident: bib12
  article-title: A solution of a coloring problem of P. Erdős
  publication-title: Discrete Math.
– volume: 16
  start-page: 449
  year: 2003
  end-page: 478
  ident: bib11
  article-title: List partitions
  publication-title: SIAM J. Discrete Math.
– volume: 37
  start-page: 505
  year: 2000
  end-page: 521
  ident: bib7
  article-title: Finding skew partitions efficiently
  publication-title: J. Algorithms
– reference: M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, Strong perfect graph theorem, in: Perfect Graph Conjecture Workshop, P. Seymour, R. Thomas, organizers,
– reference: 's in chordal graphs, in: Proceedings of CLAIO 2002—XI Latin–Iberian American Congress of Operations Research, 2002, pp. 1–11.
– volume: 19
  start-page: 487
  year: 1999
  end-page: 505
  ident: bib9
  article-title: List homomorphisms and circular arc graphs
  publication-title: Combinatorica
– volume: 72
  start-page: 236
  year: 1998
  end-page: 250
  ident: bib8
  article-title: List homomorphisms to reflexive graphs
  publication-title: J. Combin. Theory Ser. B
– volume: 12
  start-page: 125
  year: 1992
  end-page: 134
  ident: bib1
  article-title: Colorings and orientations of graphs
  publication-title: Combinatorica
– reference: , American Institute of Mathematics, 2002.
– volume: 143
  start-page: 185
  year: 2004
  end-page: 194
  ident: bib13
  article-title: Partitioning chordal graphs into independent sets and cliques
  publication-title: Discrete Appl. Math.
– volume: 8
  start-page: 121
  year: 1979
  end-page: 123
  ident: bib2
  article-title: A linear-time algorithm for testing the truth of certain quantified boolean formulas
  publication-title: Inform. Process. Lett.
– volume: 143
  start-page: 185
  year: 2004
  ident: 10.1016/j.disc.2005.12.034_bib13
  article-title: Partitioning chordal graphs into independent sets and cliques
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(03)00371-8
– ident: 10.1016/j.disc.2005.12.034_bib14
– volume: 72
  start-page: 236
  year: 1998
  ident: 10.1016/j.disc.2005.12.034_bib8
  article-title: List homomorphisms to reflexive graphs
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1006/jctb.1997.1812
– volume: 8
  start-page: 121
  year: 1979
  ident: 10.1016/j.disc.2005.12.034_bib2
  article-title: A linear-time algorithm for testing the truth of certain quantified boolean formulas
  publication-title: Inform. Process. Lett.
  doi: 10.1016/0020-0190(79)90002-4
– volume: 39
  start-page: 189
  year: 1985
  ident: 10.1016/j.disc.2005.12.034_bib5
  article-title: Star-cutsets and perfect graphs
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/0095-8956(85)90049-8
– volume: 19
  start-page: 487
  year: 1999
  ident: 10.1016/j.disc.2005.12.034_bib9
  article-title: List homomorphisms and circular arc graphs
  publication-title: Combinatorica
  doi: 10.1007/s004939970003
– ident: 10.1016/j.disc.2005.12.034_bib10
  doi: 10.1145/301250.301373
– volume: 16
  start-page: 449
  year: 2003
  ident: 10.1016/j.disc.2005.12.034_bib11
  article-title: List partitions
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S0895480100384055
– volume: 12
  start-page: 125
  year: 1992
  ident: 10.1016/j.disc.2005.12.034_bib1
  article-title: Colorings and orientations of graphs
  publication-title: Combinatorica
  doi: 10.1007/BF01204715
– volume: 101
  start-page: 39
  year: 1992
  ident: 10.1016/j.disc.2005.12.034_bib12
  article-title: A solution of a coloring problem of P. Erdős
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(92)90588-7
– ident: 10.1016/j.disc.2005.12.034_bib3
– ident: 10.1016/j.disc.2005.12.034_bib4
– ident: 10.1016/j.disc.2005.12.034_bib6
– volume: 37
  start-page: 505
  year: 2000
  ident: 10.1016/j.disc.2005.12.034_bib7
  article-title: Finding skew partitions efficiently
  publication-title: J. Algorithms
  doi: 10.1006/jagm.1999.1122
SSID ssj0001638
Score 1.7578971
Snippet A skew partition as defined by Chvátal is a partition of the vertex set of a graph into four nonempty parts A 1 , A 2 , B 1 , B 2 such that there are all...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2438
SubjectTerms 2-SAT
Algorithms and data structures
Computational and structural complexity
Skew partition
Title Extended skew partition problem
URI https://dx.doi.org/10.1016/j.disc.2005.12.034
Volume 306
WOSCitedRecordID wos000241351300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-681X
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0001638
  issn: 0012-365X
  databaseCode: AIEXJ
  dateStart: 19950120
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT4QwEG58HfRgfMa3HLwRNhQo0KPRNWqiMVGTvZEWWoOuZLPL-vj3TmkXcKNGD17IhrRdYL7MfDPtzCB05PPQc1MmnIhwDg4KiR0WYu5kkuIgi4knAlY1m4iur-Nej96YUPaoaicQFUX89kYH_ypquAfCVqmzfxB3vSjcgN8gdLiC2OH6K8F3TVjbHj2JV3ugRlQyNq1j2mz0NAelAazZfq6Lt7b6zBelTva6BXE2m--ZsM_yh7HIVaXRKsyqMtqZfdU57zSHeZgyt9Xk9_4Ly5ut_r5prnk7BijmJZuKOqg987CtSVWxw5D02prUb0YoyFDHc9u6MdB1XIydBV5Bv9ThOpzw2FFpyTropeK1JuT5qWD2lCGrjxdOTq49JmoN1WmTJNhLYI1ZNO9FhIL6mz--6PYua6OtaKk22vq1TH6VPgo4_SRfc5gWL7lbQcvGobCONRBW0Ywo1tDSVSPQdXQ4gYSlIGHVkLAMJDbQ_Vn37uTcMY0xnNR33dLBJJYYiCJhroyoBNYmuJQhES6WqeSp54ZcZiEHX5xQkQXAMTn4tZhhTlLgzP4mmisAOVvIckVEYykEePk4wLEE9gYuOPdiGaQ-Zmwb4cmrJqmpGq-al_ST7z_yNrLrOQNdM-XH0WTyBRPD-jSbSwAQP8zb-dO_7KLFBsZ7aK4cjsU-Wkhfynw0PDBo-AA2KnWG
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+skew+partition+problem&rft.jtitle=Discrete+mathematics&rft.au=Dantas%2C+Simone&rft.au=de+Figueiredo%2C+Celina+M.H.&rft.au=Gravier%2C+Sylvain&rft.au=Klein%2C+Sulamita&rft.date=2006-10-06&rft.issn=0012-365X&rft.volume=306&rft.issue=19-20&rft.spage=2438&rft.epage=2449&rft_id=info:doi/10.1016%2Fj.disc.2005.12.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2005_12_034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon