Superpixels: An evaluation of the state-of-the-art

•An extensive evaluation of 28 superpixel algorithms on 5 datasets.•Explicit discussion of parameter optimization, including superpixel connectivity.•Presentation of visual quality, algorithm runtime, and a performance-based ranking.•The evaluated implementations as well as the benchmark are publicl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer vision and image understanding Jg. 166; S. 1 - 27
Hauptverfasser: Stutz, David, Hermans, Alexander, Leibe, Bastian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.01.2018
Schlagworte:
ISSN:1077-3142, 1090-235X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •An extensive evaluation of 28 superpixel algorithms on 5 datasets.•Explicit discussion of parameter optimization, including superpixel connectivity.•Presentation of visual quality, algorithm runtime, and a performance-based ranking.•The evaluated implementations as well as the benchmark are publicly available. Superpixels group perceptually similar pixels to create visually meaningful entities while heavily reducing the number of primitives for subsequent processing steps. As of these properties, superpixel algorithms have received much attention since their naming in 2003 (Ren and Malik, 2003). By today, publicly available superpixel algorithms have turned into standard tools in low-level vision. As such, and due to their quick adoption in a wide range of applications, appropriate benchmarks are crucial for algorithm selection and comparison. Until now, the rapidly growing number of algorithms as well as varying experimental setups hindered the development of a unifying benchmark. We present a comprehensive evaluation of 28 state-of-the-art superpixel algorithms utilizing a benchmark focussing on fair comparison and designed to provide new insights relevant for applications. To this end, we explicitly discuss parameter optimization and the importance of strictly enforcing connectivity. Furthermore, by extending well-known metrics, we are able to summarize algorithm performance independent of the number of generated superpixels, thereby overcoming a major limitation of available benchmarks. Furthermore, we discuss runtime, robustness against noise, blur and affine transformations, implementation details as well as aspects of visual quality. Finally, we present an overall ranking of superpixel algorithms which redefines the state-of-the-art and enables researchers to easily select appropriate algorithms and the corresponding implementations which themselves are made publicly available as part of our benchmark at http://www.davidstutz.de/projects/superpixel-benchmark/.
AbstractList •An extensive evaluation of 28 superpixel algorithms on 5 datasets.•Explicit discussion of parameter optimization, including superpixel connectivity.•Presentation of visual quality, algorithm runtime, and a performance-based ranking.•The evaluated implementations as well as the benchmark are publicly available. Superpixels group perceptually similar pixels to create visually meaningful entities while heavily reducing the number of primitives for subsequent processing steps. As of these properties, superpixel algorithms have received much attention since their naming in 2003 (Ren and Malik, 2003). By today, publicly available superpixel algorithms have turned into standard tools in low-level vision. As such, and due to their quick adoption in a wide range of applications, appropriate benchmarks are crucial for algorithm selection and comparison. Until now, the rapidly growing number of algorithms as well as varying experimental setups hindered the development of a unifying benchmark. We present a comprehensive evaluation of 28 state-of-the-art superpixel algorithms utilizing a benchmark focussing on fair comparison and designed to provide new insights relevant for applications. To this end, we explicitly discuss parameter optimization and the importance of strictly enforcing connectivity. Furthermore, by extending well-known metrics, we are able to summarize algorithm performance independent of the number of generated superpixels, thereby overcoming a major limitation of available benchmarks. Furthermore, we discuss runtime, robustness against noise, blur and affine transformations, implementation details as well as aspects of visual quality. Finally, we present an overall ranking of superpixel algorithms which redefines the state-of-the-art and enables researchers to easily select appropriate algorithms and the corresponding implementations which themselves are made publicly available as part of our benchmark at http://www.davidstutz.de/projects/superpixel-benchmark/.
Author Hermans, Alexander
Leibe, Bastian
Stutz, David
Author_xml – sequence: 1
  givenname: David
  surname: Stutz
  fullname: Stutz, David
  email: david.stutz@rwth-aachen.de
– sequence: 2
  givenname: Alexander
  surname: Hermans
  fullname: Hermans, Alexander
– sequence: 3
  givenname: Bastian
  surname: Leibe
  fullname: Leibe, Bastian
BookMark eNp9kM9OwzAMhyM0JLbBC3DqC6TYydZQxGWa-CdN4gBI3KIscUSm0k5JNsHb0zJOHHayffjs3-cJG7VdS4xdIpQIWF1tSrsPu1IAqhJkCaBO2BihBi7k_H009EpxiTNxxiYpbQAQZzWOmXjZbSluwxc16aZYtAXtTbMzOXRt0fkif1CRssnEO8_7gZuYz9mpN02ii786ZW_3d6_LR756fnhaLlbcSoDM-1zgva-8c7Y_tkYHAmU1q2TlqJKonKpUba1QUtRghCRFci7FmmpCL4ycsuvDXhu7lCJ5bUP-TZajCY1G0IO73ujBXQ_uGqTu3XtU_EO3MXya-H0cuj1A_StoHyjqZAO1llyIZLN2XTiG_wC33nRD
CitedBy_id crossref_primary_10_1080_15481603_2025_2498188
crossref_primary_10_3390_sym10050169
crossref_primary_10_1016_j_engappai_2023_107212
crossref_primary_10_1002_rse2_260
crossref_primary_10_3390_rs11090998
crossref_primary_10_1109_ACCESS_2020_2984720
crossref_primary_10_1007_s00371_020_01852_2
crossref_primary_10_1109_TGRS_2023_3294227
crossref_primary_10_1049_el_2019_1092
crossref_primary_10_1145_3286977
crossref_primary_10_1007_s11042_024_19799_0
crossref_primary_10_1117_1_JRS_18_014530
crossref_primary_10_1109_TGRS_2020_3047126
crossref_primary_10_1109_TGRS_2021_3108585
crossref_primary_10_1109_TMM_2019_2907047
crossref_primary_10_1109_LSP_2021_3106586
crossref_primary_10_1109_ACCESS_2019_2939025
crossref_primary_10_1080_02286203_2023_2274258
crossref_primary_10_1109_ACCESS_2023_3293538
crossref_primary_10_3390_rs11050512
crossref_primary_10_3390_rs10081289
crossref_primary_10_3390_rs12111868
crossref_primary_10_1111_jmi_13072
crossref_primary_10_3390_s20092557
crossref_primary_10_1016_j_bspc_2021_103207
crossref_primary_10_1145_3652509
crossref_primary_10_1109_TCSVT_2023_3347402
crossref_primary_10_3390_rs15030715
crossref_primary_10_1007_s11227_021_03666_y
crossref_primary_10_1111_cgf_14156
crossref_primary_10_1016_j_bspc_2022_104059
crossref_primary_10_1007_s11517_024_03093_0
crossref_primary_10_1016_j_asoc_2024_111467
crossref_primary_10_3390_s22166043
crossref_primary_10_3390_f16050827
crossref_primary_10_1016_j_optlastec_2020_106703
crossref_primary_10_1109_JSTARS_2023_3324770
crossref_primary_10_1080_02726351_2023_2214095
crossref_primary_10_1109_ACCESS_2020_2981666
crossref_primary_10_1186_s13640_018_0378_3
crossref_primary_10_1109_ACCESS_2020_2985106
crossref_primary_10_3390_jimaging9030059
crossref_primary_10_1016_j_asoc_2025_113389
crossref_primary_10_1109_JSTARS_2023_3265365
crossref_primary_10_1007_s11554_020_01021_7
crossref_primary_10_3390_s19081795
crossref_primary_10_1016_j_neucom_2024_129028
crossref_primary_10_1007_s11229_020_02629_9
crossref_primary_10_1016_j_jag_2022_102935
crossref_primary_10_1016_j_cageo_2019_104395
crossref_primary_10_1007_s10044_020_00925_1
crossref_primary_10_3390_s22030906
crossref_primary_10_1364_AO_58_0000B9
crossref_primary_10_1063_5_0247978
crossref_primary_10_5753_jbcs_2025_4278
crossref_primary_10_1109_JSTARS_2021_3076005
crossref_primary_10_1016_j_neucom_2022_12_028
crossref_primary_10_1109_JSTARS_2023_3281892
crossref_primary_10_1109_LGRS_2022_3201753
crossref_primary_10_1016_j_cageo_2021_105017
crossref_primary_10_3390_rs13152903
crossref_primary_10_1080_07038992_2020_1791693
crossref_primary_10_1109_TIP_2020_3002078
crossref_primary_10_1007_s12145_023_01040_5
crossref_primary_10_1016_j_jag_2018_04_011
crossref_primary_10_1016_j_rse_2020_111803
crossref_primary_10_1109_ACCESS_2023_3312181
crossref_primary_10_1109_TIP_2019_2957937
crossref_primary_10_3390_rs15041123
crossref_primary_10_1109_JBHI_2019_2910883
crossref_primary_10_1007_s00371_023_03218_w
crossref_primary_10_1007_s11042_019_08438_8
crossref_primary_10_1016_j_patrec_2020_02_018
crossref_primary_10_1016_j_dsp_2025_105068
crossref_primary_10_1016_j_sigpro_2021_108277
crossref_primary_10_2478_ijssis_2023_0008
crossref_primary_10_1109_JSTARS_2025_3600810
crossref_primary_10_1002_rob_21915
crossref_primary_10_1088_1742_6596_1237_3_032027
crossref_primary_10_3390_rs11050556
crossref_primary_10_1038_s41598_024_74179_w
crossref_primary_10_3390_jimaging7060093
crossref_primary_10_1016_j_imavis_2019_06_011
crossref_primary_10_1109_TIP_2020_2995056
crossref_primary_10_1080_01431161_2024_2384098
crossref_primary_10_1109_JBHI_2023_3240297
crossref_primary_10_1016_j_ecolind_2024_112108
crossref_primary_10_1093_jcde_qwac141
crossref_primary_10_3390_rs13142687
crossref_primary_10_1016_j_procs_2020_04_045
crossref_primary_10_1016_j_compind_2018_03_010
crossref_primary_10_1016_j_imavis_2021_104315
crossref_primary_10_3390_app112210876
crossref_primary_10_1016_j_eswa_2020_113349
crossref_primary_10_1007_s11263_020_01352_9
crossref_primary_10_1109_JSTARS_2022_3181720
crossref_primary_10_3390_rs16234344
crossref_primary_10_3390_rs11222627
crossref_primary_10_1007_s11548_021_02497_9
crossref_primary_10_1016_j_patcog_2022_108838
crossref_primary_10_1016_j_cag_2024_104014
crossref_primary_10_1016_j_neucom_2020_02_127
crossref_primary_10_1080_10106049_2018_1497093
crossref_primary_10_1016_j_patcog_2020_107705
crossref_primary_10_1109_TBDATA_2024_3423719
crossref_primary_10_3390_rs14071568
crossref_primary_10_1007_s11760_019_01517_1
crossref_primary_10_3390_s19081766
crossref_primary_10_1016_j_cviu_2018_01_006
crossref_primary_10_3390_app13085039
crossref_primary_10_1016_j_patcog_2023_109673
crossref_primary_10_3390_rs10101519
crossref_primary_10_3390_s23146648
crossref_primary_10_1016_j_agsy_2025_104360
crossref_primary_10_1016_j_cag_2020_12_002
crossref_primary_10_1007_s10489_019_01595_1
crossref_primary_10_1109_TIP_2021_3108403
crossref_primary_10_1117_1_JEI_34_2_023020
crossref_primary_10_1186_s12864_020_06832_3
crossref_primary_10_1109_TIP_2023_3290523
crossref_primary_10_1080_10589759_2024_2400588
crossref_primary_10_3390_rs13214315
crossref_primary_10_3390_e20110827
crossref_primary_10_1007_s11760_021_02066_2
crossref_primary_10_3390_jimaging8090244
crossref_primary_10_3390_e23121599
crossref_primary_10_1080_01431161_2022_2111532
crossref_primary_10_1109_JSTARS_2022_3168691
crossref_primary_10_1109_TIP_2022_3187563
crossref_primary_10_1038_s41598_025_08711_x
crossref_primary_10_1109_JBHI_2021_3136568
crossref_primary_10_3390_app8122356
crossref_primary_10_3390_s23021002
crossref_primary_10_1109_TIP_2018_2848548
crossref_primary_10_1016_j_sigpro_2019_02_015
crossref_primary_10_1007_s00521_023_08452_w
crossref_primary_10_1109_TGRS_2020_3000672
crossref_primary_10_1016_j_rse_2024_114274
crossref_primary_10_1111_mice_12903
crossref_primary_10_1109_TFUZZ_2020_3029939
crossref_primary_10_1007_s12665_023_10840_3
crossref_primary_10_1016_j_ecoinf_2021_101551
crossref_primary_10_1007_s11042_023_14861_9
crossref_primary_10_3390_rs11243026
crossref_primary_10_1038_s41598_023_35518_5
crossref_primary_10_1109_TIP_2023_3234700
crossref_primary_10_1016_j_ins_2022_10_039
crossref_primary_10_1109_TGRS_2022_3177935
crossref_primary_10_1007_s10851_023_01156_9
crossref_primary_10_1007_s11554_021_01128_5
crossref_primary_10_1016_j_compeleceng_2025_110358
crossref_primary_10_1016_j_cemconres_2019_105824
crossref_primary_10_3390_s20154173
crossref_primary_10_1109_TGRS_2020_3040452
crossref_primary_10_1088_1742_6596_2078_1_012040
crossref_primary_10_1109_TIP_2019_2959233
crossref_primary_10_1109_JSTARS_2023_3264452
crossref_primary_10_1109_TGRS_2021_3075956
crossref_primary_10_1016_j_cels_2021_04_008
crossref_primary_10_1109_TIM_2025_3544360
crossref_primary_10_1016_j_patcog_2020_107532
crossref_primary_10_1016_j_sigpro_2019_02_021
crossref_primary_10_3390_s20102969
crossref_primary_10_1016_j_jag_2022_103068
crossref_primary_10_3390_jimaging5060057
crossref_primary_10_1002_ima_22591
crossref_primary_10_1016_j_patrec_2023_01_003
crossref_primary_10_1051_itmconf_20246701048
crossref_primary_10_1016_j_cageo_2022_105232
crossref_primary_10_3390_s23041876
crossref_primary_10_1016_j_patcog_2022_109045
crossref_primary_10_1007_s11045_022_00854_8
crossref_primary_10_1016_j_compind_2023_103885
crossref_primary_10_1109_JSTARS_2024_3394771
crossref_primary_10_1016_j_cageo_2022_105109
crossref_primary_10_3390_rs12213603
crossref_primary_10_1007_s12524_020_01240_2
crossref_primary_10_3390_info12050196
crossref_primary_10_1109_TIP_2022_3176537
crossref_primary_10_1016_j_cma_2024_117677
crossref_primary_10_1109_TMM_2020_3009502
crossref_primary_10_1016_j_compag_2023_107629
crossref_primary_10_1109_TCI_2021_3139328
crossref_primary_10_1016_j_biosystemseng_2022_02_011
crossref_primary_10_1109_ACCESS_2019_2963055
crossref_primary_10_3390_sym13030518
crossref_primary_10_1109_TMM_2022_3163459
crossref_primary_10_15302_J_QB_021_0275
crossref_primary_10_1016_j_isprsjprs_2019_11_006
crossref_primary_10_1016_j_patcog_2019_03_012
crossref_primary_10_1109_JSTARS_2020_3011221
crossref_primary_10_1007_s00371_017_1422_5
crossref_primary_10_1016_j_compeleceng_2023_108610
crossref_primary_10_1007_s10489_023_04512_9
crossref_primary_10_1016_j_heliyon_2024_e34711
crossref_primary_10_3390_sym10100467
crossref_primary_10_1016_j_media_2022_102385
crossref_primary_10_3390_a13100257
crossref_primary_10_1049_iet_ipr_2019_0949
crossref_primary_10_1109_ACCESS_2025_3566506
crossref_primary_10_1109_LGRS_2020_3022478
crossref_primary_10_1186_s12880_022_00801_w
crossref_primary_10_1109_TIP_2021_3070732
crossref_primary_10_1016_j_neucom_2024_127927
crossref_primary_10_1007_s00521_022_07315_0
crossref_primary_10_1109_TCSVT_2022_3221925
crossref_primary_10_3390_sym16081011
crossref_primary_10_1007_s10278_020_00401_6
crossref_primary_10_1007_s41095_020_0177_5
crossref_primary_10_3390_app12115370
crossref_primary_10_1016_j_compag_2024_109051
crossref_primary_10_1016_j_media_2024_103141
crossref_primary_10_3390_rs15051441
crossref_primary_10_1177_1094342020945026
crossref_primary_10_1007_s11042_023_16569_2
crossref_primary_10_1016_j_engappai_2022_104709
crossref_primary_10_3390_rs13234899
crossref_primary_10_1016_j_patcog_2021_107964
crossref_primary_10_3390_info12020094
crossref_primary_10_1109_TCSVT_2020_3019109
crossref_primary_10_1016_j_neucom_2025_131502
crossref_primary_10_3390_rs15112889
crossref_primary_10_1016_j_imavis_2021_104263
crossref_primary_10_1155_2020_8886178
crossref_primary_10_3390_rs11111340
crossref_primary_10_3390_rs13061061
crossref_primary_10_1111_2041_210X_14295
crossref_primary_10_3390_rs11060634
crossref_primary_10_1016_j_jag_2023_103556
crossref_primary_10_3390_rs14236017
crossref_primary_10_1016_j_optlaseng_2025_109281
crossref_primary_10_1109_ACCESS_2021_3114324
crossref_primary_10_1016_j_biosystemseng_2019_06_016
crossref_primary_10_1016_j_bspc_2024_106304
crossref_primary_10_1007_s41064_020_00116_x
crossref_primary_10_3390_sym16081000
crossref_primary_10_1145_3386090
crossref_primary_10_3390_rs12030473
crossref_primary_10_3390_rs14122914
crossref_primary_10_1109_ACCESS_2020_2975896
crossref_primary_10_1016_j_tust_2024_106072
crossref_primary_10_3390_sym12091417
crossref_primary_10_1016_j_engappai_2021_104281
crossref_primary_10_1080_2573234X_2021_1908861
crossref_primary_10_1109_TGRS_2019_2961599
crossref_primary_10_1016_j_patcog_2022_109082
crossref_primary_10_3390_info11040223
crossref_primary_10_3390_rs11030231
crossref_primary_10_1109_TIP_2022_3188155
crossref_primary_10_1186_s13634_023_00999_z
crossref_primary_10_1080_01431161_2018_1465614
crossref_primary_10_1109_JSTARS_2025_3542255
crossref_primary_10_1016_j_patcog_2020_107667
crossref_primary_10_1109_LSP_2020_3015433
crossref_primary_10_3390_s20061682
crossref_primary_10_1002_nbm_70141
crossref_primary_10_1007_s00521_024_10184_4
crossref_primary_10_3390_app8060969
crossref_primary_10_1109_JSTARS_2021_3067349
crossref_primary_10_1109_TGRS_2019_2922672
crossref_primary_10_1109_LSP_2024_3393349
crossref_primary_10_3390_rs12244115
crossref_primary_10_3390_sym16121622
crossref_primary_10_3390_rs12010066
crossref_primary_10_1007_s11042_021_10900_5
crossref_primary_10_3390_s20226429
crossref_primary_10_3390_rs11030227
crossref_primary_10_3390_s18092808
crossref_primary_10_3389_fmars_2024_1411717
crossref_primary_10_3390_diagnostics13243611
crossref_primary_10_1007_s13347_023_00635_6
crossref_primary_10_4049_jimmunol_2100811
crossref_primary_10_3390_app10124415
crossref_primary_10_1109_THMS_2022_3222021
crossref_primary_10_1111_grs_12288
crossref_primary_10_3390_rs11192308
crossref_primary_10_1016_j_imavis_2022_104596
crossref_primary_10_1109_ACCESS_2020_2999942
Cites_doi 10.1109/34.868688
10.1109/TPAMI.2010.161
10.1007/s11263-007-0090-8
10.1109/TMI.2011.2171705
10.1007/s11263-006-0031-y
10.1007/978-1-4471-6515-6
10.1007/BF02998459
10.1023/B:VISI.0000022288.19776.77
10.1007/s11263-014-0777-6
10.1109/TPAMI.2004.1273918
10.1145/1073204.1073232
10.1109/TIP.2014.2300823
10.1109/TPAMI.2009.96
10.1109/TMM.2013.2285526
10.1109/TIP.2014.2302892
10.1007/s11263-015-0822-0
10.1109/TPAMI.2012.120
10.1007/s11263-008-0140-x
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.cviu.2017.03.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
EndPage 27
ExternalDocumentID 10_1016_j_cviu_2017_03_007
S1077314217300589
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
SST
~HD
ID FETCH-LOGICAL-c300t-1010fff6fddc114b1d021364636de6317d7679cc273290a23e7e3532be9e1f2a3
ISICitedReferencesCount 382
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419933000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-3142
IngestDate Sat Nov 29 06:43:52 EST 2025
Tue Nov 18 20:51:21 EST 2025
Fri Feb 23 02:26:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Benchmark
Image segmentation
Evaluation
Superpixels
Superpixel segmentation
Perceptual grouping
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-1010fff6fddc114b1d021364636de6317d7679cc273290a23e7e3532be9e1f2a3
PageCount 27
ParticipantIDs crossref_citationtrail_10_1016_j_cviu_2017_03_007
crossref_primary_10_1016_j_cviu_2017_03_007
elsevier_sciencedirect_doi_10_1016_j_cviu_2017_03_007
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationTitle Computer vision and image understanding
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Song, Lichtenberg, Xiao (bib0082) 2015
He, Lau, Liu, Huang, Yang (bib0036) 2015; 115
Koniusz, Mikolajczyk (bib0042) 2009
Xiao, Owens, Torralba (bib0089) 2013
Perazzi, Krähenbühl, Pritch, Hornung (bib0068) 2012
Neubert, Protzel (bib0066) 2013
Levinshtein, Stere, Kutulakos, Fleet, Dickinson, Siddiqi (bib0044) 2009; 31
Rohkohl, Engel (bib0074) 2007
Hoiem, Stein, Efros, Hebert (bib0039) 2007
Lu, Yang, Min, Do (bib0050) 2013
Mester, Franke (bib0061) 1988
Vedaldi, A., Fulkerson, B., 2008. VLFeat: An Open and Portable Library of Computer Vision Algorithms.
Gupta, Arbeláez, Girshick, Malik (bib0034) 2015; 112
Dong, Chen, Xia, Huang, Yan (bib0022) 2013
Kim, Zhang, Kang, Ko (bib0041) 2013
Andres, Köthe, Helmstaedter, Denk, Hamprecht (bib0003) 2008
Gould, Fulton, Koller (bib0031) 2009
van den Bergh, Boix, Roig, de Capitani, van Gool (bib0008) 2013; abs/1309.3848
Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (bib0002) 2012; 34
Liu, Salzmann, He (bib0048) 2014
Lui, Tuzel, Ramalingam, Chellappa (bib0053) 2011
Shu, Dehghan, Shah (bib0079) 2013
.
Dollár, Wojek, Schiele, Perona (bib0020) 2009
Shi, Malik (bib0078) 2000; 22
Weikersdorfer, Gossow, Beetz (bib0088) 2012
Silberman, Hoiem, Kohli, Fergus (bib0080) 2012
Deng, Dong, Socher, Li, Li, Fei-Fei (bib0019) 2009
Felzenswalb, Huttenlocher (bib0026) 2004; 59
Yao, Boben, Fidler, Urtasun (bib0096) 2015
Ren, Shakhnarovich (bib0073) 2013
Veksler, Boykov, Mehrani (bib0086) 2010; 6315
Lin, Fidler, Urtasun (bib0045) 2013
Dollár, Zitnick (bib0021) 2013
Malladi, Ram, Rodriguez (bib0056) 2014
Hoiem, Efros, Hebert (bib0038) 2007; 75
Yamaguchi, M. H, Ortiz, Berg (bib0091) 2012
Conrad, Mertz, Mester (bib0016) 2013
Du, Shen, Yu, Wang (bib0023) 2012
Schick, Fischer, Stiefelhagen (bib0076) 2012
Janoch, Karayev, Jia, Barron, Fritz, Saenko, Darrell (bib0040) 2011
Rantalankila, Kannala, Rahtu (bib0070) 2014
Ren, Bo (bib0071) 2012
Ren, Malik (bib0072) 2003
Zhang, Hartley, Mashford, Burn (bib0099) 2011
Arbeláez, Pont-Tuset, Barron, Marqués, Malik (bib0005) 2014
Benesova, Kottman (bib0006) 2014
Haas, Donner, Burner, Holzer, Langs (bib0035) 2011
Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (bib0001) 2010
Strassburg, Grzeszick, Rothacker, Fink (bib0083) 2015
van den Bergh, Boix, Roig, de Capitani, van Gool (bib0007) 2012; vol. 7578
Yan, Yu, Zhu, Lei, Li (bib0093) 2015
Bradski (bib0012) 2000
Criminisi, A., 2004. Microsoft research cambridge object recognition image database.
Everingham, L.M., van Gool, L., Williams, C. K. I., Winn, J., Zisserman, A., 2007. The PASCAL Visual Object Classes Challenge (VOC2007) Results.
Neubert, Protzel (bib0067) 2014
Yang, Gan, Gui, Li, Hou (bib0095) 2013
Meyer (bib0062) 1992
Tighe, Lazebnik (bib0084) 2010
den Bergh, Carton, van Gool (bib0010) 2013
Siva, Wong (bib0081) 2014
Hoiem, Efros, Hebert (bib0037) 2005; 24
Arbeláez, Maire, Fowlkes, Malik (bib0004) 2011; 33
Menze, Geiger (bib0059) 2015
Mester, Conrad, Guevara (bib0060) 2011
Lucchi, Smith, Achanta, Knott, Fua (bib0051) 2012; 31
Butler, Wulff, Stanley, Black (bib0013) 2012
Gadde, Jampani, Kiefel, Gehler (bib0028) 2015; abs/1511.06739
Xu, Corso (bib0090) 2012
van den Bergh, Roig, Boix, Manen, van Gool (bib0009) 2013
Gonfaus, Bosch, van de Weijer, Bagdanov, Serrat, Gonzàlez (bib0030) 2010
Neubert, Protzel (bib0065) 2012
Bódis-Szomorú, Riemenschneider, van Gool (bib0011) 2015
Lucchi, Smith, Achanta, Lepetit, Fua (bib0052) 2010
Lerma, Kosecka (bib0043) 2014
Freifeld, Li, Fisher (bib0027) 2015
Shen, Du, Wang, Li (bib0077) 2014; 23
Demsar (bib0018) 2006; 7
Wang, Lu, Yang, Yang (bib0087) 2011
Liu, Feng, Domokos, Xu, Huang, Hu, Yan (bib0049) 2014; 16
Lin, Maire, Belongie, Bourdev, Girshick, Hays, Perona, Ramanan, Dollár, Zitnick (bib0046) 2014; abs/1405.0312
Yamaguchi, McAllester, Urtasun (bib0092) 2014
Lv (bib0054) 2015; 8
Marcotegui, Meyer (bib0057) 1997; 52
Grundmann, Kwatra, Han, Essa (bib0033) 2010
Moore, Prince, Warrell, Mohammed, Jones (bib0063) 2008
Russell, Torralba, Murphy, Freeman (bib0075) 2008; 77
Zeng, Wang, Wang, Gan, Zha (bib0097) 2011
Engel, Spinello, Triebel, Siegwart, Bülthoff, Curio (bib0025) 2009
Morerio, Marcenaro, Regazzoni (bib0064) 2014
Gould, Rodgers, Cohen, Elidan, Koller (bib0032) 2008; 80
Liu, Shen, Lin (bib0047) 2014; abs/1411.6387
Ducournau, Rital, Bretto, Laget (bib0024) 2010
Geiger, Wang (bib0029) 2015
Zhang, Kan, Schwing, Urtasun (bib0098) 2013
Martin, Fowlkes, Malik (bib0058) 2004; 26
Yang, Lu, Yang (bib0094) 2014; 23
Carr, Hartley (bib0015) 2009
Perbet, Maki (bib0069) 2011
Buyssens, Gardin, Ruan (bib0014) 2014; 35
Koniusz (10.1016/j.cviu.2017.03.007_bib0042) 2009
Neubert (10.1016/j.cviu.2017.03.007_bib0066) 2013
Russell (10.1016/j.cviu.2017.03.007_bib0075) 2008; 77
Yao (10.1016/j.cviu.2017.03.007_bib0096) 2015
Benesova (10.1016/j.cviu.2017.03.007_bib0006) 2014
Liu (10.1016/j.cviu.2017.03.007_bib0049) 2014; 16
den Bergh (10.1016/j.cviu.2017.03.007_bib0010) 2013
Gould (10.1016/j.cviu.2017.03.007_bib0032) 2008; 80
Carr (10.1016/j.cviu.2017.03.007_bib0015) 2009
Achanta (10.1016/j.cviu.2017.03.007_bib0002) 2012; 34
Felzenswalb (10.1016/j.cviu.2017.03.007_bib0026) 2004; 59
Arbeláez (10.1016/j.cviu.2017.03.007_bib0005) 2014
Lv (10.1016/j.cviu.2017.03.007_bib0054) 2015; 8
Ren (10.1016/j.cviu.2017.03.007_bib0073) 2013
Du (10.1016/j.cviu.2017.03.007_bib0023) 2012
Shu (10.1016/j.cviu.2017.03.007_bib0079) 2013
10.1016/j.cviu.2017.03.007_bib0017
Levinshtein (10.1016/j.cviu.2017.03.007_bib0044) 2009; 31
Arbeláez (10.1016/j.cviu.2017.03.007_bib0004) 2011; 33
Achanta (10.1016/j.cviu.2017.03.007_bib0001) 2010
Strassburg (10.1016/j.cviu.2017.03.007_bib0083) 2015
Mester (10.1016/j.cviu.2017.03.007_bib0060) 2011
Butler (10.1016/j.cviu.2017.03.007_bib0013) 2012
Xu (10.1016/j.cviu.2017.03.007_bib0090) 2012
van den Bergh (10.1016/j.cviu.2017.03.007_bib0009) 2013
Liu (10.1016/j.cviu.2017.03.007_bib0048) 2014
Bódis-Szomorú (10.1016/j.cviu.2017.03.007_bib0011) 2015
Zhang (10.1016/j.cviu.2017.03.007_bib0099) 2011
Menze (10.1016/j.cviu.2017.03.007_bib0059) 2015
Buyssens (10.1016/j.cviu.2017.03.007_bib0014) 2014; 35
Gupta (10.1016/j.cviu.2017.03.007_bib0034) 2015; 112
He (10.1016/j.cviu.2017.03.007_bib0036) 2015; 115
Deng (10.1016/j.cviu.2017.03.007_bib0019) 2009
Rantalankila (10.1016/j.cviu.2017.03.007_bib0070) 2014
Janoch (10.1016/j.cviu.2017.03.007_bib0040) 2011
Gadde (10.1016/j.cviu.2017.03.007_bib0028) 2015; abs/1511.06739
Hoiem (10.1016/j.cviu.2017.03.007_bib0037) 2005; 24
Hoiem (10.1016/j.cviu.2017.03.007_bib0039) 2007
Marcotegui (10.1016/j.cviu.2017.03.007_bib0057) 1997; 52
Lucchi (10.1016/j.cviu.2017.03.007_bib0052) 2010
Grundmann (10.1016/j.cviu.2017.03.007_bib0033) 2010
Neubert (10.1016/j.cviu.2017.03.007_bib0065) 2012
Liu (10.1016/j.cviu.2017.03.007_bib0047) 2014; abs/1411.6387
Andres (10.1016/j.cviu.2017.03.007_bib0003) 2008
Perbet (10.1016/j.cviu.2017.03.007_bib0069) 2011
Yang (10.1016/j.cviu.2017.03.007_bib0094) 2014; 23
Yang (10.1016/j.cviu.2017.03.007_bib0095) 2013
Geiger (10.1016/j.cviu.2017.03.007_bib0029) 2015
Zeng (10.1016/j.cviu.2017.03.007_bib0097) 2011
Tighe (10.1016/j.cviu.2017.03.007_bib0084) 2010
Shen (10.1016/j.cviu.2017.03.007_bib0077) 2014; 23
Rohkohl (10.1016/j.cviu.2017.03.007_bib0074) 2007
Shi (10.1016/j.cviu.2017.03.007_bib0078) 2000; 22
Conrad (10.1016/j.cviu.2017.03.007_bib0016) 2013
Lu (10.1016/j.cviu.2017.03.007_bib0050) 2013
Lui (10.1016/j.cviu.2017.03.007_bib0053) 2011
Dollár (10.1016/j.cviu.2017.03.007_bib0020) 2009
Song (10.1016/j.cviu.2017.03.007_bib0082) 2015
10.1016/j.cviu.2017.03.007_bib0055
Zhang (10.1016/j.cviu.2017.03.007_bib0098) 2013
van den Bergh (10.1016/j.cviu.2017.03.007_bib0008) 2013; abs/1309.3848
Malladi (10.1016/j.cviu.2017.03.007_bib0056) 2014
Yan (10.1016/j.cviu.2017.03.007_bib0093) 2015
Gould (10.1016/j.cviu.2017.03.007_bib0031) 2009
Moore (10.1016/j.cviu.2017.03.007_bib0063) 2008
Xiao (10.1016/j.cviu.2017.03.007_bib0089) 2013
Martin (10.1016/j.cviu.2017.03.007_bib0058) 2004; 26
Morerio (10.1016/j.cviu.2017.03.007_bib0064) 2014
Meyer (10.1016/j.cviu.2017.03.007_bib0062) 1992
Silberman (10.1016/j.cviu.2017.03.007_bib0080) 2012
Weikersdorfer (10.1016/j.cviu.2017.03.007_bib0088) 2012
Lin (10.1016/j.cviu.2017.03.007_bib0045) 2013
Schick (10.1016/j.cviu.2017.03.007_bib0076) 2012
Engel (10.1016/j.cviu.2017.03.007_bib0025) 2009
van den Bergh (10.1016/j.cviu.2017.03.007_bib0007) 2012; vol. 7578
Haas (10.1016/j.cviu.2017.03.007_bib0035) 2011
Yamaguchi (10.1016/j.cviu.2017.03.007_bib0092) 2014
Mester (10.1016/j.cviu.2017.03.007_bib0061) 1988
Veksler (10.1016/j.cviu.2017.03.007_bib0086) 2010; 6315
Dong (10.1016/j.cviu.2017.03.007_bib0022) 2013
Ren (10.1016/j.cviu.2017.03.007_bib0071) 2012
Lucchi (10.1016/j.cviu.2017.03.007_bib0051) 2012; 31
Yamaguchi (10.1016/j.cviu.2017.03.007_bib0091) 2012
Ren (10.1016/j.cviu.2017.03.007_bib0072) 2003
Perazzi (10.1016/j.cviu.2017.03.007_bib0068) 2012
Lin (10.1016/j.cviu.2017.03.007_bib0046) 2014; abs/1405.0312
Neubert (10.1016/j.cviu.2017.03.007_bib0067) 2014
Wang (10.1016/j.cviu.2017.03.007_bib0087) 2011
Kim (10.1016/j.cviu.2017.03.007_bib0041) 2013
Siva (10.1016/j.cviu.2017.03.007_bib0081) 2014
Gonfaus (10.1016/j.cviu.2017.03.007_bib0030) 2010
Demsar (10.1016/j.cviu.2017.03.007_bib0018) 2006; 7
Freifeld (10.1016/j.cviu.2017.03.007_bib0027) 2015
Hoiem (10.1016/j.cviu.2017.03.007_bib0038) 2007; 75
Bradski (10.1016/j.cviu.2017.03.007_sbref0012) 2000
10.1016/j.cviu.2017.03.007_bib0085
Ducournau (10.1016/j.cviu.2017.03.007_bib0024) 2010
Lerma (10.1016/j.cviu.2017.03.007_bib0043) 2014
Dollár (10.1016/j.cviu.2017.03.007_bib0021) 2013
References_xml – start-page: 62
  year: 2012
  end-page: 63
  ident: bib0023
  article-title: Superpixels using random walker
  publication-title: IEEE Global High Tech Congress on Electronics
– volume: 31
  start-page: 2290
  year: 2009
  end-page: 2297
  ident: bib0044
  article-title: TurboPixels: fast superpixels using geometric flows
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 930
  year: 2012
  end-page: 934
  ident: bib0076
  article-title: Measuring and evaluating the compactness of superpixels
  publication-title: International Conference on Pattern Recognition
– year: 2013
  ident: bib0066
  article-title: Evaluating superpixels in video: Metrics beyond figure-ground segmentation
  publication-title: British Machine Vision Conference
– start-page: 10
  year: 2003
  end-page: 17
  ident: bib0072
  article-title: Learning a classification model for segmentation
  publication-title: International Conference on Computer Vision
– volume: 80
  start-page: 300
  year: 2008
  end-page: 316
  ident: bib0032
  article-title: Multi-class segmentation with relative location prior
  publication-title: Int. J. Comput. Vis.
– start-page: 733
  year: 2012
  end-page: 740
  ident: bib0068
  article-title: Saliency filters: contrast based filtering for salient region detection
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– reference: Everingham, L.M., van Gool, L., Williams, C. K. I., Winn, J., Zisserman, A., 2007. The PASCAL Visual Object Classes Challenge (VOC2007) Results.
– volume: 112
  start-page: 133
  year: 2015
  end-page: 149
  ident: bib0034
  article-title: Indoor scene understanding with RGB-D images: bottom-up segmentation, object detection and semantic segmentation
  publication-title: Int. J. Comput. Vis.
– start-page: 616
  year: 1988
  end-page: 624
  ident: bib0061
  article-title: Statistical model based image segmentation using region growing, contour relaxation and classification
  publication-title: SPIE Symposium on Visual Communications and Image Processing
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0018
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 6315
  start-page: 211
  year: 2010
  end-page: 224
  ident: bib0086
  article-title: Superpixels and supervoxels in an energy optimization framework
  publication-title: European Conference on Computer Vision
– start-page: 518
  year: 2015
  end-page: 527
  ident: bib0083
  article-title: On the influence of superpixel methods for image parsing
  publication-title: International Conference on Computer Vision Theory and Application
– year: 2012
  ident: bib0065
  article-title: Superpixel benchmark and comparison
  publication-title: Forum Bildverarbeitung
– volume: 77
  start-page: 157
  year: 2008
  end-page: 173
  ident: bib0075
  article-title: Labelme: a database and web-based tool for image annotation
  publication-title: Int. J. Comput. Vis.
– start-page: 463
  year: 2010
  end-page: 471
  ident: bib0052
  article-title: A fully automated approach to segmentation of irregularly shaped cellular structures in EM images
  publication-title: International Conference on Medical Image Computing and Computer Assisted Interventions
– start-page: 250
  year: 2011
  end-page: 261
  ident: bib0060
  article-title: Multichannel Segmentation Using Contour Relaxation: Fast Super-pixels and Temporal Propagation
  publication-title: Scandinavian Conference Image Analysis
– start-page: 1
  year: 2009
  end-page: 8
  ident: bib0031
  article-title: Decomposing a scene into geometric and semantically consistent regions
  publication-title: International Conference on Computer Vision
– start-page: 1
  year: 2014
  end-page: 7
  ident: bib0064
  article-title: A generative superpixel method
  publication-title: International Conference on Information Fusion
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: bib0078
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 23
  start-page: 1639
  year: 2014
  end-page: 1651
  ident: bib0094
  article-title: Robust superpixel tracking
  publication-title: Trans. Image Process.
– start-page: 377
  year: 2013
  end-page: 384
  ident: bib0009
  article-title: Online video seeds for temporal window objectness
  publication-title: International Conference on Computer Vision
– start-page: 996
  year: 2014
  end-page: 1001
  ident: bib0067
  article-title: Compact watershed and preemptive SLIC: on improving trade-offs of superpixel segmentation algorithms
  publication-title: International Conference on Pattern Recognition
– start-page: 1
  year: 2010
  end-page: 4
  ident: bib0024
  article-title: Hypergraph coarsening for image superpixelization
  publication-title: International Symposium on I/V Communications and Mobile Network
– start-page: 3280
  year: 2010
  end-page: 3287
  ident: bib0030
  article-title: Harmony potentials for joint classification and segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– year: 2010
  ident: bib0001
  article-title: SLIC Superpixels
  publication-title: Technical Report
– start-page: 1323
  year: 2011
  end-page: 1330
  ident: bib0087
  article-title: Superpixel tracking
  publication-title: International Conference on Computer Vision
– volume: 24
  start-page: 577
  year: 2005
  end-page: 584
  ident: bib0037
  article-title: Automatic photo pop-up
  publication-title: ACM Trans. Graph.
– start-page: 84
  year: 2011
  end-page: 91
  ident: bib0099
  article-title: Superpixels, occlusion and stereo
  publication-title: International Conference on Digital Image Computing Techniques and Applications
– volume: 75
  start-page: 151
  year: 2007
  end-page: 172
  ident: bib0038
  article-title: Recovering surface layout from an image
  publication-title: Int. J. Comput. Vis.
– start-page: 363
  year: 2013
  end-page: 368
  ident: bib0010
  article-title: Depth SEEDS: recovering incomplete depth data using superpixels
  publication-title: Winter Conference on Applications of Computer Vision
– volume: 52
  start-page: 397
  year: 1997
  end-page: 407
  ident: bib0057
  article-title: Bottom-up segmentation of image sequences for coding
  publication-title: Ann. Télécommun.
– start-page: 1202
  year: 2012
  end-page: 1209
  ident: bib0090
  article-title: Evaluation of super-voxel methods for early video processing
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1273
  year: 2013
  end-page: 1280
  ident: bib0098
  article-title: Estimating the 3d layout of indoor scenes and its clutter from depth sensors
  publication-title: International Conference on Computer Vision
– start-page: 183
  year: 2015
  end-page: 195
  ident: bib0029
  article-title: Joint 3d object and layout inference from a single RGB-D image
  publication-title: German Conference on Pattern Recognition
– start-page: 1168
  year: 2011
  end-page: 1174
  ident: bib0040
  article-title: A category-level 3-d object dataset: putting the kinect to work
  publication-title: International Conference on Computer Vision Workshops
– start-page: 2947
  year: 2015
  end-page: 2955
  ident: bib0096
  article-title: Real-time coarse-to-fine topologically preserving segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2009
  end-page: 11
  ident: bib0042
  article-title: Segmentation based interest points and evaluation of unsupervised image segmentation methods
  publication-title: British Machine Vision Conference
– start-page: 716
  year: 2014
  end-page: 723
  ident: bib0048
  article-title: Discrete-continuous depth estimation from a single image
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2042
  year: 2009
  end-page: 2049
  ident: bib0015
  article-title: Minimizing energy functions on 4-connected lattices using elimination
  publication-title: International Conference on Computer Vision
– start-page: 3408
  year: 2013
  end-page: 3415
  ident: bib0022
  article-title: A deformable mixture parsing model with parselets
  publication-title: International Conference on Computer Vision
– volume: 16
  start-page: 253
  year: 2014
  end-page: 265
  ident: bib0049
  article-title: Fashion parsing with weak color-category labels
  publication-title: IEEE Trans. Multimedia
– year: 2009
  ident: bib0019
  article-title: ImageNet: a large-scale hierarchical image database
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 593
  year: 2012
  end-page: 601
  ident: bib0071
  article-title: Discriminatively trained sparse code gradients for contour detection
  publication-title: Neural Information Processing Systems
– start-page: 611
  year: 2012
  end-page: 625
  ident: bib0013
  article-title: A naturalistic open source movie for optical flow evaluation
  publication-title: European Conference on Computer Vision
– start-page: 746
  year: 2012
  end-page: 760
  ident: bib0080
  article-title: Indoor segmentation and support inference from RGBD images
  publication-title: European Conference on Computer Vision
– start-page: 1841
  year: 2013
  end-page: 1848
  ident: bib0021
  article-title: Structured forests for fast edge detection
  publication-title: International Conference on Computer Vision
– start-page: 1854
  year: 2013
  end-page: 1861
  ident: bib0050
  article-title: Patch match filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1417
  year: 2013
  end-page: 1424
  ident: bib0045
  article-title: Holistic scene understanding for 3d object detection with RGBD cameras
  publication-title: International Conference on Computer Vision
– volume: 8
  start-page: 239
  year: 2015
  end-page: 248
  ident: bib0054
  article-title: An improved slic superpixels using reciprocal nearest neighbor clustering
  publication-title: Int. J. Signal Process. Image Process. Pattern Recognit.
– volume: abs/1511.06739
  year: 2015
  ident: bib0028
  article-title: Superpixel convolutional networks using bilateral inceptions
  publication-title: Comput. Res. Reposit.
– start-page: 2011
  year: 2013
  end-page: 2018
  ident: bib0073
  article-title: Image segmentation by cascaded region agglomeration
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 35
  year: 2013
  end-page: 46
  ident: bib0095
  article-title: 3-d geometry enhanced superpixels for RGB-D data
  publication-title: Pacific-Rim Conference on Multimedia
– volume: 33
  start-page: 898
  year: 2011
  end-page: 916
  ident: bib0004
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 304
  year: 2009
  end-page: 311
  ident: bib0020
  article-title: Pedestrian detection: a benchmark
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 145
  year: 2014
  end-page: 148
  ident: bib0056
  article-title: Superpixels using morphology for rock image segmentation
  publication-title: IEEE Southwest Symposium on Image Analysis and Interpretation
– volume: 23
  start-page: 1451
  year: 2014
  end-page: 1462
  ident: bib0077
  article-title: Lazy random walks for superpixel segmentation
  publication-title: Trans. Image Process.
– start-page: 5107
  year: 2015
  end-page: 5116
  ident: bib0093
  article-title: Object detection by labeling superpixels
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2141
  year: 2010
  end-page: 2148
  ident: bib0033
  article-title: Efficient hierarchical graph-based video segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 756
  year: 2014
  end-page: 771
  ident: bib0092
  article-title: Efficient joint segmentation, occlusion labeling, stereo and flow estimation
  publication-title: European Conference on Computer Vision
– volume: abs/1405.0312
  year: 2014
  ident: bib0046
  article-title: Microsoft COCO: common objects in context
  publication-title: Comput. Res. Reposit.
– start-page: 280
  year: 2013
  end-page: 293
  ident: bib0016
  article-title: Contour-relaxed superpixels
  publication-title: Energy Minimization Methods in Computer Vision and Pattern Recognition
– reference: Vedaldi, A., Fulkerson, B., 2008. VLFeat: An Open and Portable Library of Computer Vision Algorithms.
– volume: abs/1309.3848
  year: 2013
  ident: bib0008
  article-title: SEEDS: superpixels extracted via energy-driven sampling
  publication-title: Comput. Res. Reposit.
– start-page: 303
  year: 1992
  end-page: 306
  ident: bib0062
  article-title: Color image segmentation
  publication-title: International Conference on Image Processing and its Applications
– year: 2000
  ident: bib0012
  article-title: The opencv library
  publication-title: Dr. Dobb’s Journal of Software Tools
– start-page: 447
  year: 2011
  end-page: 454
  ident: bib0097
  article-title: Structure-sensitive superpixels via geodesic distance
  publication-title: International Conference on Computer Vision
– start-page: 259
  year: 2013
  end-page: 260
  ident: bib0041
  article-title: Improved simple linear iterative clustering superpixels
  publication-title: International Symposium on Consumer Electronics
– start-page: 1
  year: 2007
  end-page: 8
  ident: bib0039
  article-title: Recovering occlusion boundaries from a single image
  publication-title: International Conference on Computer Vision
– start-page: 328
  year: 2014
  end-page: 335
  ident: bib0005
  article-title: Multiscale combinatorial grouping
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3570
  year: 2012
  end-page: 3577
  ident: bib0091
  article-title: Parsing clothing in fashion photographs
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 26
  year: 2011
  end-page: 30
  ident: bib0069
  article-title: Homogeneous superpixels from random walks
  publication-title: Machine Vision and Applications, Conference on
– volume: 31
  start-page: 474
  year: 2012
  end-page: 486
  ident: bib0051
  article-title: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features
  publication-title: IEEE Trans. Med. Imaging
– volume: 35
  start-page: 20
  year: 2014
  end-page: 26
  ident: bib0014
  article-title: Eikonal based region growing for superpixels generation: application to semi-supervised real time organ segmentation in CT images
  publication-title: Innovat. Res. BioMed. Eng.
– volume: vol. 7578
  start-page: 13
  year: 2012
  end-page: 26
  ident: bib0007
  article-title: SEEDS: superpixels extracted via energy-driven sampling
  publication-title: European Conference on Computer Vision
– start-page: 2639
  year: 2014
  end-page: 2645
  ident: bib0043
  article-title: Semantic segmentation with heterogeneous sensor coverages
  publication-title: IEEE International Conference on Robotics and Automation
– start-page: 352
  year: 2010
  end-page: 365
  ident: bib0084
  article-title: SuperParsing: scalable nonparametric image parsing with superpixels
  publication-title: European Conference on Computer Vision
– volume: 26
  start-page: 530
  year: 2004
  end-page: 549
  ident: bib0058
  article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2011
  year: 2015
  end-page: 2020
  ident: bib0011
  article-title: Superpixel meshes for fast edge-preserving surface reconstruction
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 34
  start-page: 2274
  year: 2012
  end-page: 2281
  ident: bib0002
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Criminisi, A., 2004. Microsoft research cambridge object recognition image database.
– start-page: 3061
  year: 2015
  end-page: 3070
  ident: bib0059
  article-title: Object scene flow for autonomous vehicles
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts
– start-page: 2417
  year: 2014
  end-page: 2424
  ident: bib0070
  article-title: Generating object segmentation proposals using global and local search
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 58
  year: 2011
  end-page: 68
  ident: bib0035
  article-title: Superpixel-based interest points for effective bags of visual words medical image retrieval
  publication-title: International Conference onMedical Image Computing and Computer Assisted Interventions
– start-page: 127
  year: 2014
  end-page: 134
  ident: bib0081
  article-title: Grid seams: A fast superpixel algorithm for real-time applications
  publication-title: Computer and Robot Vision, Conference on
– start-page: 1625
  year: 2013
  end-page: 1632
  ident: bib0089
  article-title: SUN3D: a database of big spaces reconstructed using sfm and object labels
  publication-title: International Conference on Computer Vision
– start-page: 2087
  year: 2012
  end-page: 2090
  ident: bib0088
  article-title: Depth-adaptive superpixels
  publication-title: International Conference on Pattern Recognition
– year: 2014
  ident: bib0006
  article-title: Fast superpixel segmentation using morphological processing
  publication-title: Conference on Machine Vision and Machine Learning
– start-page: 2184
  year: 2015
  end-page: 2188
  ident: bib0027
  article-title: A fast method for inferring high-quality simply-connected superpixels
  publication-title: International Conference on Image Processing
– start-page: 142
  year: 2008
  end-page: 152
  ident: bib0003
  article-title: Segmentation of SBFSEM volume data of neural tissue by hierarchical classification
  publication-title: DAGM Annual Pattern Recognition Symposium
– start-page: 248
  year: 2009
  end-page: 252
  ident: bib0025
  article-title: Medial features for superpixel segmentation
  publication-title: IAPR International Conference on Machine Vision Applications
– start-page: 3721
  year: 2013
  end-page: 3727
  ident: bib0079
  article-title: Improving an object detector and extracting regions using superpixels
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 59
  start-page: 167
  year: 2004
  end-page: 181
  ident: bib0026
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
– volume: abs/1411.6387
  year: 2014
  ident: bib0047
  article-title: Deep convolutional neural fields for depth estimation from a single image
  publication-title: Comput. Res. Reposit.
– reference: .
– start-page: 1
  year: 2008
  end-page: 8
  ident: bib0063
  article-title: Superpixel lattices
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 254
  year: 2007
  end-page: 263
  ident: bib0074
  article-title: Efficient image segmentation using pairwise pixel similarities
  publication-title: DAGM Annual Pattern Recognition Symposium
– volume: 115
  start-page: 330
  year: 2015
  end-page: 344
  ident: bib0036
  article-title: Supercnn: a superpixelwise convolutional neural network for salient object detection
  publication-title: Int. J. Comput. Vis.
– start-page: 567
  year: 2015
  end-page: 576
  ident: bib0082
  article-title: SUN RGB-D: a RGB-D scene understanding benchmark suite
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2097
  year: 2011
  end-page: 2104
  ident: bib0053
  article-title: Entropy rate superpixel segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.cviu.2017.03.007_bib0018
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 10.1016/j.cviu.2017.03.007_bib0078
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– start-page: 611
  year: 2012
  ident: 10.1016/j.cviu.2017.03.007_bib0013
  article-title: A naturalistic open source movie for optical flow evaluation
– start-page: 756
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0092
  article-title: Efficient joint segmentation, occlusion labeling, stereo and flow estimation
– start-page: 142
  year: 2008
  ident: 10.1016/j.cviu.2017.03.007_bib0003
  article-title: Segmentation of SBFSEM volume data of neural tissue by hierarchical classification
– volume: 33
  start-page: 898
  issue: 5
  year: 2011
  ident: 10.1016/j.cviu.2017.03.007_bib0004
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.161
– start-page: 518
  year: 2015
  ident: 10.1016/j.cviu.2017.03.007_bib0083
  article-title: On the influence of superpixel methods for image parsing
– volume: vol. 7578
  start-page: 13
  year: 2012
  ident: 10.1016/j.cviu.2017.03.007_bib0007
  article-title: SEEDS: superpixels extracted via energy-driven sampling
– start-page: 303
  year: 1992
  ident: 10.1016/j.cviu.2017.03.007_bib0062
  article-title: Color image segmentation
– start-page: 10
  year: 2003
  ident: 10.1016/j.cviu.2017.03.007_bib0072
  article-title: Learning a classification model for segmentation
– start-page: 2087
  year: 2012
  ident: 10.1016/j.cviu.2017.03.007_bib0088
  article-title: Depth-adaptive superpixels
– start-page: 1854
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0050
  article-title: Patch match filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation
– start-page: 2011
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0073
  article-title: Image segmentation by cascaded region agglomeration
– start-page: 1323
  year: 2011
  ident: 10.1016/j.cviu.2017.03.007_bib0087
  article-title: Superpixel tracking
– start-page: 1168
  year: 2011
  ident: 10.1016/j.cviu.2017.03.007_bib0040
  article-title: A category-level 3-d object dataset: putting the kinect to work
– start-page: 62
  year: 2012
  ident: 10.1016/j.cviu.2017.03.007_bib0023
  article-title: Superpixels using random walker
– start-page: 2097
  year: 2011
  ident: 10.1016/j.cviu.2017.03.007_bib0053
  article-title: Entropy rate superpixel segmentation
– volume: 77
  start-page: 157
  issue: 1–3
  year: 2008
  ident: 10.1016/j.cviu.2017.03.007_bib0075
  article-title: Labelme: a database and web-based tool for image annotation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-007-0090-8
– start-page: 463
  year: 2010
  ident: 10.1016/j.cviu.2017.03.007_bib0052
  article-title: A fully automated approach to segmentation of irregularly shaped cellular structures in EM images
– ident: 10.1016/j.cviu.2017.03.007_bib0055
– start-page: 1202
  year: 2012
  ident: 10.1016/j.cviu.2017.03.007_bib0090
  article-title: Evaluation of super-voxel methods for early video processing
– ident: 10.1016/j.cviu.2017.03.007_bib0017
– volume: 35
  start-page: 20
  issue: 1
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0014
  article-title: Eikonal based region growing for superpixels generation: application to semi-supervised real time organ segmentation in CT images
  publication-title: Innovat. Res. BioMed. Eng.
– year: 2010
  ident: 10.1016/j.cviu.2017.03.007_bib0001
  article-title: SLIC Superpixels
– start-page: 1
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0064
  article-title: A generative superpixel method
– volume: 31
  start-page: 474
  issue: 2
  year: 2012
  ident: 10.1016/j.cviu.2017.03.007_bib0051
  article-title: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2171705
– start-page: 2417
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0070
  article-title: Generating object segmentation proposals using global and local search
– volume: abs/1511.06739
  year: 2015
  ident: 10.1016/j.cviu.2017.03.007_bib0028
  article-title: Superpixel convolutional networks using bilateral inceptions
  publication-title: Comput. Res. Reposit.
– start-page: 259
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0041
  article-title: Improved simple linear iterative clustering superpixels
– start-page: 3280
  year: 2010
  ident: 10.1016/j.cviu.2017.03.007_bib0030
  article-title: Harmony potentials for joint classification and segmentation
– year: 2012
  ident: 10.1016/j.cviu.2017.03.007_bib0065
  article-title: Superpixel benchmark and comparison
– volume: 75
  start-page: 151
  issue: 1
  year: 2007
  ident: 10.1016/j.cviu.2017.03.007_bib0038
  article-title: Recovering surface layout from an image
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-006-0031-y
– start-page: 716
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0048
  article-title: Discrete-continuous depth estimation from a single image
  doi: 10.1007/978-1-4471-6515-6
– start-page: 1
  year: 2009
  ident: 10.1016/j.cviu.2017.03.007_bib0042
  article-title: Segmentation based interest points and evaluation of unsupervised image segmentation methods
– volume: 52
  start-page: 397
  issue: 7
  year: 1997
  ident: 10.1016/j.cviu.2017.03.007_bib0057
  article-title: Bottom-up segmentation of image sequences for coding
  publication-title: Ann. Télécommun.
  doi: 10.1007/BF02998459
– start-page: 593
  year: 2012
  ident: 10.1016/j.cviu.2017.03.007_bib0071
  article-title: Discriminatively trained sparse code gradients for contour detection
– start-page: 254
  year: 2007
  ident: 10.1016/j.cviu.2017.03.007_bib0074
  article-title: Efficient image segmentation using pairwise pixel similarities
– start-page: 377
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0009
  article-title: Online video seeds for temporal window objectness
– start-page: 58
  year: 2011
  ident: 10.1016/j.cviu.2017.03.007_bib0035
  article-title: Superpixel-based interest points for effective bags of visual words medical image retrieval
– volume: 8
  start-page: 239
  issue: 5
  year: 2015
  ident: 10.1016/j.cviu.2017.03.007_bib0054
  article-title: An improved slic superpixels using reciprocal nearest neighbor clustering
  publication-title: Int. J. Signal Process. Image Process. Pattern Recognit.
– start-page: 3570
  year: 2012
  ident: 10.1016/j.cviu.2017.03.007_bib0091
  article-title: Parsing clothing in fashion photographs
– start-page: 1417
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0045
  article-title: Holistic scene understanding for 3d object detection with RGBD cameras
– volume: 59
  start-page: 167
  issue: 2
  year: 2004
  ident: 10.1016/j.cviu.2017.03.007_bib0026
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000022288.19776.77
– ident: 10.1016/j.cviu.2017.03.007_bib0085
– start-page: 1841
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0021
  article-title: Structured forests for fast edge detection
– start-page: 304
  year: 2009
  ident: 10.1016/j.cviu.2017.03.007_bib0020
  article-title: Pedestrian detection: a benchmark
– start-page: 250
  year: 2011
  ident: 10.1016/j.cviu.2017.03.007_bib0060
  article-title: Multichannel Segmentation Using Contour Relaxation: Fast Super-pixels and Temporal Propagation
– start-page: 567
  year: 2015
  ident: 10.1016/j.cviu.2017.03.007_bib0082
  article-title: SUN RGB-D: a RGB-D scene understanding benchmark suite
– volume: 112
  start-page: 133
  issue: 2
  year: 2015
  ident: 10.1016/j.cviu.2017.03.007_bib0034
  article-title: Indoor scene understanding with RGB-D images: bottom-up segmentation, object detection and semantic segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0777-6
– start-page: 1
  year: 2008
  ident: 10.1016/j.cviu.2017.03.007_bib0063
  article-title: Superpixel lattices
– start-page: 2011
  year: 2015
  ident: 10.1016/j.cviu.2017.03.007_bib0011
  article-title: Superpixel meshes for fast edge-preserving surface reconstruction
– start-page: 1625
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0089
  article-title: SUN3D: a database of big spaces reconstructed using sfm and object labels
– start-page: 5107
  year: 2015
  ident: 10.1016/j.cviu.2017.03.007_bib0093
  article-title: Object detection by labeling superpixels
– year: 2000
  ident: 10.1016/j.cviu.2017.03.007_sbref0012
  article-title: The opencv library
  publication-title: Dr. Dobb’s Journal of Software Tools
– volume: 26
  start-page: 530
  issue: 5
  year: 2004
  ident: 10.1016/j.cviu.2017.03.007_bib0058
  article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1273918
– start-page: 2042
  year: 2009
  ident: 10.1016/j.cviu.2017.03.007_bib0015
  article-title: Minimizing energy functions on 4-connected lattices using elimination
– start-page: 352
  year: 2010
  ident: 10.1016/j.cviu.2017.03.007_bib0084
  article-title: SuperParsing: scalable nonparametric image parsing with superpixels
– year: 2009
  ident: 10.1016/j.cviu.2017.03.007_bib0019
  article-title: ImageNet: a large-scale hierarchical image database
– start-page: 26
  year: 2011
  ident: 10.1016/j.cviu.2017.03.007_bib0069
  article-title: Homogeneous superpixels from random walks
– start-page: 3721
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0079
  article-title: Improving an object detector and extracting regions using superpixels
– start-page: 328
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0005
  article-title: Multiscale combinatorial grouping
– volume: 6315
  start-page: 211
  year: 2010
  ident: 10.1016/j.cviu.2017.03.007_bib0086
  article-title: Superpixels and supervoxels in an energy optimization framework
– start-page: 1
  year: 2010
  ident: 10.1016/j.cviu.2017.03.007_bib0024
  article-title: Hypergraph coarsening for image superpixelization
– start-page: 1
  year: 2009
  ident: 10.1016/j.cviu.2017.03.007_bib0031
  article-title: Decomposing a scene into geometric and semantically consistent regions
– year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0066
  article-title: Evaluating superpixels in video: Metrics beyond figure-ground segmentation
– volume: 24
  start-page: 577
  issue: 3
  year: 2005
  ident: 10.1016/j.cviu.2017.03.007_bib0037
  article-title: Automatic photo pop-up
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1073204.1073232
– start-page: 248
  year: 2009
  ident: 10.1016/j.cviu.2017.03.007_bib0025
  article-title: Medial features for superpixel segmentation
– start-page: 616
  year: 1988
  ident: 10.1016/j.cviu.2017.03.007_bib0061
  article-title: Statistical model based image segmentation using region growing, contour relaxation and classification
– start-page: 127
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0081
  article-title: Grid seams: A fast superpixel algorithm for real-time applications
– start-page: 1273
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0098
  article-title: Estimating the 3d layout of indoor scenes and its clutter from depth sensors
– volume: 23
  start-page: 1639
  issue: 4
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0094
  article-title: Robust superpixel tracking
  publication-title: Trans. Image Process.
  doi: 10.1109/TIP.2014.2300823
– start-page: 2947
  year: 2015
  ident: 10.1016/j.cviu.2017.03.007_bib0096
  article-title: Real-time coarse-to-fine topologically preserving segmentation
– start-page: 996
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0067
  article-title: Compact watershed and preemptive SLIC: on improving trade-offs of superpixel segmentation algorithms
– volume: 31
  start-page: 2290
  issue: 12
  year: 2009
  ident: 10.1016/j.cviu.2017.03.007_bib0044
  article-title: TurboPixels: fast superpixels using geometric flows
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.96
– volume: abs/1411.6387
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0047
  article-title: Deep convolutional neural fields for depth estimation from a single image
  publication-title: Comput. Res. Reposit.
– volume: 16
  start-page: 253
  issue: 1
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0049
  article-title: Fashion parsing with weak color-category labels
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2013.2285526
– start-page: 2184
  year: 2015
  ident: 10.1016/j.cviu.2017.03.007_bib0027
  article-title: A fast method for inferring high-quality simply-connected superpixels
– volume: abs/1405.0312
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0046
  article-title: Microsoft COCO: common objects in context
  publication-title: Comput. Res. Reposit.
– start-page: 1
  year: 2007
  ident: 10.1016/j.cviu.2017.03.007_bib0039
  article-title: Recovering occlusion boundaries from a single image
– year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0006
  article-title: Fast superpixel segmentation using morphological processing
– start-page: 183
  year: 2015
  ident: 10.1016/j.cviu.2017.03.007_bib0029
  article-title: Joint 3d object and layout inference from a single RGB-D image
– start-page: 733
  year: 2012
  ident: 10.1016/j.cviu.2017.03.007_bib0068
  article-title: Saliency filters: contrast based filtering for salient region detection
– volume: 23
  start-page: 1451
  issue: 4
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0077
  article-title: Lazy random walks for superpixel segmentation
  publication-title: Trans. Image Process.
  doi: 10.1109/TIP.2014.2302892
– start-page: 746
  year: 2012
  ident: 10.1016/j.cviu.2017.03.007_bib0080
  article-title: Indoor segmentation and support inference from RGBD images
– start-page: 35
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0095
  article-title: 3-d geometry enhanced superpixels for RGB-D data
– volume: abs/1309.3848
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0008
  article-title: SEEDS: superpixels extracted via energy-driven sampling
  publication-title: Comput. Res. Reposit.
– volume: 115
  start-page: 330
  issue: 3
  year: 2015
  ident: 10.1016/j.cviu.2017.03.007_bib0036
  article-title: Supercnn: a superpixelwise convolutional neural network for salient object detection
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0822-0
– start-page: 3061
  year: 2015
  ident: 10.1016/j.cviu.2017.03.007_bib0059
  article-title: Object scene flow for autonomous vehicles
– start-page: 2639
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0043
  article-title: Semantic segmentation with heterogeneous sensor coverages
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  ident: 10.1016/j.cviu.2017.03.007_bib0002
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– start-page: 363
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0010
  article-title: Depth SEEDS: recovering incomplete depth data using superpixels
– start-page: 447
  year: 2011
  ident: 10.1016/j.cviu.2017.03.007_bib0097
  article-title: Structure-sensitive superpixels via geodesic distance
– start-page: 84
  year: 2011
  ident: 10.1016/j.cviu.2017.03.007_bib0099
  article-title: Superpixels, occlusion and stereo
– start-page: 280
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0016
  article-title: Contour-relaxed superpixels
– start-page: 145
  year: 2014
  ident: 10.1016/j.cviu.2017.03.007_bib0056
  article-title: Superpixels using morphology for rock image segmentation
– start-page: 3408
  year: 2013
  ident: 10.1016/j.cviu.2017.03.007_bib0022
  article-title: A deformable mixture parsing model with parselets
– volume: 80
  start-page: 300
  issue: 3
  year: 2008
  ident: 10.1016/j.cviu.2017.03.007_bib0032
  article-title: Multi-class segmentation with relative location prior
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-008-0140-x
– start-page: 930
  year: 2012
  ident: 10.1016/j.cviu.2017.03.007_bib0076
  article-title: Measuring and evaluating the compactness of superpixels
– start-page: 2141
  year: 2010
  ident: 10.1016/j.cviu.2017.03.007_bib0033
  article-title: Efficient hierarchical graph-based video segmentation
SSID ssj0011491
Score 2.660281
Snippet •An extensive evaluation of 28 superpixel algorithms on 5 datasets.•Explicit discussion of parameter optimization, including superpixel...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Benchmark
Evaluation
Image segmentation
Perceptual grouping
Superpixel segmentation
Superpixels
Title Superpixels: An evaluation of the state-of-the-art
URI https://dx.doi.org/10.1016/j.cviu.2017.03.007
Volume 166
WOSCitedRecordID wos000419933000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA-iHvTgx1T8pgdvo5KmWdN6G6KoBxFU2K20aQIT7ca2jv35vjRpG6cOd_BSutBma39v7_3y8j4QukhoQhkOBTC3kLuUMuVo6giXUMEiJpPMT3DZbII9Poa9XvRkck_GZTsBlufhbBYN_xVqGAOwVersEnDXk8IAnAPocATY4fgn4J-LoRgN-zMwesbr11T0riICyjQidyBd-ODOlTmq-jy0ddq53l34UKE9hZ0IU7tmJkXZEtaOjleuVZWMMP6SQtPE_vRTofc6Sv1iOx680HI8aF2JmXJx0q_KNLDVoWfZVV0C4JvG1s6Dt0s-7Rcq0o7pmrOssU_Vnvyc2aqDCas4tbdYzRGrOWLsx2WNgTXCOhEou7Xu_U3vod5egmWhp4NR9ROYbCod-Df_S35mLBYLedlBW2b54HQ17LtoReQttG2WEo5R1GMYqlCsxlpo0yo9uYeIJSZXTjd3GiFxBtIBuXDmhWQfvd7evFzfuaZ_hst9jCdgYT0spQxklnF45NTLgND5gSoRl4kAiGPGAhZxDgyWRDghvmDC7_gkFZHwJEn8A7SaD3JxiJwIM5GQhFMeMJpK-A8TRjMgOsB_MSiBI-RV7yjmpri86nHyHv-OzhFq1_cMdWmVhVd3qlcfG3KoSV8MkrTgvuOlvuUEbRBgsVrUT9HqZFSIM7TOp5P-eHRuxOgTwQCEPg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superpixels%3A+An+evaluation+of+the+state-of-the-art&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Stutz%2C+David&rft.au=Hermans%2C+Alexander&rft.au=Leibe%2C+Bastian&rft.date=2018-01-01&rft.issn=1077-3142&rft.volume=166&rft.spage=1&rft.epage=27&rft_id=info:doi/10.1016%2Fj.cviu.2017.03.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2017_03_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon