Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure

In constructing the Bayesian network (BN) reliability model, too many components will make the memory storage requirements of the conditional probability table (CPT) exceed the computer random access memory (RAM), especially for the complex multistate system with common cause failure (CCF). However,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Reliability engineering & system safety Ročník 241; s. 109663
Hlavní autoři: Zheng, Xiaohu, Yao, Wen, Xu, Yingchun, Wang, Ning
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2024
Témata:
ISSN:0951-8320, 1879-0836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In constructing the Bayesian network (BN) reliability model, too many components will make the memory storage requirements of the conditional probability table (CPT) exceed the computer random access memory (RAM), especially for the complex multistate system with common cause failure (CCF). However, the existing methods cannot solve the BN modeling’s large memory storage requirements problem of the complex multistate system with CCF. Thus, this paper proposes a BN block to process the nodes with CCF, converting CPT to a super multistate node’s joint probability table, based on which a multistate BN compression modeling algorithm under CCF is proposed to reduce the memory storage requirements of BN reliability modeling. By deriving the intermediate inference factor constructing rules, this paper proposes a multistate BN compression inference algorithm under CCF to perform the compressed BN reliability inference. Finally, two engineering cases validate the proposed algorithms’ performance. The results show that the proposed algorithms can significantly decrease the BN modeling’s memory storage requirements and accurately analyze the reliability of the complex multistate system with CCF. •Proposing BN block to process CCF of complex multistate systems.•Deriving the constructing rules of intermediate inference factors with CCF.•Proposing the multistate BN compression inference algorithm under CCF.
AbstractList In constructing the Bayesian network (BN) reliability model, too many components will make the memory storage requirements of the conditional probability table (CPT) exceed the computer random access memory (RAM), especially for the complex multistate system with common cause failure (CCF). However, the existing methods cannot solve the BN modeling’s large memory storage requirements problem of the complex multistate system with CCF. Thus, this paper proposes a BN block to process the nodes with CCF, converting CPT to a super multistate node’s joint probability table, based on which a multistate BN compression modeling algorithm under CCF is proposed to reduce the memory storage requirements of BN reliability modeling. By deriving the intermediate inference factor constructing rules, this paper proposes a multistate BN compression inference algorithm under CCF to perform the compressed BN reliability inference. Finally, two engineering cases validate the proposed algorithms’ performance. The results show that the proposed algorithms can significantly decrease the BN modeling’s memory storage requirements and accurately analyze the reliability of the complex multistate system with CCF. •Proposing BN block to process CCF of complex multistate systems.•Deriving the constructing rules of intermediate inference factors with CCF.•Proposing the multistate BN compression inference algorithm under CCF.
ArticleNumber 109663
Author Zheng, Xiaohu
Wang, Ning
Xu, Yingchun
Yao, Wen
Author_xml – sequence: 1
