Effective multi-objective discrete optimization of Truss-Z layouts using a GPU

•A novel framework for Truss-Z layout optimization is presented.•It is based on image processing, evolutionary algorithm & massive parallelization.•GPU is used for efficient objective function evaluation in the EA.•3 case-studies are studied: Modular path, Mountain pier & Train station retro...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 70; pp. 501 - 512
Main Authors: Zawidzki, Machi, Szklarski, Jacek
Format: Journal Article
Language:English
Published: Elsevier B.V 01.09.2018
Subjects:
ISSN:1568-4946, 1872-9681
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel framework for Truss-Z layout optimization is presented.•It is based on image processing, evolutionary algorithm & massive parallelization.•GPU is used for efficient objective function evaluation in the EA.•3 case-studies are studied: Modular path, Mountain pier & Train station retrofitting Truss-Z (TZ) is an Extremely Modular System for creating skeletal free-form ramps and ramp networks. The TZ structures are comprised of four variations of two types of basic unit subjected to rotation. The two types of units are: R and L being a mirror reflection of each other. This paper presents a novel method based on image processing, evolutionary algorithm and intensive parallelization of multi-objective optimization of TZ layouts. The algorithm returns a sequence of modules. The result guarantees a TZ connection between two given points (regions) and minimizes the fitness function representing certain costs associated with setting up the TZ structure. The fitness function depends on the cost of TZ structure as well as the variety of costs related to the environment where the it is to be placed. E.g.: the earthworks, vegetation removal, obstacles avoidance, etc. There are no restrictions on the fitness function definition. It can depend on any variable which can be represented by a two-dimensional map of any property of the environment. The formulation of the presented method is suited for application of well-established image processing methods which efficiently evaluate candidate solutions on a GPU. As a result, the employed genetic algorithm efficiently probes the search space. The practical applicability of this approach is demonstrated with three case-studies: 1simultaneous paving of a path with congruent units in a hilly environment with trees & bushes and finding the best location for a pier over an existing river;2constructing of a TZ connector spanning over a mountain valley with lakes (where supports can not be placed);3retrofitting of an existing railway station with a large wheelchair TZ ramp of over 10 m elevation while preserving trees and minimizing the earthworks.
AbstractList •A novel framework for Truss-Z layout optimization is presented.•It is based on image processing, evolutionary algorithm & massive parallelization.•GPU is used for efficient objective function evaluation in the EA.•3 case-studies are studied: Modular path, Mountain pier & Train station retrofitting Truss-Z (TZ) is an Extremely Modular System for creating skeletal free-form ramps and ramp networks. The TZ structures are comprised of four variations of two types of basic unit subjected to rotation. The two types of units are: R and L being a mirror reflection of each other. This paper presents a novel method based on image processing, evolutionary algorithm and intensive parallelization of multi-objective optimization of TZ layouts. The algorithm returns a sequence of modules. The result guarantees a TZ connection between two given points (regions) and minimizes the fitness function representing certain costs associated with setting up the TZ structure. The fitness function depends on the cost of TZ structure as well as the variety of costs related to the environment where the it is to be placed. E.g.: the earthworks, vegetation removal, obstacles avoidance, etc. There are no restrictions on the fitness function definition. It can depend on any variable which can be represented by a two-dimensional map of any property of the environment. The formulation of the presented method is suited for application of well-established image processing methods which efficiently evaluate candidate solutions on a GPU. As a result, the employed genetic algorithm efficiently probes the search space. The practical applicability of this approach is demonstrated with three case-studies: 1simultaneous paving of a path with congruent units in a hilly environment with trees & bushes and finding the best location for a pier over an existing river;2constructing of a TZ connector spanning over a mountain valley with lakes (where supports can not be placed);3retrofitting of an existing railway station with a large wheelchair TZ ramp of over 10 m elevation while preserving trees and minimizing the earthworks.
Author Szklarski, Jacek
Zawidzki, Machi
Author_xml – sequence: 1
  givenname: Machi
  orcidid: 0000-0001-8695-4400
  surname: Zawidzki
  fullname: Zawidzki, Machi
  email: zawidzki@mit.edu
– sequence: 2
  givenname: Jacek
  surname: Szklarski
  fullname: Szklarski, Jacek
BookMark eNp9kM9KAzEQh4NUsK2-gKe8wK5J9l8WvEipVSjqob14CdnsRLJsNyXJCvXpTW1PHnqamR98w8w3Q5PBDoDQPSUpJbR86FLprUoZoTwlRUpydoWmlFcsqUtOJ7EvSp7kdV7eoJn3HYlQzfgUvS21BhXMN-Dd2AeT2KY7z63xykEAbPfB7MyPDMYO2Gq8caP3ySfu5cGOwePRm-ELS7z62N6iay17D3fnOkfb5-Vm8ZKs31evi6d1ojJCQkLzhgCtNAdeVyqnBW254jGUeaXrLMtVCVRLBWXGK2Bc0ZY1qiwaqatWtiybI37aq5z13oEWyoS_A4OTpheUiKMX0YmjF3H0IkghopeIsn_o3pmddIfL0OMJgvjUtwEnvDIwKGiNi7pEa80l_Bedw3_z
CitedBy_id crossref_primary_10_1016_j_softx_2024_101797
crossref_primary_10_1016_j_ins_2020_06_028
crossref_primary_10_1016_j_advengsoft_2019_102766
crossref_primary_10_3390_en13092147
crossref_primary_10_1016_j_swevo_2021_100977
crossref_primary_10_1111_cgf_14451
crossref_primary_10_1016_j_autcon_2021_103718
crossref_primary_10_1080_23248378_2018_1553115
crossref_primary_10_1111_mice_12478
crossref_primary_10_1007_s00158_020_02692_3
Cites_doi 10.1007/s00158-015-1261-9
10.1016/j.advengsoft.2013.04.022
10.1016/j.advengsoft.2014.11.004
10.1016/j.advengsoft.2011.12.012
10.2495/DNE-V8-N1-61-87
10.1016/j.advengsoft.2016.07.015
10.1016/j.asoc.2015.04.061
10.1007/s10710-011-9137-2
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.05.042
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 512
ExternalDocumentID 10_1016_j_asoc_2018_05_042
S156849461830317X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-14b0e17f8e897c4151d8c84b0a47f9334c6e1face6387e28c1d2bc65baf7dad23
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443296000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:20:08 EST 2025
Sat Nov 29 07:05:18 EST 2025
Fri Feb 23 02:45:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parallel computing
Accessibility
Genetic algorithm
Retrofitting
Extremely Modular System
Combinatorial
Discrete
Multi-objective
GPU
Truss-Z
Optimization
GPGPU
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-14b0e17f8e897c4151d8c84b0a47f9334c6e1face6387e28c1d2bc65baf7dad23
ORCID 0000-0001-8695-4400
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2018_05_042
crossref_primary_10_1016_j_asoc_2018_05_042
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_05_042
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pratt, Geisow (bib0065) 1986; 6
Wong (bib0090) 2009
Zawidzki, Jankowski (bib0060) 2018; 21
Zawidzki, Nishinari (bib0025) 2012; 47
Gomez-Pulido, Vega-Rodriguez, Sanchez-Perez, Priem-Mendes, Carreira (bib0100) 2011; 12
Fortin, De Rainville, Gardner, Parizeau, Gagné (bib0115) 2012, July; 13
Zawidzki, Nishinari (bib0015) 2013; 17
Zawidzki, Jankowski (bib0050) 2017
Chwiałkowski (bib0120) 2017
Zawidzki (bib0035) 2016; 100
Zawidzki, Nagakura (bib0045) 2014
Soca, Blengio, Pedemonte, Ezzatti (bib0085) 2010, July
Nowotniak, Kucharski (bib0080) 2011; 3
Zawidzki (bib0005) 2017
Zawidzki (bib0010) 2013; 8
Zawidzki, Nishinari (bib0030) 2013; 65
Munk, Vio, Steven (bib0070) 2015; 52
Zawidzki, Szklarski (bib0020) 2017
Zawidzki (bib0040) 2015; 81
Wong, Wong (bib0095) 2006
Zawidzki, Jankowski, Szklarski (bib0055) 2017
Gong, Chen, Zhan, Zhang, Li, Zhang, Li (bib0105) 2015; 34
Martínez-Frutos, Herrero-Pérez (bib0110) 2017
Banzhaf, Harding (bib0075) 2009
Wong (10.1016/j.asoc.2018.05.042_bib0095) 2006
Pratt (10.1016/j.asoc.2018.05.042_bib0065) 1986; 6
Wong (10.1016/j.asoc.2018.05.042_bib0090) 2009
Zawidzki (10.1016/j.asoc.2018.05.042_bib0035) 2016; 100
Zawidzki (10.1016/j.asoc.2018.05.042_bib0005) 2017
Zawidzki (10.1016/j.asoc.2018.05.042_bib0020) 2017
Zawidzki (10.1016/j.asoc.2018.05.042_bib0025) 2012; 47
Martínez-Frutos (10.1016/j.asoc.2018.05.042_bib0110) 2017
Zawidzki (10.1016/j.asoc.2018.05.042_bib0015) 2013; 17
Zawidzki (10.1016/j.asoc.2018.05.042_bib0045) 2014
Zawidzki (10.1016/j.asoc.2018.05.042_bib0030) 2013; 65
Zawidzki (10.1016/j.asoc.2018.05.042_bib0055) 2017
Munk (10.1016/j.asoc.2018.05.042_bib0070) 2015; 52
Zawidzki (10.1016/j.asoc.2018.05.042_bib0060) 2018; 21
Gomez-Pulido (10.1016/j.asoc.2018.05.042_bib0100) 2011; 12
Fortin (10.1016/j.asoc.2018.05.042_bib0115) 2012; 13
Zawidzki (10.1016/j.asoc.2018.05.042_bib0050) 2017
Soca (10.1016/j.asoc.2018.05.042_bib0085) 2010
Chwiałkowski (10.1016/j.asoc.2018.05.042_bib0120) 2017
Zawidzki (10.1016/j.asoc.2018.05.042_bib0010) 2013; 8
Banzhaf (10.1016/j.asoc.2018.05.042_bib0075) 2009
Gong (10.1016/j.asoc.2018.05.042_bib0105) 2015; 34
Zawidzki (10.1016/j.asoc.2018.05.042_bib0040) 2015; 81
Nowotniak (10.1016/j.asoc.2018.05.042_bib0080) 2011; 3
References_xml – volume: 8
  start-page: 61
  year: 2013
  end-page: 87
  ident: bib0010
  article-title: Creating organic three-dimensional structures for pedestrian traffic with reconfigurable modular Truss-Z system
  publication-title: Int. J. Des. Nat. Ecodyn.
– volume: 34
  start-page: 286
  year: 2015
  end-page: 300
  ident: bib0105
  article-title: Distributed evolutionary algorithms and their models: a survey of the state-of-the-art
  publication-title: Appl. Soft Comput.
– volume: 17
  start-page: 81
  year: 2013
  end-page: 87
  ident: bib0015
  article-title: Modular Pipe-Z system for three-dimensional knots
  publication-title: J. Geomet. Graph.
– start-page: 1
  year: 2010, July
  end-page: 8
  ident: bib0085
  article-title: PUGACE, a cellular evolutionary algorithm framework on GPUs
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 6
  start-page: 117
  year: 1986
  end-page: 142
  ident: bib0065
  article-title: Surface/surface intersection problems
  publication-title: Math. Surf.
– year: 2017
  ident: bib0005
  article-title: Discrete Optimization in Architecture: Extremely Modular Systems
– start-page: 1
  year: 2017
  end-page: 13
  ident: bib0020
  article-title: Single-branch Truss-Z optimization based on image processing and evolution strategy
  publication-title: Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering
– volume: 21
  year: 2018
  ident: bib0060
  article-title: Optimization of modular Truss-Z by minimum-mass design under equivalent stress constraint
  publication-title: Smart Struct. Syst.
– volume: 12
  start-page: 403
  year: 2011
  end-page: 427
  ident: bib0100
  article-title: Accelerating floating-point fitness functions in evolutionary algorithms: a FPGA-CPU-GPU performance comparison
  publication-title: Genet. Prog. Evol. Mach.
– start-page: 29
  year: 2017
  end-page: 49
  ident: bib0110
  article-title: Massively Parallel Evolutionary Structural Optimization for High Resolution Architecture Design
– start-page: 5
  year: 2017
  end-page: 8
  ident: bib0055
  article-title: Structural optimization of a five-unit single-branch Truss-Z modular structure
  publication-title: Proceedings of the 8th ECCOMAS Thematic Conference on Smart Structures and Materials (SMaRT 2017)
– volume: 13
  start-page: 2171
  year: 2012, July
  end-page: 2175
  ident: bib0115
  article-title: DEAP: evolutionary algorithms made easy
  publication-title: J. Mach. Learn. Res.
– volume: 81
  start-page: 41
  year: 2015
  end-page: 49
  ident: bib0040
  article-title: Retrofitting of pedestrian overpass by Truss-Z modular systems using graph-theory approach
  publication-title: Adv. Eng. Softw.
– volume: 3
  start-page: 595
  year: 2011
  end-page: 611
  ident: bib0080
  article-title: GPU-based massively parallel implementation of metaheuristic algorithms
  publication-title: Automatyka / Akademia Górniczo-Hutnicza im. Stanislawa Staszica w Krakowie T. 15, z.
– start-page: 133
  year: 2006
  end-page: 155
  ident: bib0095
  article-title: Parallel Evolutionary Algorithms on Consumer-Level Graphics Processing Unit
– start-page: 2515
  year: 2009
  end-page: 2522
  ident: bib0090
  article-title: Parallel multi-objective evolutionary algorithms on graphics processing units.
  publication-title: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, GECCO ’09
– year: 2017
  ident: bib0120
  article-title: Kolej w Warszawie i województwie mazowieckim (Railway in Warsaw and Masovian Voivodeship)
– start-page: 163
  year: 2017
  end-page: 174
  ident: bib0050
  article-title: Multicriterial optimization of geometrical and structural properties of the basic module of a single-branch truss-z structure
  publication-title: World Congress of Structural and Multidisciplinary Optimisation
– volume: 100
  start-page: 113
  year: 2016
  end-page: 125
  ident: bib0035
  article-title: Optimization of multi-branch Truss-Z based on evolution strategy
  publication-title: Adv. Eng. Softw.
– volume: 52
  start-page: 613
  year: 2015
  end-page: 631
  ident: bib0070
  article-title: Topology and shape optimization methods using evolutionary algorithms: a review
  publication-title: Struct. Multidiscip. Optim.
– volume: 47
  start-page: 147
  year: 2012
  end-page: 159
  ident: bib0025
  article-title: Modular Truss-Z system for self-supporting skeletal free-form pedestrian networks
  publication-title: Adv. Eng. Softw.
– start-page: 4
  year: 2014
  end-page: 8
  ident: bib0045
  article-title: Foldable Truss-Z module
  publication-title: Proceedings for ICGG
– volume: 65
  start-page: 43
  year: 2013
  end-page: 59
  ident: bib0030
  article-title: Application of evolutionary algorithms for optimum layout of Truss-Z linkage in an environment with obstacles
  publication-title: Adv. Eng. Softw.
– start-page: 3237
  year: 2009
  end-page: 3286
  ident: bib0075
  article-title: Accelerating evolutionary computation with graphics processing units
  publication-title: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, GECCO ’09
– start-page: 29
  year: 2017
  ident: 10.1016/j.asoc.2018.05.042_bib0110
– volume: 52
  start-page: 613
  issue: September (3)
  year: 2015
  ident: 10.1016/j.asoc.2018.05.042_bib0070
  article-title: Topology and shape optimization methods using evolutionary algorithms: a review
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1261-9
– volume: 13
  start-page: 2171
  year: 2012
  ident: 10.1016/j.asoc.2018.05.042_bib0115
  article-title: DEAP: evolutionary algorithms made easy
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2018.05.042_bib0020
  article-title: Single-branch Truss-Z optimization based on image processing and evolution strategy
– start-page: 3237
  year: 2009
  ident: 10.1016/j.asoc.2018.05.042_bib0075
  article-title: Accelerating evolutionary computation with graphics processing units
– volume: 6
  start-page: 117
  year: 1986
  ident: 10.1016/j.asoc.2018.05.042_bib0065
  article-title: Surface/surface intersection problems
  publication-title: Math. Surf.
– year: 2017
  ident: 10.1016/j.asoc.2018.05.042_bib0120
– start-page: 5
  year: 2017
  ident: 10.1016/j.asoc.2018.05.042_bib0055
  article-title: Structural optimization of a five-unit single-branch Truss-Z modular structure
– volume: 17
  start-page: 81
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2018.05.042_bib0015
  article-title: Modular Pipe-Z system for three-dimensional knots
  publication-title: J. Geomet. Graph.
– start-page: 163
  year: 2017
  ident: 10.1016/j.asoc.2018.05.042_bib0050
  article-title: Multicriterial optimization of geometrical and structural properties of the basic module of a single-branch truss-z structure
– volume: 65
  start-page: 43
  year: 2013
  ident: 10.1016/j.asoc.2018.05.042_bib0030
  article-title: Application of evolutionary algorithms for optimum layout of Truss-Z linkage in an environment with obstacles
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.04.022
– year: 2017
  ident: 10.1016/j.asoc.2018.05.042_bib0005
– volume: 81
  start-page: 41
  year: 2015
  ident: 10.1016/j.asoc.2018.05.042_bib0040
  article-title: Retrofitting of pedestrian overpass by Truss-Z modular systems using graph-theory approach
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2014.11.004
– start-page: 2515
  year: 2009
  ident: 10.1016/j.asoc.2018.05.042_bib0090
  article-title: Parallel multi-objective evolutionary algorithms on graphics processing units.
– volume: 47
  start-page: 147
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2018.05.042_bib0025
  article-title: Modular Truss-Z system for self-supporting skeletal free-form pedestrian networks
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2011.12.012
– start-page: 4
  year: 2014
  ident: 10.1016/j.asoc.2018.05.042_bib0045
  article-title: Foldable Truss-Z module
  publication-title: Proceedings for ICGG
– volume: 8
  start-page: 61
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2018.05.042_bib0010
  article-title: Creating organic three-dimensional structures for pedestrian traffic with reconfigurable modular Truss-Z system
  publication-title: Int. J. Des. Nat. Ecodyn.
  doi: 10.2495/DNE-V8-N1-61-87
– start-page: 1
  year: 2010
  ident: 10.1016/j.asoc.2018.05.042_bib0085
  article-title: PUGACE, a cellular evolutionary algorithm framework on GPUs
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 100
  start-page: 113
  year: 2016
  ident: 10.1016/j.asoc.2018.05.042_bib0035
  article-title: Optimization of multi-branch Truss-Z based on evolution strategy
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.07.015
– volume: 3
  start-page: 595
  year: 2011
  ident: 10.1016/j.asoc.2018.05.042_bib0080
  article-title: GPU-based massively parallel implementation of metaheuristic algorithms
  publication-title: Automatyka / Akademia Górniczo-Hutnicza im. Stanislawa Staszica w Krakowie T. 15, z.
– volume: 21
  issue: 6
  year: 2018
  ident: 10.1016/j.asoc.2018.05.042_bib0060
  article-title: Optimization of modular Truss-Z by minimum-mass design under equivalent stress constraint
  publication-title: Smart Struct. Syst.
– start-page: 133
  year: 2006
  ident: 10.1016/j.asoc.2018.05.042_bib0095
– volume: 34
  start-page: 286
  year: 2015
  ident: 10.1016/j.asoc.2018.05.042_bib0105
  article-title: Distributed evolutionary algorithms and their models: a survey of the state-of-the-art
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.04.061
– volume: 12
  start-page: 403
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2018.05.042_bib0100
  article-title: Accelerating floating-point fitness functions in evolutionary algorithms: a FPGA-CPU-GPU performance comparison
  publication-title: Genet. Prog. Evol. Mach.
  doi: 10.1007/s10710-011-9137-2
SSID ssj0016928
Score 2.2956488
Snippet •A novel framework for Truss-Z layout optimization is presented.•It is based on image processing, evolutionary algorithm & massive parallelization.•GPU is used...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 501
SubjectTerms Accessibility
Combinatorial
Discrete
Extremely Modular System
Genetic algorithm
GPGPU
GPU
Multi-objective
Optimization
Parallel computing
Retrofitting
Truss-Z
Title Effective multi-objective discrete optimization of Truss-Z layouts using a GPU
URI https://dx.doi.org/10.1016/j.asoc.2018.05.042
Volume 70
WOSCitedRecordID wos000443296000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuUF6iQJEP3FZGcR5-HCtU-pBY9bCVVlwix3GkLttstUlK6a9nHDtmWaCiBy5R4jhO4s8ZjyffzCD03prVYskUSTOpSVraT4olnBiY7qVMC0ljl2yCT6diPpdno9HJ4AtzveR1LW5u5NV_hRrKAGzrOnsPuEOjUAD7ADpsAXbY_hPwLh6xJQT1ZEGyKhb-2Hrgro3lBYCcuPQOmFZbnK27piFfJkv1fdW1zaTrDQhqcnR2vqm8DhprA6K756J37TDxWdOz-nZR3ros2J8tRTMYb26_2uWzO3OqtA8P7E0NVAQuVZCOTJBUepuhF58u74eXf5mv7qbSzDGkf5PSzmCw-KBgAFp2neiDp7ooW7-GxN6aqgKBcOCmLXLbRm7byKMshzYeoJ2YZ1KM0c7ByeH8NPxSYrJPtBvewXtQObLf9pP8WUvZ0Dxmu-ixXzLgAwf1UzQy9TP0ZEjHgb10fo6mAXm8hTwekMebyONVhT3y2COPe-SxwoD8C3T-6XD28Zj4dBlEJ1HUEpoWkaG8EkZIrkExo6XQAgpVyiuZJKlmhlaAMohcbmKhaRkXmmWFqnipyjh5icb1qjavEJY0oUpXVBS0SFkcKckEr1hSZtBzUcX3EB26J9c-lrxNabLM_w7MHpqEa65cJJU7a2dDr-deF3Q6Xg6D6I7rXt_rLm_Qo5_j_C0at-vO7KOH-rq9aNbv_Aj6AVVNgCE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+multi-objective+discrete+optimization+of+Truss-Z+layouts+using+a+GPU&rft.jtitle=Applied+soft+computing&rft.au=Zawidzki%2C+Machi&rft.au=Szklarski%2C+Jacek&rft.date=2018-09-01&rft.issn=1568-4946&rft.volume=70&rft.spage=501&rft.epage=512&rft_id=info:doi/10.1016%2Fj.asoc.2018.05.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2018_05_042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon