Blind deblurring using coupled convolutional sparse coding regularisation for noisy-blurry images

This Letter proposes a novel method to deblur a blurry image corrupted by noise. The authors estimate a noise-free version of the input blurred image and a corresponding noise-free version of the latent image without damaging the blur information, as well as the latent image and blur kernel in an al...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics letters Ročník 54; číslo 14; s. 874 - 876
Hlavní autoři: An, T.-H, Choi, D, Cho, S, Hong, K.-S, Lee, S
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 12.07.2018
Témata:
ISSN:0013-5194, 1350-911X, 1350-911X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This Letter proposes a novel method to deblur a blurry image corrupted by noise. The authors estimate a noise-free version of the input blurred image and a corresponding noise-free version of the latent image without damaging the blur information, as well as the latent image and blur kernel in an alternating fashion. To this end, they first propose coupled convolutional sparse coding, which incorporates the coupled dictionary concept into convolutional sparse coding. Then they model the noise-free blurred image to share the sparse coefficients with the noise-free latent image using the coupled dictionaries. By utilising these noise-free images as priors in alternating latent image estimation and blur kernel estimation steps, they can estimate a high-quality latent image and blur kernel in the presence of noise. Experimental results demonstrate that the proposed method outperforms previous methods in handling noisy blurred images.
ISSN:0013-5194
1350-911X
1350-911X
DOI:10.1049/el.2018.0901