  givenname: Xiaohu
  orcidid: 0000-0003-4568-4277
  surname: Zheng
  fullname: Zheng, Xiaohu
  email: zhengboy320@163.com
  organization: Defense Innovation Institute, Academy of Military Science, No. 53, Fengtai East Street, Beijing 100071, China
– sequence: 2
  givenname: Wen
  surname: Yao
  fullname: Yao, Wen
  email: wendy0782@126.com
  organization: Defense Innovation Institute, Academy of Military Science, No. 53, Fengtai East Street, Beijing 100071, China
– sequence: 3
  givenname: Yingchun
  surname: Xu
  fullname: Xu, Yingchun
  organization: Defense Innovation Institute, Academy of Military Science, No. 53, Fengtai East Street, Beijing 100071, China
– sequence: 4
  givenname: Ning
  orcidid: 0000-0002-8966-8909
  surname: Wang
  fullname: Wang, Ning
  organization: Defense Innovation Institute, Academy of Military Science, No. 53, Fengtai East Street, Beijing 100071, China
BookMark eNp9kE1LAzEQhoMo2Fb_gKf8ga3JZr8CXmrxCwpe9ByS7KSm7iYlSa3117tLPXnoaYYZnpeZZ4rOnXeA0A0lc0podbuZB4hxnpOcDQNeVewMTWhT84w0rDpHE8JLmjUsJ5doGuOGEFLwsp6gn0W39sGmjz5i4wO-lweIVjrsIO19-MS9b6Gzbo2la3EYWqlsZ9MBW2cggNOAvcHa99sOvnG_65KNSSbA8RATDKn7IXzc995hLXcRsJG22wW4QhdGdhGu_-oMvT8-vC2fs9Xr08tysco0IyRltCgLagwroORM1qosFFNNIYGxXDKVM1ND3dbQcMoNlLRSZauVVpTXTUULzWaoOebq4GMMYIS2w4XWuxSGSwQlYnQoNmJ0KEaH4uhwQPN_6DbYXobDaejuCMHw1JeFIKK2o6jWBtBJtN6ewn8BuUSQ7w
CitedBy_id crossref_primary_10_1007_s42452_025_07166_z
crossref_primary_10_1016_j_ress_2024_110590
crossref_primary_10_1002_qre_3569
crossref_primary_10_1016_j_ress_2025_111251
crossref_primary_10_1002_qre_3710
crossref_primary_10_1016_j_ress_2024_110088
crossref_primary_10_1016_j_ress_2024_110036
crossref_primary_10_1016_j_ress_2025_111168
crossref_primary_10_1038_s44304_025_00115_1
crossref_primary_10_1016_j_ress_2025_111074
crossref_primary_10_3390_buildings15173027
crossref_primary_10_1016_j_ress_2024_110225
crossref_primary_10_1016_j_ress_2024_110445
crossref_primary_10_1007_s10845_024_02556_3
crossref_primary_10_1002_qre_70053
crossref_primary_10_1016_j_ress_2024_110128
crossref_primary_10_1016_j_ress_2024_110605
Cites_doi 10.1016/j.ress.2016.07.022
10.1007/s10479-019-03247-6
10.1002/qre.2713
10.1002/qre.2443
10.1002/qre.2835
10.1109/TR.2015.2419620
10.1016/j.ress.2016.04.005
10.1016/j.ress.2022.108813
10.1016/j.ifacol.2018.09.718
10.1016/j.ress.2016.02.003
10.1016/j.ress.2020.106988
10.1016/j.ress.2020.107201
10.1016/j.ress.2021.107943
10.1016/j.paerosci.2011.05.001
10.1016/j.ress.2020.107119
10.1016/j.ress.2020.107011
10.1109/TIT.1977.1055714
10.1016/j.ress.2018.02.021
10.2514/1.J052327
10.1016/j.ress.2019.04.011
10.1061/(ASCE)CP.1943-5487.0000699
10.1016/j.ress.2021.108295
10.1016/j.compind.2020.103319
10.1016/j.ress.2021.108028
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.ress.2023.109663
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2023_109663
S095183202300577X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-14541ff34e593a7b54b3b84ae332a3b23f7e7d7e8919fe516b5dcbcb1978614c3
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001086121800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Tue Nov 18 20:43:08 EST 2025
Sat Nov 29 07:08:00 EST 2025
Fri Feb 23 02:35:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Complex multistate system
Reliability analysis
Common cause failure
Compression algorithm
Bayesian network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-14541ff34e593a7b54b3b84ae332a3b23f7e7d7e8919fe516b5dcbcb1978614c3
ORCID 0000-0002-8966-8909
0000-0003-4568-4277
ParticipantIDs crossref_citationtrail_10_1016_j_ress_2023_109663
crossref_primary_10_1016_j_ress_2023_109663
elsevier_sciencedirect_doi_10_1016_j_ress_2023_109663
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yao, Chen, Luo, van Tooren, Guo (b3) 2011; 47
Mi, Li, Yang, Peng, Huang (b6) 2016; 152
Mi, Lu, Li, Huang, Bai (b22) 2022; 220
Tong, Tien (b18) 2017; 31
Zheng, Yao, Xu, Chen (b11) 2020; 202
Qiu, Ming (b29) 2020; 123
Fenton, Neil (b31) 2013
Li, Liu, Huang, Huang, Mi (b21) 2020; 36
Li, Huang, Mi, Peng, Han (b25) 2022; 311
Yao, Chen, Huang, Gurdal, van Tooren (b5) 2013; 51
Guo, Zhong, Gao, Wang, Liang, Yi (b27) 2021; 216
Weiwen, Yan-Feng, Jinhua, Le, Hong-Zhong (b8) 2016; 153
Mi, Beer, Li, Broggi, Cheng (b19) 2020; 201
Song, Mi, Cheng, Bai, Chen (b7) 2020; 204
He, C, Hong-Zhong (b9) 2020; 217
He, Zhi-Ming, Noorbakhsh Amiri, C (b10) 2021; 215
Song, Mi, Cheng, Bai, Chen (b20) 2021; 37
Mi, Li, Huang, Liu, Zhang (b23) 2012
Mi, Li, Peng, Huang (b24) 2018; 174
Dimaio, Scapinello, Zio, Ciarapica, Cincotta, Crivellari, Decarli, Larosa (b16) 2021; 216
Zheng, Yao, Xu, Chen (b15) 2019; 189
Song, Mi, Cheng, Bai, Wang (b26) 2019; 35
Qiu, Hou, Ming (b28) 2018; 51
Tien, Der Kiureghian (b12) 2016; 156
Hauck, Wilson (b13) 1999
Murphy (b30) 2001; 33
Zheng, Yao, Gong, Zhang, Zhang (b1) 2022
Xu, Yao, Zheng, Chen (b4) 2020; 204
Yao, Zheng, Zhang, Wang, Tang (b2) 2023; 229
Ziv, Lempel (b14) 1977; 23
Mi, Li, Liu, Yang, Huang (b17) 2015; 64
Ziv (10.1016/j.ress.2023.109663_b14) 1977; 23
Mi (10.1016/j.ress.2023.109663_b23) 2012
Li (10.1016/j.ress.2023.109663_b21) 2020; 36
He (10.1016/j.ress.2023.109663_b10) 2021; 215
Weiwen (10.1016/j.ress.2023.109663_b8) 2016; 153
Tong (10.1016/j.ress.2023.109663_b18) 2017; 31
He (10.1016/j.ress.2023.109663_b9) 2020; 217
Qiu (10.1016/j.ress.2023.109663_b29) 2020; 123
Fenton (10.1016/j.ress.2023.109663_b31) 2013
Hauck (10.1016/j.ress.2023.109663_b13) 1999
Zheng (10.1016/j.ress.2023.109663_b11) 2020; 202
Song (10.1016/j.ress.2023.109663_b7) 2020; 204
Murphy (10.1016/j.ress.2023.109663_b30) 2001; 33
Qiu (10.1016/j.ress.2023.109663_b28) 2018; 51
Song (10.1016/j.ress.2023.109663_b20) 2021; 37
Zheng (10.1016/j.ress.2023.109663_b1) 2022
Zheng (10.1016/j.ress.2023.109663_b15) 2019; 189
Dimaio (10.1016/j.ress.2023.109663_b16) 2021; 216
Mi (10.1016/j.ress.2023.109663_b17) 2015; 64
Xu (10.1016/j.ress.2023.109663_b4) 2020; 204
Yao (10.1016/j.ress.2023.109663_b5) 2013; 51
Tien (10.1016/j.ress.2023.109663_b12) 2016; 156
Mi (10.1016/j.ress.2023.109663_b24) 2018; 174
Song (10.1016/j.ress.2023.109663_b26) 2019; 35
Mi (10.1016/j.ress.2023.109663_b19) 2020; 201
Yao (10.1016/j.ress.2023.109663_b3) 2011; 47
Li (10.1016/j.ress.2023.109663_b25) 2022; 311
Guo (10.1016/j.ress.2023.109663_b27) 2021; 216
Yao (10.1016/j.ress.2023.109663_b2) 2023; 229
Mi (10.1016/j.ress.2023.109663_b6) 2016; 152
Mi (10.1016/j.ress.2023.109663_b22) 2022; 220
References_xml – volume: 23
  start-page: 337
  year: 1977
  end-page: 343
  ident: b14
  article-title: A universal algorithm for sequential data compression
  publication-title: IEEE Trans Inform Theory
– volume: 215
  year: 2021
  ident: b10
  article-title: Reliability analysis of the main drive system of a CNC machine tool including early failures
  publication-title: Reliab Eng Syst Saf
– volume: 220
  year: 2022
  ident: b22
  article-title: An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties
  publication-title: Reliab Eng Syst Saf
– volume: 229
  year: 2023
  ident: b2
  article-title: Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification
  publication-title: Reliab Eng Syst Saf
– volume: 36
  start-page: 2509
  year: 2020
  end-page: 2520
  ident: b21
  article-title: Reliability assessment for systems suffering common cause failure based on Bayesian networks and proportional hazards model
  publication-title: Qual Reliab Eng Int
– volume: 216
  year: 2021
  ident: b27
  article-title: A discrete-time Bayesian network approach for reliability analysis of dynamic systems with common cause failures
  publication-title: Reliab Eng Syst Saf
– volume: 37
  start-page: 1894
  year: 2021
  end-page: 1921
  ident: b20
  article-title: Reliability assessment for failure-dependent and uncertain systems: a Bayesian network based on copula method and probability-box
  publication-title: Qual Reliab Eng Int
– volume: 33
  start-page: 1
  year: 2001
  end-page: 33
  ident: b30
  article-title: The Bayes net toolbox for matlab
  publication-title: Comput Sci Stat
– volume: 201
  year: 2020
  ident: b19
  article-title: Reliability and importance analysis of uncertain system with common cause failures based on survival signature
  publication-title: Reliab Eng Syst Saf
– volume: 204
  year: 2020
  ident: b7
  article-title: A dependency bounds analysis method for reliability assessment of complex system with hybrid uncertainty
  publication-title: Reliab Eng Syst Saf
– volume: 64
  start-page: 1300
  year: 2015
  end-page: 1309
  ident: b17
  article-title: Belief universal generating function analysis of multi-state systems under epistemic uncertainty and common cause failures
  publication-title: IEEE Trans Reliab
– volume: 202
  year: 2020
  ident: b11
  article-title: Algorithms for Bayesian network modeling and reliability inference of complex multistate systems: Part I – independent systems
  publication-title: Reliab Eng Syst Saf
– volume: 31
  year: 2017
  ident: b18
  article-title: Algorithms for Bayesian network modeling, inference, and reliability assessment for multistate flow networks
  publication-title: J Comput Civ Eng
– volume: 216
  year: 2021
  ident: b16
  article-title: Accounting for safety barriers degradation in the risk assessment of oil and gas systems by multistate Bayesian networks
  publication-title: Reliab Eng Syst Saf
– volume: 35
  start-page: 1025
  year: 2019
  end-page: 1045
  ident: b26
  article-title: Application of discrete-time Bayesian network on reliability analysis of uncertain system with common cause failure
  publication-title: Qual Reliab Eng Int
– volume: 204
  year: 2020
  ident: b4
  article-title: An iterative information integration method for multi-level system reliability analysis based on Bayesian melding method
  publication-title: Reliab Eng Syst Saf
– volume: 153
  start-page: 75
  year: 2016
  end-page: 87
  ident: b8
  article-title: Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective
  publication-title: Reliab Eng Syst Saf
– volume: 217
  year: 2020
  ident: b9
  article-title: Reliability analysis of a floating offshore wind turbine using Bayesian networks
  publication-title: Ocean Eng
– volume: 189
  start-page: 123
  year: 2019
  end-page: 142
  ident: b15
  article-title: Improved compression inference algorithm for reliability analysis of complex multistate satellite system based on multilevel Bayesian network
  publication-title: Reliab Eng Syst Saf
– start-page: 286
  year: 1999
  end-page: 287
  ident: b13
  article-title: Runlength compression techniques for FPGA configurations
  publication-title: Seventh annual IEEE symposium on field-programmable custom computing machines
– year: 2022
  ident: b1
  article-title: Physics-informed deep Monte Carlo quantile regression method for interval multilevel Bayesian network-based satellite heat reliability analysis
– volume: 51
  start-page: 1037
  year: 2018
  end-page: 1042
  ident: b28
  article-title: An implicit method for probabilistic common-cause failure analysis using Bayesian network
  publication-title: IFAC-PapersOnLine
– start-page: 1117
  year: 2012
  end-page: 1121
  ident: b23
  article-title: Reliability analysis of multi-state systems with common cause failure based on Bayesian networks
  publication-title: 2012 international conference on quality, reliability, risk, maintenance, and safety engineering
– volume: 311
  start-page: 195
  year: 2022
  end-page: 209
  ident: b25
  article-title: Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability
  publication-title: Ann Oper Res
– year: 2013
  ident: b31
  article-title: Risk assessment and decision analysis with bayesian networks
– volume: 156
  start-page: 134
  year: 2016
  end-page: 147
  ident: b12
  article-title: Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems
  publication-title: Reliab Eng Syst Saf
– volume: 152
  start-page: 1
  year: 2016
  end-page: 15
  ident: b6
  article-title: Reliability assessment of complex electromechanical systems under epistemic uncertainty
  publication-title: Reliab Eng Syst Saf
– volume: 123
  year: 2020
  ident: b29
  article-title: Explicit and implicit Bayesian network-based methods for the risk assessment of systems subject to probabilistic common-cause failures
  publication-title: Comput Ind
– volume: 174
  start-page: 71
  year: 2018
  end-page: 81
  ident: b24
  article-title: Reliability analysis of complex multi-state system with common cause failure based on evidential networks
  publication-title: Reliab Eng Syst Saf
– volume: 47
  start-page: 450
  year: 2011
  end-page: 479
  ident: b3
  article-title: Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles
  publication-title: Prog Aerosp Sci
– volume: 51
  start-page: 2266
  year: 2013
  end-page: 2277
  ident: b5
  article-title: Sequential optimization and mixed uncertainty analysis method for reliability-based optimization
  publication-title: AIAA J
– volume: 156
  start-page: 134
  year: 2016
  ident: 10.1016/j.ress.2023.109663_b12
  article-title: Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.07.022
– start-page: 1117
  year: 2012
  ident: 10.1016/j.ress.2023.109663_b23
  article-title: Reliability analysis of multi-state systems with common cause failure based on Bayesian networks
– volume: 311
  start-page: 195
  issue: 1
  year: 2022
  ident: 10.1016/j.ress.2023.109663_b25
  article-title: Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-019-03247-6
– volume: 36
  start-page: 2509
  issue: 7
  year: 2020
  ident: 10.1016/j.ress.2023.109663_b21
  article-title: Reliability assessment for systems suffering common cause failure based on Bayesian networks and proportional hazards model
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.2713
– volume: 217
  year: 2020
  ident: 10.1016/j.ress.2023.109663_b9
  article-title: Reliability analysis of a floating offshore wind turbine using Bayesian networks
  publication-title: Ocean Eng
– volume: 35
  start-page: 1025
  issue: 4
  year: 2019
  ident: 10.1016/j.ress.2023.109663_b26
  article-title: Application of discrete-time Bayesian network on reliability analysis of uncertain system with common cause failure
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.2443
– volume: 37
  start-page: 1894
  issue: 5
  year: 2021
  ident: 10.1016/j.ress.2023.109663_b20
  article-title: Reliability assessment for failure-dependent and uncertain systems: a Bayesian network based on copula method and probability-box
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.2835
– volume: 64
  start-page: 1300
  issue: 4
  year: 2015
  ident: 10.1016/j.ress.2023.109663_b17
  article-title: Belief universal generating function analysis of multi-state systems under epistemic uncertainty and common cause failures
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2015.2419620
– year: 2013
  ident: 10.1016/j.ress.2023.109663_b31
– volume: 153
  start-page: 75
  year: 2016
  ident: 10.1016/j.ress.2023.109663_b8
  article-title: Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.04.005
– volume: 229
  year: 2023
  ident: 10.1016/j.ress.2023.109663_b2
  article-title: Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108813
– volume: 51
  start-page: 1037
  issue: 24
  year: 2018
  ident: 10.1016/j.ress.2023.109663_b28
  article-title: An implicit method for probabilistic common-cause failure analysis using Bayesian network
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.718
– volume: 152
  start-page: 1
  year: 2016
  ident: 10.1016/j.ress.2023.109663_b6
  article-title: Reliability assessment of complex electromechanical systems under epistemic uncertainty
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.02.003
– volume: 201
  year: 2020
  ident: 10.1016/j.ress.2023.109663_b19
  article-title: Reliability and importance analysis of uncertain system with common cause failures based on survival signature
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.106988
– volume: 33
  start-page: 1
  year: 2001
  ident: 10.1016/j.ress.2023.109663_b30
  article-title: The Bayes net toolbox for matlab
  publication-title: Comput Sci Stat
– volume: 204
  year: 2020
  ident: 10.1016/j.ress.2023.109663_b4
  article-title: An iterative information integration method for multi-level system reliability analysis based on Bayesian melding method
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107201
– volume: 216
  year: 2021
  ident: 10.1016/j.ress.2023.109663_b16
  article-title: Accounting for safety barriers degradation in the risk assessment of oil and gas systems by multistate Bayesian networks
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107943
– volume: 47
  start-page: 450
  issue: 6
  year: 2011
  ident: 10.1016/j.ress.2023.109663_b3
  article-title: Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles
  publication-title: Prog Aerosp Sci
  doi: 10.1016/j.paerosci.2011.05.001
– year: 2022
  ident: 10.1016/j.ress.2023.109663_b1
– volume: 204
  year: 2020
  ident: 10.1016/j.ress.2023.109663_b7
  article-title: A dependency bounds analysis method for reliability assessment of complex system with hybrid uncertainty
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107119
– volume: 202
  year: 2020
  ident: 10.1016/j.ress.2023.109663_b11
  article-title: Algorithms for Bayesian network modeling and reliability inference of complex multistate systems: Part I – independent systems
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107011
– start-page: 286
  year: 1999
  ident: 10.1016/j.ress.2023.109663_b13
  article-title: Runlength compression techniques for FPGA configurations
– volume: 23
  start-page: 337
  issue: 3
  year: 1977
  ident: 10.1016/j.ress.2023.109663_b14
  article-title: A universal algorithm for sequential data compression
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/TIT.1977.1055714
– volume: 174
  start-page: 71
  year: 2018
  ident: 10.1016/j.ress.2023.109663_b24
  article-title: Reliability analysis of complex multi-state system with common cause failure based on evidential networks
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.02.021
– volume: 51
  start-page: 2266
  issue: 9
  year: 2013
  ident: 10.1016/j.ress.2023.109663_b5
  article-title: Sequential optimization and mixed uncertainty analysis method for reliability-based optimization
  publication-title: AIAA J
  doi: 10.2514/1.J052327
– volume: 189
  start-page: 123
  year: 2019
  ident: 10.1016/j.ress.2023.109663_b15
  article-title: Improved compression inference algorithm for reliability analysis of complex multistate satellite system based on multilevel Bayesian network
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.04.011
– volume: 31
  issue: 5
  year: 2017
  ident: 10.1016/j.ress.2023.109663_b18
  article-title: Algorithms for Bayesian network modeling, inference, and reliability assessment for multistate flow networks
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000699
– volume: 220
  year: 2022
  ident: 10.1016/j.ress.2023.109663_b22
  article-title: An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108295
– volume: 123
  year: 2020
  ident: 10.1016/j.ress.2023.109663_b29
  article-title: Explicit and implicit Bayesian network-based methods for the risk assessment of systems subject to probabilistic common-cause failures
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2020.103319
– volume: 215
  year: 2021
  ident: 10.1016/j.ress.2023.109663_b10
  article-title: Reliability analysis of the main drive system of a CNC machine tool including early failures
  publication-title: Reliab Eng Syst Saf
– volume: 216
  year: 2021
  ident: 10.1016/j.ress.2023.109663_b27
  article-title: A discrete-time Bayesian network approach for reliability analysis of dynamic systems with common cause failures
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108028
SSID ssj0004957
Score 2.4894032
Snippet In constructing the Bayesian network (BN) reliability model, too many components will make the memory storage requirements of the conditional probability table...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109663
SubjectTerms Bayesian network
Common cause failure
Complex multistate system
Compression algorithm
Reliability analysis
Title Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure
URI https://dx.doi.org/10.1016/j.ress.2023.109663
Volume 241
WOSCitedRecordID wos001086121800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE-1vOQDtyirTezE8XFBRcBhhVBR9xbZXptttcpWu0215cfwW5lk7CQUqOiBSxRZySS782VmPJr5hpA3sEPgBVvIONUqj3mR57EWCxeDJ5kY27R2OtUOmxCzWTGfy8-j0Y_QC3O5ElVV7Hby_L-qGtZA2U3r7C3U3QmFBTgHpcMR1A7Hf1L8dPVtDTv-JTItRG_VlW0bJSss-MbZN6E1cQOnyNR91dZlIedsKDW3Oyw4bLuOPOnzNlSrN78oMqre2sip05VnJgmB7peBYNtzHrZIQ0HRVjlPQoKZa4tmZ36q1su6s0aqzeWe9B1r87p1GyDMLOtu9cTnvWfBFftMRsoHmYyQkkxisDCToXVOkRfL29cEdlxoEH8z_ZiFOBs3WYpxMxR-3F_8K8_2Nf_XVSWGgrezspFRNjJKlHGH7Kcik2A196cfj-af-s5biVyy4c19WxZWEF5_kz-HPoNw5vgheeD3IXSK-HlERrZ6TO4P2CmfkO89kiggiQYkUY8kGpBEAUl0gCTaIYmuHfVIoj2SqEcSbZBEEUm0RRL1SHpKvr4_On73IfajOmLDJpOLOOEZT5xj3GaSKaEzrpkuuLKMpYrplDlhxULYQibS2SzJdbYw2uhEigICRMOekb1qXdkDQq3KLXgVzZ1KubBMapsmXBmI64VQWh6SJPyLpfE89s04lVX5d_0dkqi75xxZXG68OgvKKX0civFlCVi74b7nt3rKC3Kv_whekr2LTW1fkbvmEnSxee2B9hO02q_d
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms+for+Bayesian+network+modeling+and+reliability+inference+of+complex+multistate+systems+with+common+cause+failure&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Zheng%2C+Xiaohu&rft.au=Yao%2C+Wen&rft.au=Xu%2C+Yingchun&rft.au=Wang%2C+Ning&rft.date=2024-01-01&rft.issn=0951-8320&rft.volume=241&rft.spage=109663&rft_id=info:doi/10.1016%2Fj.ress.2023.109663&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2023_109663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon